

Global Effective Field Theory fits from ATLAS

Rahul Balasubramanian on behalf of the ATLAS Collaboration

8th RIF workshop, Durham

Introduction

Effective field theory allows to consistently extend Standard Model and probe for deformation arising from a large class of heavy New Physics scenarios

Large number of parameters need to be measured - calls for a global approach making use of measurements from **different physics sectors** and **experiments** to uncover deviations in data

This talk, First global fit from the ATLAS collaboration Higgs boson and Electroweak measurements based on ATLAS data and electroweak precision **observables** from LEP & SLD

Interface between theory and experiment for (re)interpretation Simplified likelihood function as a statistical proxy to the full experimental likelihood function

Towards the next global fit

a peek into the updated SMEFT fit of combined Higgs boson (ATLAS-CONF-2023-052) measurements

D

g

 \mathcal{V}_{e}

Η

W

e

ATL-PHYS-PUB-2022-037

μ

u

S

 ν_{μ}

 $u_{ au}$

Effective Field Theory Lagrangian

- Effective field theory captures **SM as low-energy approx.** of a more fundamental (UV) theory at higher energy, **EFT** results can be translated **to dedicated UV models** \rightarrow *matching*
- Operators built from SM fields, **all allowed local interactions** respecting symmetries
- Some measurements serve as input parameters to SMEFT to make predictions for observable : {mw, mz, GF} scheme used

- Corresponding Wilson coefficients (c_i) new measurable parameters, capture deformations from a large class of UV theories

CP and flavour considerations

- 2499 operators at d=6 : additional flavour symmetry in SMEFT dictated by experimental considerations, allow to scale down complexity of operators !

- For combined fits: mainly CP-even observables are considered \rightarrow **CP-even operators** leading contribution

10.1007/JHEP 04 (2021) 073 Brivio

- Constraints in **top scheme** carry least flavour symmetry \rightarrow dedicated operators in top and lepton sectors

- Concerted effort to update to top scheme - Global EFT fit based on topU31 whereas updated Higgs combination based on top

Input measurements to the global fit

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]	- Simplified te
$H ightarrow \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139	Simplified et
$H \rightarrow ZZ^*$	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139	- Higgs boson s
$H \rightarrow WW^*$	ggF, VBF	139	
$H \to \tau \tau$	ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$	139	based on kin
	WH, ZH	139	N 4
$H \rightarrow b \bar{b}$	VBF	126	- Measurement
	$t\overline{t}H$	139	

Process	Observable	\mathcal{L} [fb ⁻¹]
$pp \to e^{\pm} \nu \mu^{\mp} \nu$	lead. lep. p_{T}	36
$pp \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$	$m_{\mathrm{T}}^{\mathrm{W}Z}$	36
$pp \rightarrow \ell^+ \ell^- \ell^+ \ell^-$	m_{Z2}	139
$pp \to \ell^+ \ell^- jj$	$\Delta \phi_{jj}$	139

observa

to SMEFT variations

- Measurement **uncertainties O(10%)** in bulk of distributions to **O(30%)** in tails

Observable	Measurement	Prediction	Ratio	- Flectrowea
Γ_Z [MeV]	2495.2 ± 2.3	2495.7 ± 1	0.9998 ± 0.0010	
R^0_{ℓ}	20.767 ± 0.025	20.758 ± 0.008	1.0004 ± 0.0013	- 7-bale abser
R_c^{0}	0.1721 ± 0.0030	0.17223 ± 0.00003	0.999 ± 0.017	\mathbf{L} -poic obsci
R_{b}^{0}	0.21629 ± 0.00066	0.21586 ± 0.00003	1.0020 ± 0.0031	2 forward be
$A_{\mathrm{FB}}^{\mathrm{O},\ell}$	0.0171 ± 0.0010	0.01718 ± 0.00037	0.995 ± 0.062	J-IOI Ward Da
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035	0.0758 ± 0.0012	0.932 ± 0.048	
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	0.1062 ± 0.0016	0.935 ± 0.021	- Measuremer
$\sigma_{\rm had}^{0}$ [pb]	41488 ± 6	41489 ± 5	0.99998 ± 0.00019	

emplate cross-sections from 5 major Higgs decay channels separated out by production mode further split into bins **ematic splitting** & **event info.** ($p_T^V, p_T^H, m_{jj}, N_{jets}$) t **uncertainties O(10%)** in bulk of distribution **to O(100%)** in tails

able considered for **each EW process**, chosen by sensitivity riations

- k precision observables measured at LEP & SLC
- **rvables**: Z-width (Γ_Z), 3-ratio parameters (R^0),
- ack asymmetries (A_{FB}⁰), and hadronic pole cross-section (σ_{had}^0)
- nt probed with high sensitivity, **uncertainties O(I 0.0I %)**

From Lagrangian to Observables

Continuous signal modelling of observable cross-section in terms of Wilson coefficients

Modelling Observables in SMEFT

Weights primarily estimated from Monte-Carlo simulations using SMEFT models with Madgraph + Pythia

- **SMEFTsim** is used for processes with SM-tree diagrams at LO
- **SMEFTatNLO** used for process with SM-loop diagrams at $LO(gg \rightarrow H, gg \rightarrow ZH, H \rightarrow gg)$

t/b/c **Analytical calculations** also employed in particular cases: NLO-EW corrections to $BR(H \rightarrow \gamma \gamma)$ Predictions for EWPO in SMEFT derived from calculations 10.1007/JHEP 06 (2021) 076 Corbett et al

All Wilson coefficients that affect the relevant signal process are considered, background are not reparameterised

<u>10.1103/Phys. Rev. D 98, 095005</u>

Dawson, Giardino

Impact of Experimental Acceptance

SMEFT parameterisation can be affected by analysis selections involved in Higgs boson reconstruction

For instance, in $H \rightarrow 4l$, c_{HW} , c_{HWB} , c_{HB} introduce photon-mediated diagrams in SMEFT \rightarrow sensitive to m_{Z2} selection Minimal impact expected on global fit as operators better constrained in $H \rightarrow \gamma \gamma$ decay Impact of analysis selections in $H \rightarrow 4l$ and $H \rightarrow l\nu l\nu$ accounted in SMEFT parameterisation

Operators affecting measurements : 4 fermion operators

			LEP/SLD EWPO	ATLAS Higgs	ATLAS electroweak	
2q2I	$c_{lq}^{(1)}$ $c_{lq}^{(3)}$ c_{eu} c_{ed} c_{lu} c_{ld} c_{qe}	$(\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q)$ $(\bar{l}\gamma_{\mu}\tau^{I}l)(\bar{q}\gamma^{\mu}\tau^{I}q)$ $(\bar{e}\gamma_{\mu}e)(\bar{u}\gamma^{\mu}u)$ $(\bar{e}\gamma_{\mu}e)(\bar{d}\gamma^{\mu}d)$ $(\bar{l}\gamma_{\mu}l)(\bar{u}\gamma^{\mu}u)$ $(\bar{l}\gamma_{\mu}l)(\bar{d}\gamma^{\mu}d)$ $(\bar{q}\gamma_{\mu}q)(\bar{e}\gamma^{\mu}e)$	WV	V, ZZ		WZ O O O O O O O O O O O O O
4q	$\begin{bmatrix} c_{qq}^{(1,1)} \\ c_{qq}^{(1,8)} \\ c_{qq}^{(2,1)} \\ c_{qq}^{(3,1)} \\ c_{qq}^{(3,1)} \\ c_{qq}^{(3,8)} \\ c_{qq}^{(1)} \\ c_{uu}^{(3,8)} \\ c_{uu}^{(1)} \\ c_{uu}^{(8)} \\ c_{dd}^{(1)} \\ c_{dd}^{(8)} \\ c_{dd}^{(1)} \\ c_{qu}^{(8)} \\ c_{qu}^{(1)} \\ c_{qd}^{(8)} \\ c_{qd}^{(8)} \\ c_{qd}^{(8)} \\ c_{dd}^{(8)} \\ c_{$	$(\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q)$ $(\bar{q}T^{a}\gamma_{\mu}q)(\bar{q}T^{a}\gamma^{\mu}q)$ $(\bar{q}\sigma^{i}\gamma_{\mu}q)(\bar{q}\sigma^{i}\gamma^{\mu}q)$ $(\bar{q}\sigma^{i}T^{a}\gamma_{\mu}q)(\bar{q}\sigma^{i}T^{a}\gamma^{\mu}q)$ $(\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u)$ $(\bar{u}T^{a}\gamma_{\mu}u)(\bar{u}T^{a}\gamma^{\mu}u)$ $(\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d)$ $(\bar{u}\gamma_{\mu}u)(\bar{d}\gamma^{\mu}d)$ $(\bar{u}T^{a}\gamma_{\mu}u)(\bar{d}T^{a}\gamma^{\mu}d)$ $(\bar{q}\gamma_{\mu}q)(\bar{u}\gamma^{\mu}u)$ $(\bar{q}T^{a}\gamma_{\mu}q)(\bar{u}T^{a}\gamma^{\mu}u)$ $(\bar{q}\gamma_{\mu}q)(\bar{d}\gamma^{\mu}d)$	Zjj		$ \begin{array}{c} \checkmark \\ \checkmark \\$	$\begin{array}{c} \begin{array}{c} 0.2 \\ -0.2 \\ -0.4 \end{array} \\ \end{array}$
2q2t	$\begin{array}{c} qu \\ \hline c_{Qq}^{(1,1)} \\ c_{Qq}^{(1,8)} \\ c_{Qq}^{(3,1)} \\ c_{Qq}^{(3,1)} \\ c_{Qq}^{(3,8)} \\ c_{Qq}^{(1)} \\ c_{tu}^{(1)} \\ c_{Qu}^{(1)} \\ c_{Qu}^{(8)} \\ c_{Qu}^{(1)} \\ c_{Qd}^{(8)} \\ c_{Qd}^{(8)} \\ c_{tq}^{(1)} \\ c_{tq}^{(8)} \\ c_{tq}^{(8)} \\ c_{tq}^{(8)} \\ \end{array}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$ $(\bar{Q}T^{a}\gamma_{\mu}Q)(\bar{q}T^{a}\gamma^{\mu}q)$ $(\bar{Q}\sigma^{i}\gamma_{\mu}Q)(\bar{q}\sigma^{i}\gamma^{\mu}q)$ $(\bar{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\bar{q}\sigma^{i}T^{a}\gamma^{\mu}q)$ $(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$ $(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$ $(\bar{Q}T^{a}\gamma_{\mu}Q)(\bar{u}T^{a}\gamma^{\mu}u)$ $(\bar{Q}T^{a}\gamma_{\mu}Q)(\bar{d}T^{a}\gamma^{\mu}d)$ $(\bar{Q}T^{a}\gamma_{\mu}Q)(\bar{d}T^{a}\gamma^{\mu}d)$ $(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$ $(\bar{q}T^{a}\gamma_{\mu}q)(\bar{t}T^{a}\gamma^{\mu}t)$		$\begin{array}{c} \checkmark \\ \checkmark $		$= 10^{-1} 10^{-5}$

Operators entering global fit : $\psi^2 H^2 D$

		LEP/SLD EWPO	ATLAS Higgs	ATLAS electroweak	
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		\checkmark		WZ
c_G	$f^{abc}G^{a u}_{\mu}G^{b ho}_{ u}G^{c\mu}_{ ho}$		\checkmark	\checkmark	ο΄, Ε ΔΤΙ ΔS Preliminary
c_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$		\checkmark	\checkmark	
C_{HD}	$\left(H^{\dagger}D_{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$		\checkmark	\checkmark	
C_{HG}	$H^\dagger HG^A_{\mu u}G^{A\mu u}$		\checkmark		
C_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$		\checkmark		
c_{HW}	$H^\dagger H W^I_{\mu u} W^{I\mu u}$		\checkmark		V = 0.4 E
C_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	\checkmark	\checkmark	\checkmark	$\begin{bmatrix} L \\ L \end{bmatrix} = 0.2 \begin{bmatrix} L \\ L \end{bmatrix}$
C _{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		\checkmark		
C_{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$		\checkmark		
c_{tH}	$(H^{\dagger}H)(ar{Q}\widetilde{H}t)$		\checkmark		
c _{bH}	$(H^\dagger H)(ar{Q}Hb)$		\checkmark		
$c_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l)$	\checkmark	\checkmark	\checkmark	to ty ty to ta to hy holy
$c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l)$	\checkmark	\checkmark	\checkmark	7, 7, 70, 00, 50, 00, 7, 0, 00 70, 7, 7, 7, 5, 7, 7, 00, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e)$	\checkmark	\checkmark	\checkmark	
$c_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	\checkmark	\checkmark	\checkmark	
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	\checkmark	\checkmark	\checkmark	m _T [GeV]
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	\checkmark	\checkmark	\checkmark	
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	\checkmark	\checkmark	\checkmark	di 1 EWPO
$c_{HQ}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	\checkmark	\checkmark		
$c_{HO}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$	\checkmark	\checkmark		$= \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $
c_{Hb}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	\checkmark			
c_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	\checkmark	\checkmark		$\sum \sum $
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$		\checkmark		
c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \widetilde{H} W^I_{\mu\nu}$		\checkmark		
C_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\widetilde{H}B_{\mu\nu}$		\checkmark		
$\overline{c_{ll}}$	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$	\checkmark		\checkmark	10"

 $\psi^2 H^2 D$

 $A^{b}_{FB}A^{c}_{FB}A^{l}_{FB}\Gamma_{Z}R_{b}R_{c}R_{c}R_{c}\sigma^{0}_{had}$

Identifying sensitive directions within parameter space

Fitted parameters defined based on sensitivity of measurements using Fisher information to identify sensitive directions in SMEFT parameter space (directions with expected unc. < 5 considered)

Definition of sensitive parameters (28/62)

HVVVff group		i												
(14/18)	$c^{[1]}_{HVV,Vff}$	0.8	-0.45		0.02		0.01	-0.23	0.3	0.01	0.02	-0.02	-0.04	
(17/10)	$c^{[2]}_{HVV,Vff}$		-0.01	0.84	-0.47	0.27		-0.01	0.01	-0.01				
	$c^{[3]}_{HVV,Vff}$	0.29	-0.2	0.09	0.15	0.03		0.61	-0.55	0.35	-0.05	0.05	0.11	0
	$c^{[4]}_{HVV,Vff}$	0.23	0.51	0.24	0.47	0.08	0.59	0.11	0.21	-0.05	-0.01		0.01	0
	$c_{HVV,Vff}^{[5]}$	-0.02	-0.02	-0.06	-0.09	0.01	-0.03	0.56	0.24	-0.17	-0.03	0.03	0.05	
	$C^{[6]}_{HVV,Vff}$	-0.32	-0.24	0.17	0.32	0.04	0.01	-0.13	0.3	0.75		0.01		
	$c_{HVV,Vff}^{[7]}$	-0.11	-0.13	-0.08	-0.08	0.09	-0.1	0.48	0.59	-0.04	0.09	-0.16	-0.15	0
	$C^{[8]}_{HVV,Vff}$	-0.01	-0.01			0.01	-0.03	0.03	0.07	-0.03	-0.02	0.94	-0.31	0
	$c^{[9]}_{HVV,Vff}$	0.06	0.12	-0.06	-0.08	0.06	-0.14	-0.03	0.21	0.05	-0.18	0.26	0.88	(
	$c^{[10]}_{HVV,Vff}$	-0.2	-0.4	0.03	0.43	0.65	-0.01	-0.06	-0.1	-0.41	-0.05	0.02	0.1	
	$c_{HVV,Vff}^{[11]}$	0.17	0.34	-0.38	-0.29	0.7	-0.01	-0.05	-0.02	0.33	0.06	-0.03	-0.15	
	$c_{HVV,Vff}^{[12]}$	-0.01	-0.03	0.03	0.06	0.01	-0.05		-0.05	-0.05	0.34	-0.02	-0.05	0
	$c_{HVV,Vff}^{[13]}$	0.11	0.23	0.14	0.24	0.01	-0.47			-0.01	0.72	0.04	0.11	
	$C_{HVV,Vff}^{[14]}$	-0.15	-0.29	-0.16	-0.28	-0.01	0.63		-0.05	0.02	0.55	0.11	0.23	
	(3H127	CHe	CHIB C	HWB (ithin C	HDD C	Ha ^g C	H11³	C∥	CHQ C	Hai	CHIN C.	_ مر
c _G ,2q2t group														
(1/12)	م [1]	0.61	0.44	0.44	0.00	0.10	0.10	0.10	0.04	0.00	0.00	0.00	0.01	
``````````````````````````````````````		0.61	0.44	0.44	0.28	0.16	0.12	0.12	0.04	0.03	0.02	0.02	-0.01	
		CO (	Ctak	Ja, , C	,OUE C	Odice Cl	ک _{ور چ} ر		Ctur' C	2 ^{0,°,} C	,0 ^{1/2} (	J'dî' C	,00	







### Statistical combination

Overlapping categories between ATLAS measurements,

- off-shell region from  $pp \rightarrow 4l$  analysis **excluded** to avoid overlap with control region used in  $H \rightarrow 4l$
- WW-0jet control region in  $H \rightarrow WW^* \rightarrow l\nu l\nu$  is excluded due to overlap with  $pp \rightarrow WW \rightarrow l\nu l\nu$  and WW signal normalisation is used instead

Common sources of systematic uncertainties treated as correlated between ATLAS measurements

For EWPO, experimental & theoretical uncertainties captured in a single covariance matrix

**Combined global likelihood** obtained as a product of individual likelihood function



### Global fit results

Simultaneous fit to 28 parameters based on linear parameterisation in general, good agreement with the Standard Model

Sensitivity to deviations across a large energy-scale ~500 GeV to ~ 10 TeV

Impact of quadratic terms checked in fit to Higgs + Electroweak measurements and quite substantial for some operators (*backup*)





## Global fit results

### Electroweak precision observables

- sensitivity to 7 parameters with 4 out 6 most precise parameters
- Large pull in  $A_{FB}^{0,b}$  reflected in parameter  $c_{HVV,Vff}^{[4]}$

### <u>Higgs boson measurements</u>

- 8 parameters only constrained by the Higgs sector
- loop-induced SM process gg $\rightarrow$ H and H $\rightarrow \gamma\gamma$  provide tightest constraints of O(0.01)
- Remaining operator sensitivity range from O(0.1 5)

### Electroweak measurements

- constraint 8 parameters
- direct constraint to weak boson self-coupling  $c_W$
- sensitivity to four-fermion operators  $(c_{2q2l}, c_{4q})$





## Interface between theory & experiment

Experimental likelihood function captures all relevant statistical information of measurement (calibration, theory uncertainties, etc) & corresponding SMEFT parameterisation



### Simplified likelihood

$$L(\mu) = \frac{1}{\sqrt{(2\pi)^{n_{\mu}} \det(V_{\mu})}} \exp\left(-\frac{1}{2}\Delta\mu^{\mathsf{T}}V_{\mu}^{-1}\Delta\mu\right)$$
$$L(c) = L(\mu(c))$$

term of systematic

15

### Interface between theory & experiment

Simplified likelihood provides a good approximation of overall constraint, but no additional information on systematic uncertainties!

Available on public page of ATLAS publication note <u>ATL-PHYS-PUB-2022-037</u> i. **best-fit + covariance matrix** of 128 signal-strength measurements ii. Linear parameterisation for relevant parameters lii. definition of fit-basis directions

Expected to provide all above ingredients on **HEPdata** for upcoming ATLAS paper on global EFT fit

- Quadratic terms  $\rightarrow$  large complexity from cross-terms  $(B_{ii})$  not an issue for digital format



### Towards the next global fit

Decay channelTarget Production Modes $\mathcal{L}$ [fb ⁻¹ ] $H \rightarrow \gamma\gamma$ ggF, VBF, WH, ZH, t $\bar{t}H$ , tH139 $H \rightarrow ZZ^*$ ggF, VBF, WH, ZH, t $\bar{t}H(4\ell)$ 139 $H \rightarrow WW^*$ ggF, VBF139 $H \rightarrow \tau\tau$ ggF, VBF, WH, ZH, t $\bar{t}H(\tau_{bad}\tau_{bad})$ 139 $H \rightarrow b\bar{b}$ VBF126 $t\bar{t}H$ 139	<ul> <li>Simplified template cross-sections from 5 major Higgs decay channels</li> <li>Higgs boson separated out by production mode, each production mode further split into bins based on kinematic splitting &amp; event info. (pT^V, pT^H, <u>mj</u>, <u>Njets</u>)</li> <li>Measurement uncertainties O(10%) in the bulk of distributions to O(100%) in tails</li> </ul>
ProcessObservable $\mathcal{L}$ [fb ⁻¹ ] $pp \rightarrow e^{\pm}v\mu^{\mp}v$ $p_{T}^{\text{beal.kp.}}$ 36 $pp \rightarrow \ell^{\pm}v\ell^{\pm}\ell^{-}$ $m_{T}^{WZ}$ 36 $pp \rightarrow \ell^{\pm}\ell^{-}\ell^{+}\ell^{-}$ $m_{Z2}$ 139 $pp \rightarrow \ell^{\pm}\ell^{-}jj$ $\Delta\phi_{jj}$ 139	<ul> <li>One observable considered from each EW process, chosen by sensitive to SMEFT variations</li> <li>Measurement uncertainties O(10%) in the bulk of distributions to O(30%) in tails</li> </ul>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- Electroweak precision observables measured at LEP & SLC - <u>Z-pole observables</u> : Z-width ( $\Gamma_Z$ ), 3-ratio parameters ( $R^0$ ), 3-forward back asymmetries ( $A_{FB}^0$ ), and hadronic pole cross-section ( $\sigma_{had}^0$ ) - Measurement probed with high sensitivity, uncertainties O(1 - 0.01 %)

Currently only d=6 operators considered, important d=8 predictions for relevant process emerging - For instance, ggH variations 11.1103/Phys. Rev. D 105, 076004 Martin, Trott

Simplified likelihood combination ATLAS+CMS effort ongoing within the LHCEFTWG, useful for harmonising and working towards ATLAS + CMS global EFT fits. (See <u>Fabian's talk</u> at the previous LHCEFTWG meeting)

ATLAS global fit to grow more with additional inputs :

- i. top sector : challenging measurements due to composite phase space of
- top-processes, see Kirill's talk earlier for challenges in the top sector.
- ii. Electroweak sector : currently only a couple of full Run-2 analyses, expect
- updated analyses and new analyses such as Drell-Yan, etc
- iii. **Higgs sector**: Updated SMEFT interpretation of combined Higgs measurements (remaining part of the talk)



Detailed look into SMEFT constraints from Higgs sector including analyses rare decay modes  $(H \rightarrow Z\gamma, H \rightarrow \mu\mu)$ 

Parameterisation based on **top scheme** 

 $\rightarrow$  dedicated treatment of leptons

19 parameters in total based on a sensitivity study with expected unc. <10

### **(NEW)** ATLAS-CONF-2023-052







Parameter value scaled by symmetrized uncertainty ( $c'/\sigma$ )

**ATLAS** Preliminary

 $\sqrt{s}$  =13 TeV, 139 fb⁻¹,  $m_H$  = 125.09 GeV SMEFT  $\Lambda = 1$  TeV 0.6 0.4 0.2 ggF **VBF** WH 0.6 ZH tī H tH 0.2 ∅ inclusive 0.32 10¹ Linear (obs.) Linear (exp.) 100 3.2 10-10 10-32 Linear (obs.)  $p_{\rm SM} = 94.5\%$ Linear (exp.) 24 1.1 -1-1-1.1 Cerrit Certicold 0/7,0/2,0/3 90,0 90,0 90,0 0[7] 9106  $\begin{array}{c} \mathbb{Q}_{1,7}^{\prime}, \mathbb{Q}_{2,7}^{\prime}, \mathbb{Q}_{$ 0/7,0/2,0/3 14,1 14,1 14,1  $Q/\gamma, Q/2, Q/3$ 





### Best Fit — 68 % CL ----- 95 % CL





Parameter value scaled by symmetrized uncertainty ( $c'/\sigma$ )

**ATLAS** Preliminary  $\sqrt{s}$  =13 TeV, 139 fb⁻¹,  $m_H$  = 125.09 GeV SMEFT  $\Lambda = 1$  TeV  $\blacksquare H \rightarrow \gamma \gamma$ 0.8  $H \rightarrow b\bar{b}$ 0.4  $\blacksquare H \to \tau \tau$ 0.2 ggF VBF 0.8 WH 0.6 ZH tīH 0.4 tΗ 0.2 Ø inclusive 0.32 10¹ Linear (obs. Linear (exp.) 10⁰ 3.2 10- $10^{-2}$ 10 10⁻³ 32 Linear (obs *p*_{SM} = 94.5% 4 Linear (exp. 2 0 11 1.1 ЧÈ. -2 Cerrigg 0/7,0/2,0/3, 90, 90, 90,  $\begin{array}{c} \mathbb{Q}(1) \\ \mathbb{Q}(1)$ 0[7] 9106 0/7,0/2,0/3 14,1 14,1 14,1 0/7,0/2,0/3 et 22 4



 $\sqrt{\sigma}$  [TeV]

Probed Scale ( $\Lambda/$ 

 Best Fit **— 68 % C**L ----- 95 % CL





**ATLAS** Preliminary  $\sqrt{s}$  =13 TeV, 139 fb⁻¹,  $m_H$  = 125.09 GeV SMEFT  $\Lambda = 1$  TeV 0.8 0.4 0.2 ggF **VBF** 0.8 WH 0.6 ZH tī H tH 0.2 Ø inclusive 0.32 10¹ Linear (obs.) Linear (exp.) 10⁰ 3.2  $10^{-2}$ 10 10⁻³ 32 Linear (obs.)  $p_{\rm SM} = 94.5\%$ 4 Linear (exp.) 2 0 -2 0/7,0/2,0/3 90,000,000  $\begin{array}{c} \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(3), \mathbb{O}(7), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(3), \mathbb{O}(7), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(2), \mathbb{O}(2), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(2), \mathbb{O}(2), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(2), \mathbb{O}(2), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(2), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(2), \\ \mathbb{O}(1), \mathbb{O}(2), \mathbb{O}(2), \\ \mathbb{O}(1), \\ \mathbb{O}(1$ 0[7] 9106 C Ci 0/7,0/2 10H 22 - US -Uj





### Best Fit **—** 68 % CL ----- 95 % CL

21



Symmetrized uncertainty ( $\sigma$ ) Parameter value scaled (mmetrized uncertainty ( $c'/\sigma$ ) by symmetrize

Expected contribut

**ATLAS** Preliminary





**ATLAS** Preliminary



**ATLAS** Preliminary

## Uncertainty breakdown of SMEFT parameters

Uncertainty breakdowns inform about leading source of uncertainty and are important for guiding improvements for future results !



leading source of systematic uncertainty for these parameters are signal theory  $(e_{ggF}^{[1]}, e_{glob}^{[1]})$ , background theory  $(e_{ggF}^{[2]}, e_{ttH}^{[1,2]})$ 

and experimental  $(c_{eH,22}, e_{Hlll})$ 



25

## Impact of Quadratic terms

- Fit with quadratic terms allow to qualitatively describe missing  $d=8 \times SM$  interference terms
- Constraints generally tighter, most notably for  $e_{ttH}^{[2,3]}, e_{ZH}^{[1-4]}, e_{ggF}^{[2,3]}$
- Quadratic terms introduce multiple minima







### Matching SMEFT constraints to 2HDM

<u>2-Higgs doublet model</u>: additional Higgs doublet five Higgs boson - charged  $(H^{\pm})$ , CP-even (h, H), & pseudo-scalar (A)

mixing of observed Higgs boson with other Higgs bosons tested  $tan(\beta)$  : ratio of vev of two doublets  $H_{SM} = h\sin(\beta - \alpha) + H\cos(\beta - \alpha)$ 

SMEFT matching valid in alignment limit  $cos(\beta - \alpha) \rightarrow 0$ , observed Higgs boson aligns with light-Higgs of 2HDM

SMEFT matching performed using d=6 linear terms only - missing constraint from HVV coupling which enter at d=8- No petal-like structure caused by absence of quadratic terms

### Matching relations from 10.1103/Phys. Rev. D 102, 055012 Dawson et al



### Summary & Conclusions

### <u>Global EFT fit from ATLAS</u>

- First global fit from ATLAS constraints 28 parameters making use of measurements from Higgs boson and Electroweak ATLAS measurements with electroweak precision observables

### (Re)interpretation

- Simplified likelihood based on multivariate Gaussian serves as a good proxy to full experimental likelihood function

### Towards the next global fit

- Presented latest update on combined Higgs boson interpretation
- Lot of developments anticipated in next global fit from ATLAS (more inputs, detailed studies of the constraints, matching to UV model)

Looking forward to further developments in Global SMEFT interpretation in the future !



28

Backuþ



### SMEFT fit correlations

	<b>A</b> 7	TL,	45	5	Pre	elir	nir	nar	<b>V</b>					<u>s</u> =	13	Te∖	/, 1: )5 (	39 f	$b^{-1}$
	Ex	(pe	ect	ed					J					S	′′ <i>н</i> = 6ME	= 12 FT	25.υ = Λ	: 1	iev FeV
$c_{Ha}^{(3)}$	1	0.01	-0.06	-0.17	-0.07	-0.03	0.10	-0.02	-0.20	-0.46	-0.26	0.27	-0.16	-0.21	-0.02	0.01	0.01	-0.17	0.17
C _{bH} ⁻	0.01	1	0.11	0.34	-0.33	0.02	0.02	0.35	0.04	0.03	0.18	0.10	0.28	0.25	0.06	0.03	-0.12	-0.34	-0.19
C _{eH,22} ⁻	-0.06	0.11	1	0.13	0.02	0.01	-0.06	0.08	0.03	-0.00	0.07	0.03	0.10	0.11	0.01	0.00	-0.02	0.06	-0.12
С _{еН,33} -	-0.17	0.34	0.13	1	-0.05	0.11	-0.09	0.33	0.08	-0.09	0.20	0.07	0.36	0.34	0.08	0.01	-0.03	0.28	-0.33
$e_{ ext{agF}}^{[1]}$ -	-0.07	-0.33	0.02	-0.05	1	-0.18	0.25	0.35	0.02	-0.04	-0.07	0.11	0.07	0.15	-0.03	-0.05	0.12	-0.08	-0.07
$e_{ggF}^{[2]}$	-0.03	0.02	0.01	0.11	-0.18	1	-0.31	-0.22	-0.01	-0.02	0.21	0.04	0.08	0.04	0.72	0.07	0.01	0.11	-0.01
$e_{ggF}^{[3]}$	0.10	0.02	-0.06	-0.09	0.25	-0.31	1	0.64	0.03	-0.00	-0.51	-0.25	-0.19	-0.22	-0.19	-0.08	0.04	-0.05	0.08
$e^{[1]}_{H\gamma\gamma,Z\gamma}$ -	-0.02	0.35	0.08	0.33	0.35	-0.22	0.64	1	0.06	-0.17	-0.13	0.02	0.25	0.25	-0.08	-0.06	0.06	0.17	-0.22
$e_{H\gamma\gamma,Z\gamma}^{[2]}$	-0.20	0.04	0.03	0.08	0.02	-0.01	0.03	0.06	1	0.19	-0.07	-0.16	-0.04	-0.04	-0.01	-0.00	-0.02	0.04	-0.19
$e_{H\gamma\gamma,Z\gamma}^{[3]}$ -	-0.46	0.03	-0.00	-0.09	-0.04	-0.02	-0.00	-0.17	0.19	1	-0.37	-0.56	-0.41	-0.38	-0.00	-0.00	-0.05	-0.28	-0.18
$e_{ZH}^{[1]}$	-0.26	0.18	0.07	0.20	-0.07	0.21	-0.51	-0.13	-0.07	-0.37	1	0.38	0.46	0.48	0.15	0.04	-0.01	0.09	-0.01
$e_{ZH}^{\left[ 2 ight] }$ -	0.27	0.10	0.03	0.07	0.11	0.04	-0.25	0.02	-0.16	-0.56	0.38	1	0.33	0.35	0.05	0.04	0.02	-0.06	0.23
$e_{ZH}^{[3]}$ -	-0.16	0.28	0.10	0.36	0.07	0.08	-0.19	0.25	-0.04	-0.41	0.46	0.33	1	0.53	0.07	0.00	-0.02	0.25	-0.04
$e_{\scriptscriptstyle ZH}^{[4]}$ -	-0.21	0.25	0.11	0.34	0.15	0.04	-0.22	0.25	-0.04	-0.38	0.48	0.35	0.53	1	0.05	0.02	-0.00	0.24	-0.01
$e_{ m ttH}^{[1]}$	-0.02	0.06	0.01	0.08	-0.03	0.72	-0.19	-0.08	-0.01	-0.00	0.15	0.05	0.07	0.05	1	0.05	0.01	-0.02	-0.01
<i>e</i> ^[2]	0.01	0.03	0.00	0.01	-0.05	0.07	-0.08	-0.06	-0.00	-0.00	0.04	0.04	0.00	0.02	0.05	1	-0.01	-0.01	0.01
$e_{ m ttH}^{ m [3]}$ -	0.01	-0.12	-0.02	-0.03	0.12	0.01	0.04	0.06	-0.02	-0.05	-0.01	0.02	-0.02	-0.00	0.01	-0.01	1	0.03	0.00
e _{glob} -	-0.17	-0.34	0.06	0.28	-0.08	0.11	-0.05	0.17	0.04	-0.28	0.09	-0.06	0.25	0.24	-0.02	-0.01	0.03	1	-0.19
$e^{\scriptscriptstyle [1]}_{\!\scriptscriptstyle H\!\scriptstyle I\!\! I\!\! I\!\! I\!\! I}$	0.17	-0.19	-0.12	-0.33	-0.07	-0.01	0.08	-0.22	-0.19	-0.18	-0.01	0.23	-0.04	-0.01	-0.01	0.01	0.00	-0.19	1
	$c_{Hq}^{(3)}$	CbH-	<b>C</b> eH,22 -	СеН,33 -	e ^[1]	<b>e</b> ^[2]	e ^[3]	$e_{H_{\gamma\gamma},Z_{\gamma}}^{[1]}$ -	$e_{H_{\gamma\gamma,Z\gamma}}^{[2]}$	$e_{H_{\gamma\gamma,Z\gamma}}^{[3]}$	$e_{ZH}^{[1]}$	$e_{ZH}^{[2]}$	$e_{ZH}^{[3]}$	$e_{ZH}^{[4]}$	etti H	e ^[2]	e ^[3]	eglob -	e ^[1] _

	<b>A</b> 7	TL.	AS	5 F	⊃re	elir	nir	nar	ſУ					s = n	13 ⁻ n _H =	TeV = 12	/, 1: 25.0	39 f )9 C	b ⁻¹ ieV
														S	ME	FT	Λ =	- 17	ΓeV
$C_{Hq}^{(3)}$	1	-0.12	-0.07	-0.19	-0.02	-0.03	0.11	-0.02	-0.21	-0.50	-0.30	0.31	-0.16	-0.20	-0.04	0.00	0.03	-0.06	0.19
C _{bH} ⁻	-0.12	1	0.15	0.26	-0.35	0.02	-0.04	0.31	0.19	0.07	0.28	-0.01	0.35	0.26	0.16	0.03	-0.28	-0.25	-0.19
C _{eH,22} -	-0.07	0.15	1	0.14	-0.00	0.01	-0.05	0.08	0.05	0.00	0.08	0.02	0.11	0.12	0.02	0.01	-0.04	0.05	-0.12
<i>C_{eH,33}</i> -	-0.19	0.26	0.14	1	0.00	0.14	-0.10	0.35	0.07	-0.14	0.22	0.06	0.38	0.37	0.09	0.01	-0.01	0.41	-0.37
$e_{ m agF}^{[1]}$	-0.02	-0.35	-0.00	0.00	1	-0.20	0.26	0.34	-0.03	-0.06	-0.09	0.12	0.07	0.15	-0.07	-0.05	0.18	-0.10	-0.05
$e_{aaF}^{[2]}$	-0.03	0.02	0.01	0.14	-0.20	1	-0.33	-0.23	-0.02	-0.03	0.22	0.05	0.08	0.05	0.74	0.11	-0.01	0.14	-0.02
$e^{[3]}_{ m agF}$	0.11	-0.04	-0.05	-0.10	0.26	-0.33	1	0.64	0.03	-0.01	-0.54	-0.26	-0.20	-0.24	-0.23	-0.09	0.01	0.03	0.06
e ^[1]	-0.02	0.31	0.08	0.35	0.34	-0.23	0.64	1	0.07	-0.21	-0.13	-0.01	0.27	0.26	-0.10	-0.06	0.04	0.27	-0.24
$e_{H_{2}}^{[2]}$	-0.21	0.19	0.05	0.07	-0.03	-0.02	0.03	0.07	1	0.23	-0.03	-0.18	-0.02	-0.04	0.02	0.00	-0.08	-0.09	-0.19
$e_{H_{\gamma\gamma},Z\gamma}^{[3]}$	-0.50	0.07	0.00	-0.14	-0.06	-0.03	-0.01	-0.21	0.23	1	-0.32	-0.60	-0.39	-0.40	0.04	0.00	-0.11	-0.37	-0.16
e ^[1]	-0.30	0.28	0.08	0.22	-0.09	0.22	-0.54	-0.13	-0.03	-0.32	1	0.37	0.49	0.52	0.20	0.05	-0.03	0.03	-0.01
$e_{7\mu}^{[2]}$	0.31	-0.01	0.02	0.06	0.12	0.05	-0.26	-0.01	-0.18	-0.60	0.37	1	0.28	0.37	0.05	0.04	0.05	0.04	0.25
$e_{7\mu}^{[3]}$	-0.16	0.35	0.11	0.38	0.07	0.08	-0.20	0.27	-0.02	-0.39	0.49	0.28	1	0.57	0.10	0.01	-0.03	0.23	-0.06
$e_{_{ZH}}^{[4]}$	-0.20	0.26	0.12	0.37	0.15	0.05	-0.24	0.26	-0.04	-0.40	0.52	0.37	0.57	1	0.06	0.02	0.00	0.26	-0.01
e ^[1]	-0.04	0.16	0.02	0.09	-0.07	0.74	-0.23	-0.10	0.02	0.04	0.20	0.05	0.10	0.06	1	0.10	-0.05	-0.10	-0.01
e ^[2]	0.00	0.03	0.01	0.01	-0.05	0.11	-0.09	-0.06	0.00	0.00	0.05	0.04	0.01	0.02	0.10	1	-0.12	-0.01	0.02
$e_{ttH}^{[3]}$	0.03	-0.28	-0.04	-0.01	0.18	-0.01	0.01	0.04	-0.08	-0.11	-0.03	0.05	-0.03	0.00	-0.05	-0.12	1	0.16	-0.02
e _{glob} -	-0.06	-0.25	0.05	0.41	-0.10	0.14	0.03	0.27	-0.09	-0.37	0.03	0.04	0.23	0.26	-0.10	-0.01	0.16	1	-0.25
$e^{[1]}_{\mu}$	0.19	-0.19	-0.12	-0.37	-0.05	-0.02	0.06	-0.24	-0.19	-0.16	-0.01	0.25	-0.06	-0.01	-0.01	0.02	-0.02	-0.25	1
ГШ	$C_{Hq}^{(3)}$	CbH-	C _e H,22 -	C _e H,33 -	<b>e</b> ^[1]	e ^[2]	e ^[3]	$e_{H_{\gamma\gamma,Z\gamma}}^{[1]}$	$e^{[2]}_{H_{\gamma\gamma},Z_{\gamma}}$ -	$e_{H_{\gamma\gamma},Z_{\gamma}}^{[3]}$	$e_{ZH}^{[1]}$	$e_{ZH}^{[2]}$	$e_{ZH}^{[3]}$	$e_{ZH}^{[4]}$	e ^[1]	e ^[2] _ttH_	e ^[3]	eglob -	e ^[1] _

1.0

0.5

(X, ≺) ∞(X, √)

-0.5





### **2HDM** relations

Coupling	Type I	Typ	be II	Lepton-specific	Flipped
$u, c, t \\ d, s, b \\ e, \mu, \tau \\ W, Z \\ H$	$s_{\beta-\alpha} + c_{\beta-\alpha}$ $s_{\beta-\alpha} + c_{\beta-\alpha}$	$/ aneta  s_{eta-lpha} - c_{eta}}{/ aneta  s_{eta-lpha} - c_{eta}}{s_{eta-lpha} - c_{eta}}$	$\frac{s_{\beta-\alpha} + c_{\beta-\alpha}}{\sum_{n=\alpha}^{\infty} \times \tan\beta} \frac{s_{\beta-\alpha}}{s_{\beta-\alpha}}$ $\frac{s_{\beta-\alpha}}{\sum_{h=1}^{\infty} c_{\beta-\alpha}^{2} s_{\beta-\alpha} + \frac{s_{\beta-\alpha}}{\sum_{h=1}^{\infty} c_{\beta-\alpha}^{2} s_{\beta-\alpha}^{2} s_$	$\frac{\tan \beta}{-\alpha + c_{\beta-\alpha}/\tan \beta}{-\alpha - c_{\beta-\alpha} \times \tan \beta}$ $2\cot (2\beta) \left(1 - \frac{\bar{m}^2}{m_h^2}\right)$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan \beta$ $s_{\beta-\alpha} + c_{\beta-\alpha} / \tan \beta$ $c_{\beta-\alpha}^{3}$
SMEF	T parameters	Type I	Type II	Lepton-specific	Flipped
	$\frac{v^2 c_{tH}}{\Lambda^2}$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$
	$\frac{v^2 c_{bH}}{\Lambda^2}$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$
1	$\frac{v^2 c_{eH,22}}{\Lambda^2}$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$	$-Y_{\mu}c_{\beta-\alpha}\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$
1	$\frac{v^2 c_{eH,33}}{\Lambda^2}$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}\tan\beta$	$Y_{\tau}c_{\beta-\alpha}\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$
	$\frac{v^2 c_H}{\Lambda^2}$	$c_{\beta-\alpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{\beta-\alpha}^2 M_A^2/v^2$