Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3

Timothée Pascal

Laboratory of subatomic physics and cosmology, Grenoble, France

in collaboration with:

Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa,

Sahana Narasimha, Théo Reymermier, Wolfgang Waltenberger

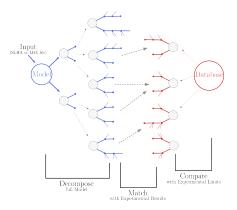
LHC Reinterpretation Forum 2023

Introduction to SModelS

2 The combination of electroweak-ino LHC searches

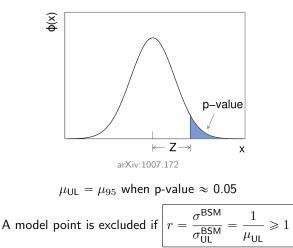
Results to the electroweak-ino sector of the MSSM

Introduction to SModelS


The combination of electroweak-ino LHC searches

3 Results to the electroweak-ino sector of the MSSM

SModelS working principle


Public tool to confront BSM signals with a $\mathbb{Z}_2\text{-like}$ symmetry against simplified model results from the LHC.

No MC generator is required, making it a good tool for large scans.

Code and documentation available online: https://smodels.github.io/

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$

RiF 2023

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$

For each individual likelihood (analysis), signal regions combination is possible using a full HistFactory models (ATLAS), encoded in a json file:

$$L_i(\mu) = \prod_{j=1}^N \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} c_\theta(a_\theta | \theta)$$

where $s_j = \epsilon_j \mathcal{A}_j \sum \sigma \prod BR * \mathcal{L} \mid b_j = \mathsf{bkg} \mid \theta_j = \mathsf{nuisance parameters}$

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$

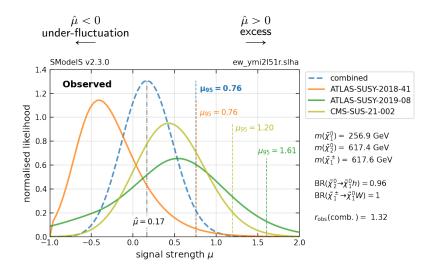
For each individual likelihood (analysis), signal regions combination is possible using a full HistFactory models (ATLAS), encoded in a json file:

$$L_i(\mu) = \prod_{j=1}^N \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} c_\theta(a_\theta | \theta)$$

where $s_j = \epsilon_j A_j \sum \sigma \prod BR * \mathcal{L} | b_j = bkg | \theta_j = nuisance parameters$ Simplified likelihood encoded in a covariance matrix (CMS):

$$L_i(\mu) = \prod_{j=1}^N \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} e^{-\frac{1}{2} \overrightarrow{\theta}^T V^{-1} \overrightarrow{\theta}}$$

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$


For each individual likelihood (analysis), signal regions combination is possible using a full HistFactory models (ATLAS), encoded in a json file:

$$L_i(\mu) = \prod_{j=1}^N \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} c_\theta(a_\theta | \theta)$$

where $s_j = \epsilon_j A_j \sum \sigma \prod BR * \mathcal{L} | b_j = bkg | \theta_j = nuisance parameters$ Simplified likelihood encoded in a covariance matrix (CMS):

$$L_i(\mu) = \prod_{j=1}^N \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} e^{-\frac{1}{2} \overrightarrow{\theta}^T V^{-1} \overrightarrow{\theta}}$$

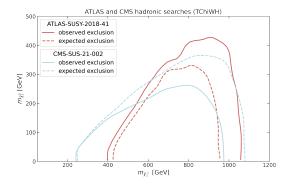
If the combination of signal regions (SRs) is not possible, use the most sensitive one (" best SR"), i.e. lowest μ_{UL} obtained with $n_j^{obs} = b_j$

Introduction to SModelS

2 The combination of electroweak-ino LHC searches

3 Results to the electroweak-ino sector of the MSSM

EW-ino searches in SModelS database v2.3


ID	Short Description	$\sqrt{\rm s} ~[{\rm TeV}]$	\mathcal{L} [fb ⁻¹]	arXiv	TxName	comb.
CMS-SUS-13-012	Multijet search for $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{g}$	8	19.5	1402.4770	TChiWW	
					TChiWZ	
					TChiZZ	
CMS-SUS-16-039	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0 \tilde{\chi}_1^0$ into 2 or more $\ell + \not\!\!\!E_T$	13	35.9	1709.05406	TChiWZ	Cov.
					TChiWZoff	Cov.
CMS-SUS-16-048	$\tilde{t}\tilde{t}, \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into 2 soft OS $\ell + \not\!\!\!E_T$	13	35.9	1801.01846	TChiWWoff	Cov.
CMS-SUS-20-004	$\tilde{H}\tilde{H}$ into $2h + \not\!\!E_T$	13	137	2201.04206	TChiHH	Cov.
CMS-SUS-21-002	Hadronic search for $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$	13	137	2205.09597	TChiWV	Cov.
ATLAS-SUSY-2013-11	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_2^0\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp} \text{ into } 2\ell + \not\!\!\!E_T$	8	20.3	1403.5294	TChiWW	
ATLAS-SUSY-2013-12	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into $3\ell + \not\!\!\!E_T$	8	20.3	1402.7029	TChiWH	
					TChiWZ	
					TChiWZoff	
ATLAS-SUSY-2016-24	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_2^0\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp} \text{ into } 2 \text{ or } 3\ell + \not\!\!\!E_T$	13	36.1	1803.02762	TChiWZ	
ATLAS-SUSY-2017-03	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into 2 or $3\ell + \not\!\!E_T$	13	36.1	1806.02293	TChiWZ	
ATLAS-SUSY-2018-05	$\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{\chi}\tilde{\chi}$ into $2\ell + \text{jets} + \not\!\!E_T$	13	139	2204.13072	TChiWZ	JSON (s)
					TChiWZoff	JSON (s)
ATLAS-SUSY-2018-06	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into $3\ell + \not\!\!E_T$	13	139	1912.08479	TChiWZ	
					TChiWZoff	
ATLAS-SUSY-2018-32	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ into $2\ell + E_T$	13	139	1908.08215	TChiWW	JSON (s)
ATLAS-SUSY-2018-41	Hadronic search for $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$	13	139	2108.07586	TChiVV	Cov.
ATLAS-SUSY-2019-02	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ into $2\ell + \not\!\!E_T$	13	139	2209.13935	TChiWW	Cov.
ATLAS-SUSY-2019-08	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into $1\ell + 2$ b-jets $+ \not\!\!\!E_T$	13	139	1909.09226	TChiWH	JSON
ATLAS-SUSY-2019-09	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ into $3\ell + E_{T}$	13	139	2106.01676	TChiWZ	JSON (s)
					TChiWZoff	JSON (s)

best SR simplified likelihood

HistFactory model

 $\mathsf{V}=\mathsf{W},\mathsf{Z},\mathsf{H}\quad(\mathsf{s})=\mathsf{simplified}\ \mathsf{JSON}$

EW-ino searches in SModelS database v2.3

The two most sensitive and constraining analyses are the ATLAS and CMS hadronic searches

ATLAS sees an under-fluctuation, while CMS sees an excess;

Disclaimer

What will follow is not a SModels feature and should not be mistaken with the SModelS *combineAnas* option.

Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3 The combination of electroweak-ino LHC searches

Trivial combination

CMS-SUS-XX-XXX

ATLAS-SUSY-XXXX-XX

Approximation:

We assume two analyses can be combined if they do not share any event in their SRs

1	1	RiF :		1		1					1			/23		
	13-012	16-039	16-048	20-004	21-002	2013-11	2013-12	2016-24	2017-03	2018-05	2018-06	2018-32	2018-41	2019-02	2019-08	2019-09
2019-09																
2019-08																
2019-02																
2018-41																
2018-32																
2018-06																
2018-05																
2017-03																
2016-24																
2013-12																
2013-11																
21-002																
20-004																
16-048																
16-039																
13-012																

August 29, 2023

Many combinations are possible, which one to choose?

• List of all the analyses that give $\mu_{\rm UL}^{exp}\leqslant 10$ for the tested model point:

Many combinations are possible, which one to choose?

• List of all the analyses that give $\mu_{\rm UL}^{exp}\leqslant 10$ for the tested model point:

- Build all the possible combinations:
 - L→ If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
 - e.g.: ["CMS-SUS-20-004"]
 - ["CMS-SUS-21-002"]
 - ["ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]

Many combinations are possible, which one to choose?

• List of all the analyses that give $\mu_{\rm UL}^{exp}\leqslant 10$ for the tested model point:

- Build all the possible combinations:
 - Ly If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
 - e.g.: ["CMS-SUS-20-004"]
 - ["CMS-SUS-21-002"]
 - ["ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]
- $\bullet~$ Remove the subsets, e.g.: ~~ ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]

Many combinations are possible, which one to choose?

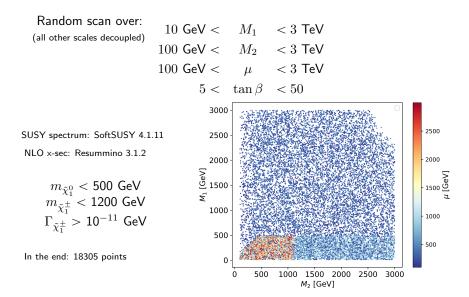
• List of all the analyses that give $\mu_{\rm UL}^{exp}\leqslant 10$ for the tested model point:

- Build all the possible combinations:
 - L→ If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
 - e.g.: ["CMS-SUS-20-004"]
 - ["CMS-SUS-21-002"]
 - ["ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]
- Remove the subsets, e.g.: ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]

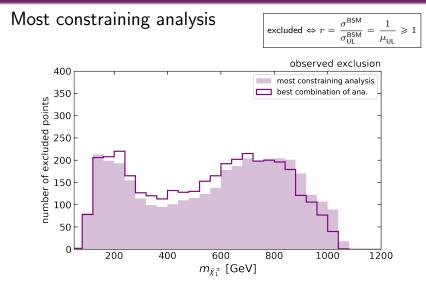
• For each remaining combination, compute
$$\frac{L_{\rm BSM}^{\rm exp}}{L_{\rm SM}^{\rm exp}}$$

Many combinations are possible, which one to choose?

• List of all the analyses that give $\mu_{\rm UL}^{exp}\leqslant 10$ for the tested model point:


- Build all the possible combinations:
 - L→ If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
 - e.g.: ["CMS-SUS-20-004"]
 - ["CMS-SUS-21-002"]
 - ["ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 - ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]
- Remove the subsets, e.g.: ["CMS-SUS-20-004", "ATLAS-SUSY-2018-05"]
 ["CMS-SUS-21-002", "ATLAS-SUSY-2018-05"]
- For each remaining combination, compute $\frac{L_{\rm BSM}^{\rm exp}}{L_{\rm SM}^{\rm exp}}$
- The combination with the lowest ratio is chosen (most likely to be the most sensitive)

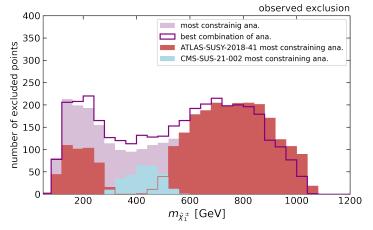
Introduction to SModelS


The combination of electroweak-ino LHC searches

3 Results to the electroweak-ino sector of the MSSM

Selected points

Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3 Results to the electroweak-ino sector of the MSSM

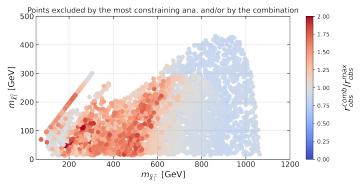


The exclusion power is enhanced by the combination for mid range $m_{\tilde{\chi}_1^\pm}$ and decreased for high $m_{\tilde{\chi}_1^\pm}$

Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3 Results to the electroweak-ino sector of the MSSM

Most constraining analysis

$$\mathsf{excluded} \Leftrightarrow r = \frac{\sigma^{\mathsf{BSM}}}{\sigma_{\mathsf{UL}}^{\mathsf{BSM}}} = \frac{1}{\mu_{\mathsf{UL}}} \geqslant 1$$

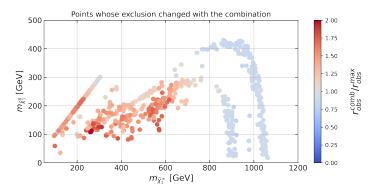


The most constraining analysis is the ATLAS hadronic search Red bars below 300 GeV: mainly higgsino LSP (some wino LSP too)

Variation of the exclusion power

$$\mathbf{r} \quad \text{excluded} \Leftrightarrow r = \frac{\sigma^{\text{BSM}}}{\sigma_{\text{UL}}^{\text{BSM}}} = \frac{1}{\mu_{\text{UL}}} \geqslant 1$$

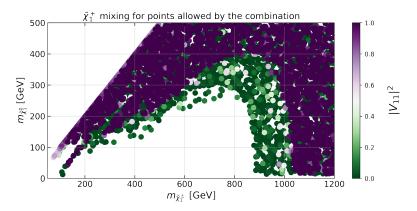
Select the points excluded by the most constraining analysis and/or by the combination: 3965 points



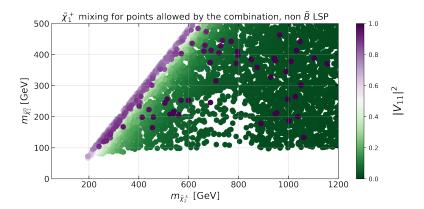
For $m_{\tilde{\chi}_1^\pm} <$ 200 GeV (compressed region): see later For $m_{\tilde{\chi}_1^\pm} <$ 200 GeV (offshell): mainly TChiWZoff, dominated by the ATLAS 3 ℓ + MET search For 200 GeV $< m_{\tilde{\chi}_1^\pm} <$ 600 GeV: CMS hadronic search is combined with analyses which have recorded under-fluctuations (except for ATLAS 1 ℓ + 1 b-jet + MET search) For 600 GeV $< m_{\tilde{\chi}_1^\pm}$: the CMS hadronic search decreases the exclusion power Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3 Results to the electroweak-ino sector of the MSSM

Variation of the exclusion power

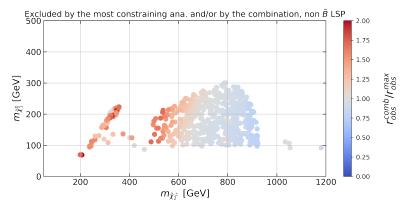
$$\label{eq:excluded} \mathsf{excluded} \Leftrightarrow r = \frac{\sigma^{\mathsf{BSM}}}{\sigma^{\mathsf{BSM}}_{\mathsf{UL}}} = \frac{1}{\mu_{\mathsf{UL}}} \geqslant 1$$


Select the points excluded only by the combination or un-excluded by it: 637 points.

The upper "arc" is the exclusion contour for \tilde{W} NLSP and \tilde{B} LSP. The lower "arc" is the exclusion contour for \tilde{H} NLSP and \tilde{B} LSP.


Points allowed by the combination

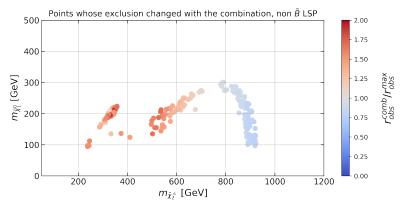
The points not excluded by the combination can shed light on the nature of the two "arcs"


Purple: \tilde{W} NLSP Green: \tilde{H} NLSP

So far, the focus was on the \tilde{B} LSP. Let's now focus on \tilde{W} and \tilde{H} LSP

Purple points: \tilde{W} LSP. Green points: \tilde{H} LSP Except on the diagonal, mainly \tilde{W} NLSP and \tilde{H} LSP

More decays due to the \tilde{H} LSP, the signal is reduced and so is the exclusion power Number of points excluded by most constraining anlysis and/or the combination: 607

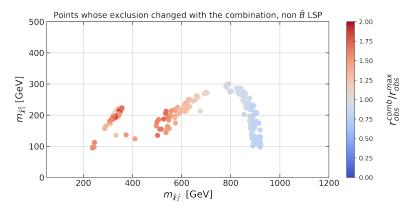


For $m_{\tilde{\chi}^\pm_2} <$ 500 GeV: dominated by the ATLAS 3 ℓ + MET search (TChiWZ) For 500 Gev $< M_{\tilde{\chi}^\pm_2} <$ 1000 GeV: constrained by the ATLAS hadronic search For 1000 GeV $< m_{\tilde{\chi}^\pm_2}$: dominated by the ATLAS 3 ℓ + MET search (TChiWZoff)

August 29, 2023

RiF 2023

Number of points excluded only by the combination or un-exclued by it: 183


For $m_{\tilde{\chi}_2^\pm} < 500$ GeV: excluded when combining ATLAS 3 ℓ + MET search with ATLAS 2 ℓ + MET searches (TChiWZ) For 500 GeV $< m_{\tilde{\chi}_2^\pm} < 750$ GeV: the ATLAS hadronic search constraint is enhanced by the underfluctuation of the ATLAS 2 ℓ + jets + MET search

August 29, 2023

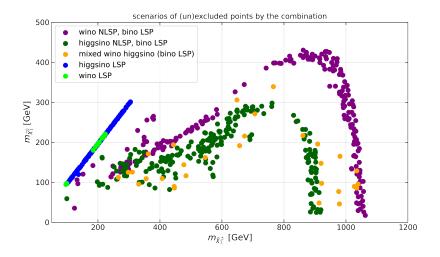
RiF 2023

21/23

Number of points excluded only by the combination or un-exclued by it: 183

For 750 GeV $< m_{\tilde{\chi}^\pm_2} <$ 1000 GeV: the ATLAS hadronic search constraint is dampened by the excess of the CMS hadronic search

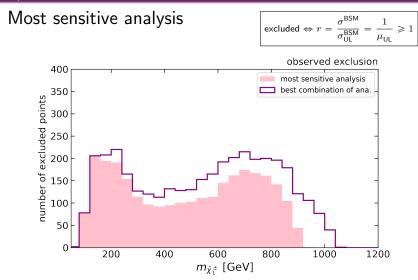
RiF 2023


Conclusion

- \bullet LHC constraints set on EW-ino masses have been revisited in light of a global combination of EW-ino searches present in the SModelS database v2.3
- The ATLAS 3 ℓ + MET search dominated the combination for off-shell decays
- The ATLAS and CMS hadronic searches dominated the combination for on-shell decays (ATLAS-SUSY-2018-41 and CMS-SUS-21-002)
- The excess seen by the CMS hadronic search seems to be compensated by the under-fluctuation seens by the ATLAS hadronic search

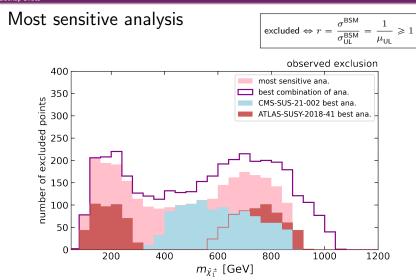
Acknowledgments

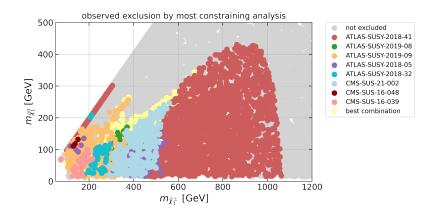
Many thanks to the RiF 2023 organizers and to the coordinators of the reinterpretation studies / pheno.

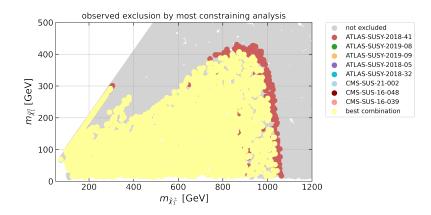

This work was funded thanks to the ANR-15-IDEX-02 (APM@LHC), ANR-21-CE31-0023 (PRCI SLDNP) and IN2P3 master project "Théorie – BSMGA".

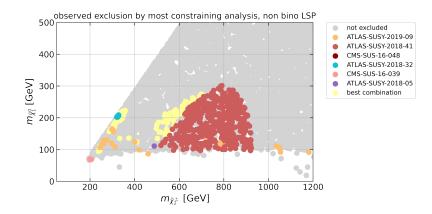
Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3

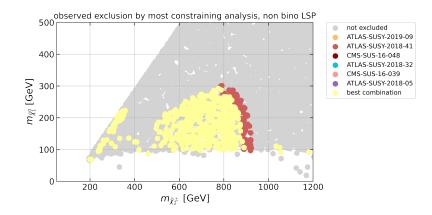
Appendix

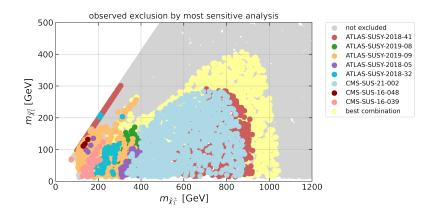

Backup Slides

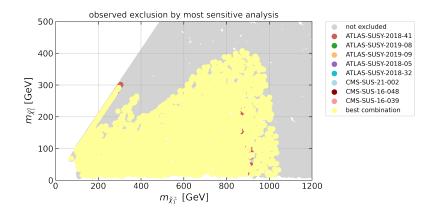

On the contrary the exclusion power is almost always enhanced when comparing to the most sensitive analysis (lowest μ_{UL} obtained with $n_j^{obs} = b_j$) Global constraints of the electroweak-ino sector of the MSSM with SModelS 2.3

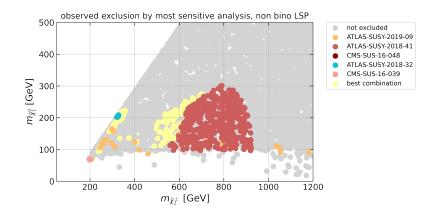

Appendix

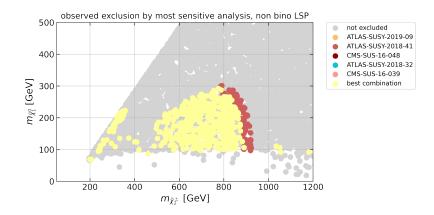

Backup Slides

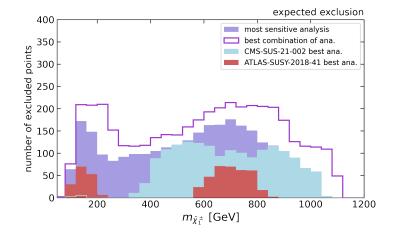


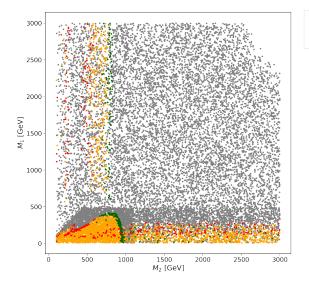

An analysis that observed an under-fluctuation is sensitive at high $m_{\tilde{\chi}_1^\pm}$



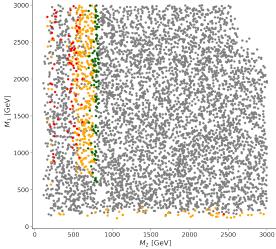








Appendix


Appendix

- not excluded
- excluded by max and comb
- unexcluded by comb
- excluded by comb only

Appendix

 μ LSP, 100 < μ < 300 GeV observed exclusion

- not excluded
- excluded by max and comb
- · unexcluded by comb
- excluded by comb only