

GAMBIT updates and results

Tomás Gonzalo

Karlsruhe Institute for Technology

Reinterpretation Forum 2023, 29 August 2023

Outline

1 GAMBIT

- ColliderBit
- Recent updates and work in progress

2 Results

• EW MSSM with a light gravitino

GAMBIT

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM

EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database, beyond SUSY
- · Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON

Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScantEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim

Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Beniwal, S Bloor, L Braseth, T Bringmann, A Buckley, J Butterworth, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edsjö, T Ernken, A Fowlie, T Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, M Lecroq, P Jackson, D Jacob, C Lin, FN Mahmoudi, G Martinez, H Pacey, MT Prim, T Procter, F Rajec, A Raklev, JJ Renk, R Ruiz, A Scaffidi, P Scott, N Serra, P Stöcker, W. Su, J Van den Abeele, A Vincent, C Veniger, A Woodcock, M White, Y Zhang ++

80+ participants in many experiments and numerous major theory codes

Karlsruher Institut für Technologie

Modules (Bits)

- Physics Modules
 - \rightarrow ColliderBit: collider searches
 - \rightarrow **DarkBit**: relic density, dd,...
 - \rightarrow FlavBit: flavour observables
 - \rightarrow **SpecBit**: spectra, RGE running
 - \rightarrow **DecayBit**: decay widths
 - \rightarrow **PrecisionBit**: precision tests
 - \rightarrow **NeutrinoBit**: neutrino likelihoods
 - \rightarrow **CosmoBit**: cosmological constraints
- ScannerBit : stats and sampling
 - \rightarrow Diver, GreAT, Multinest, Polychord, ...
- Models: hierarchical model database
- Core : dependency resolution
- **Backends** : External tools to calculate observables
- GUM: Autogeneration of code

GAMBIT

[Eur.Phys.J. C77 (2017) no.11, 795]

- [Eur.Phys.J. C77 (2017) no.12, 831]
- [Eur.Phys.J. C77 (2017) no.11, 786]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J.C 80 (2020) no.6, 569]
 - [JCAP 02 (2021) 022]

[Eur.Phys.J. C77 (2017) no.11, 761]

[Eur.Phys.J. C78 (2018) no.2, 98]

[S. Bloor, TG, P. Scott et. al., soon]

RIF 2023, 29/8/23 4/14

T. Gonzalo (KIT)

ColliderBit

- Reinterpretation of searches at the LHC
 - \rightarrow Simulation based (e.g. Pythia) or yield interpolation
 - \rightarrow 63 implemented analyses (36) ATLAS, 24 CMS)
 - \rightarrow Homebrew dectector simulation (Buckfast)
 - \rightarrow SM xsec measurements (Rivet, Contur)
- Likelihoods for (some) LEP searches
- Higgs properties via HiggsBounds and HiggSignals

Recent updates

- Allowed interpolation of yields from efficiency tables
- Generation of HepMC events and YODA histograms
- \bullet Interface to Rivet and Contur
- MadGraph as event generator
- Interface to ATLAS Full likelihoods
- Speed up of fastjet (PACER)

Work in progress

- CBS (ColliderBit Solo)
- Expand event class for long lived particles
- Alternative xsec calculators: Prospino, xsec, salami
- $\bullet~ {\rm Interface} \ {\rm to} \ {\sf SModelS}$
- Move to Pythia 8.3
- Beam dump constraints
- Usage of NN in analyses (Tomek)
- Interface to ATLAS SimpleAnalysis

EW MSSM with a light gravitino

[GAMBIT, Eur.Phys.J.C 83 (2023) 6, 493, arXiv:2303.09082 [hep-ph]]

TTP23-009, KCL-PH-TH/2023-21, gambit-physics-23, MCnet-23-05, ADP-23-08/T1217, CERN-TH-2023-043

Collider constraints on electroweakinos in the presence of a light gravitino

The GAMBIT Collaboration: Viktor Ananyev¹, Csaba Balázs², Ankt Beniwal³, Lasse Lorentz Braseth¹, Andy Buckley⁴, Jonathan Butterworth⁶, Christopher Chang⁶, Matthias Danninger⁷, Andrew Fowlie^{*}, Tomás E. Gonzalo^{**}, Anders Kvellestad^{1,3}, Farvah Mahmodil^{10,11}, Gregory D. Martinez¹², Markus T. Prim¹³, Tomasz Procter⁴, Are Raklev¹, Pat Scott¹⁴, Patrick Stöcker¹⁵, Jeriek Van den Abeele^{1,48}, Martin White¹⁰, Yang Zhang^{2,7,19}

- 😸 Jei
 - ¹ Department of Physics, University of Oslo, N-0316 Oslo, Norway
 - ² School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
- ³ Theoretical Particle Physics and Cosmology (TPPC), Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
- ⁴ SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
- ⁵ Department of Physics and Astronomy, University College London, Gower St., London, WC1E 6BT, UK
- ⁶ School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- ⁷ Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
 - ⁸ Department of Physics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu
- Lake, Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123, P.R. China
- ⁹ Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

8/14

EW MSSM + \tilde{G}

Name	\mathbf{Spin}	Gauge ES	Mass ES	Param
Higgs bosons	0	$H^{0}_{u} H^{0}_{d} H^{+}_{u} H^{-}_{d}$	$h H A H^{\pm}$	-
squarks	0	$ ilde{u}_L \; ilde{u}_R \; ilde{d}_L \; ilde{d}_R$	_	
		$ ilde{c}_L \; ilde{c}_R \; ilde{s}_L \; ilde{s}_R$		
		${ ilde t}_L { ilde t}_R { ilde b}_R { ilde b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$	-
sleptons	0	$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	-	-
		$\tilde{\mu}_L \ \tilde{\mu}_R \ \tilde{ u}_\mu$	-	-
		$\tilde{\tau}_L \ \tilde{\tau}_R \ \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_{\tau}$	-
neutralino	1/2	$\tilde{B} \; \tilde{W}^3 \; \tilde{H}^0_u \; \tilde{H}^0_d$	$ ilde{\chi}^{0}_{1} \ ilde{\chi}^{0}_{2} \ ilde{\chi}^{0}_{3} \ ilde{\chi}^{0}_{4}$	$M_1, M_2, \mu, \tan \beta$
chargino	1/2	$\tilde{W}^{\pm} \tilde{H}^{+}_{u} \tilde{H}^{-}_{d}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$	$\mu, M_2, \tan \beta$
gluino	1/2	\tilde{g}	-	-
gravitino	3/2	\tilde{G}	_	$m_{\tilde{G}} = 1 \text{ eV}$

- Only 7 SUSY particles below 1 TeV, other decoupled
- 4D theory parameter space: $M_1, M_2, \mu, \tan \beta$
- Light gravitino for prompt decay of lightest neutralino/chargino
 T. Gonzalo (KIT)
 GAMBIT
 RIF 2023, 29/8/23

 $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm} \to f^{\pm}f^{\pm,0}\tilde{\chi}_{1}^{0}, \{Z, h, W\}\tilde{G}$

EW MSSM + \tilde{G}

- Three phenomenological scenarios
 - $\rightarrow \text{ Wino NLSP: } M_2 < M_1, \mu \quad \rightsquigarrow \quad \tilde{\chi}_1^0 \rightarrow \{Z, \gamma\} \tilde{G}, \\ \tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{G}$
 - \rightarrow Higgsino NLSP: $\mu < M_1, M_2 \quad \rightsquigarrow \quad \tilde{\chi}_1^0 \rightarrow \{Z, h\}\tilde{G},$
 - \rightarrow Bino NLSP: $M_1 < M_2, \mu \quad \rightsquigarrow \quad \tilde{\chi}_1^{0} \rightarrow \gamma \tilde{G}$
- Heavier $\tilde{\chi}_i^0/\tilde{\chi}_i^{\pm}$ decay to NLSP with multiple $\{Z, W^{\pm}, h\}$

• Chargino NLSP extremely rare

EW MSSM + \tilde{G}

- LHC SUSY searches
 - $\rightarrow~15$ ATLAS and 12 CMS Run 2
 - $\rightarrow \gamma + E_{\rm T}^{\rm miss}$
 - $\rightarrow 2/3/4$ leptons + $E_{\rm T}^{\rm miss}$
 - $\rightarrow 0/1/2 \text{ leptons} + \tilde{t} + E_{\mathrm{T}}^{\mathrm{miss}}$
 - $\rightarrow 2/3 \text{ b-jets} + 0/1 \text{ lepton} + E_{\mathrm{T}}^{\mathrm{miss}}$
 - \rightarrow multiple jets + $E_{\rm T}^{\rm miss}$
- LHC "SM" xsec measurements
 - $\rightarrow~22$ pools with 45 ATLAS, CMS and LHCb measurements
 - $\rightarrow pp \rightarrow ZZ \rightarrow 4l$
 - $\rightarrow pp \rightarrow W^+W^- \rightarrow ll'(j) + E_{\rm T}^{\rm miss}$
 - $\rightarrow pp \rightarrow Z\gamma \rightarrow ll\gamma$
- LEP xsection constraints

Karlsruher Institut für Technologie

Results

- \rightarrow Preferred scenario are Higgsino-like, i.e. $\mu < M_1, M_2$
- \rightarrow At 2σ , $\mu < 0$, $\tan \beta \sim 1$, \Rightarrow 140 GeV $< \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} < 500$ GeV
- \rightarrow Dominant channels are $\tilde{\chi}_1^0 \rightarrow h \tilde{G}, \, \tilde{\chi}_1^0 \rightarrow Z \tilde{G}$
- \rightarrow Fits excess is leptons + $E_{\rm T}^{\rm miss}$ and b-jets + $E_{\rm T}^{\rm miss}$ searches
- $\rightarrow\,$ Simultaneous fit to multi-lepton and multi-b signal regions

EW MSSM + \tilde{G}

- $\rightarrow~{\rm Largest}$ suriving region Higgsino NSLP
- $\rightarrow~\gamma$ + MET searches exclude binos $<800~{\rm GeV}$
- $\rightarrow~l+$ MET excludes wino except at >600 GeV and ~450 GeV due to excesses
- $\rightarrow~{\rm SM}$ cross section measurements kill lowest masses

Results

- Impact of searches and measurements
- \rightarrow Lepton searches exclude low mass winos
- \rightarrow Boosted boson searches exclude high mass winos
- $\begin{array}{l} \rightarrow \mbox{ Measurements} \\ \mbox{ exclude low mass} \\ \mbox{ Higgsino and winos} \end{array}$

- GAMBIT updates
 - $\rightarrow\,$ Some updates and a lot of work in progress in ColliderBit
 - $\rightarrow\,$ Simultaneous search and measurement combination
 - \rightarrow CBS around the corner (hopefully)
 - $\rightarrow\,$ Many recent analyses being implemented right now
- EWMSSM with gravitino
 - $\rightarrow~{\rm EW}$ MSSM interesting as it remains somewhat unconstrained
 - $\rightarrow\,$ Light gravitino motivated by GMSB and interesting phenomenology
 - $\rightarrow\,$ First time combining unfolded "SM" measurements with reco-level searches
 - \rightarrow We find slight preference for light Higgsinos 140 500 GeV
 - $\rightarrow\,$ Most parameter space exluded except a few critial regions:
 - * Degenerate Higgsinos, difficult to exclude
 - * Winos at ~ 450 GeV or > 700 GeV
 - * Lonely bino with $m_{\tilde{\chi}_1^0} > 60$ GeV and $m_{\tilde{\chi}_2^0} > 800$ GeV

Backup

Analyses

ATLAS_2BoostedBosons	$139 {\rm fb}^{-1}$	ATLAS hadronic chargino/neutralino search
ATLAS_0lep	$139 {\rm fb}^{-1}$	ATLAS 0-lepton search
ATLAS_0lep_stop	$36 {\rm fb}^{-1}$	ATLAS 0-lepton stop search
ATLAS_1lep_stop	$36 {\rm fb}^{-1}$	ATLAS 1-lepton stop search
ATLAS_2lep_stop	$139 {\rm fb}^{-1}$	ATLAS 2-lepton stop search
ATLAS_20Slep_Z	$139 {\rm fb}^{-1}$	ATLAS stop search with Z/H final states
ATLAS_20Slep_chargino	$139 {\rm fb}^{-1}$	ATLAS 2-lepton chargino search
ATLAS_2b	$36 {\rm fb}^{-1}$	ATLAS 2-b-jet stop/sbottom search
ATLAS_3b	$24 {\rm fb}^{-1}$	ATLAS 3-b-jet Higgsino search
ATLAS_3lep	$139 {\rm fb}^{-1}$	ATLAS 3-lepton chargino/neutralino search
ATLAS_4lep	$139 {\rm fb}^{-1}$	ATLAS 4-lepton search
ATLAS_MultiLep_strong	$139 {\rm fb}^{-1}$	ATLAS leptons + jets search
ATLAS_PhotonGGM_1photon	$139 {\rm fb}^{-1}$	ATLAS 1-photon GGM search
ATLAS_PhotonGGM_2photon	$36 {\rm fb}^{-1}$	ATLAS 2-photon GGM search
ATLAS_Z_photon	$80 {\rm fb}^{-1}$	ATLAS $Z + photon search$
CMS_0lep	$137 {\rm fb}^{-1}$	CMS 0-lepton search
CMS_1lep_bb	$36 {\rm fb}^{-1}$	CMS 1-lepton $+$ <i>b</i> -jets chargino/neutralino search
CMS_1lep_stop	$36 {\rm fb}^{-1}$	CMS 1-lepton stop search
CMS_2lep_stop	$36 {\rm fb}^{-1}$	CMS 2-lepton stop search
CMS_2lep_soft	$36 {\rm fb}^{-1}$	CMS 2 soft lepton search
CMS_20Slep	$137 {\rm fb}^{-1}$	CMS 2-lepton search
CMS_20Slep_chargino_stop	$36 {\rm fb}^{-1}$	CMS 2-lepton chargino/stop search
CMS_2SSlep_stop	$137 {\rm fb}^{-1}$	CMS 2 same-sign lepton stop search
CMS_MultiLep	$137 {\rm fb}^{-1}$	CMS multilepton chargino/neutralino search
CMS_photon	$36 {\rm fb}^{-1}$	CMS 1-photon GMSB search
CMS_2photon	$36 {\rm fb}^{-1}$	CMS 2-photon GMSB search
CMS_1photon_1lepton	$36 {\rm fb}^{-1}$	CMS 1-photon $+$ 1-lepton GMSB search
Γ. Gonzalo (KIT)		GAMBIT RIF 2023, 29/8/23

14 / 14

Measurements

Karlsruher Institut für Technologie

ATLAS_13_4L ATLAS_13_EEJET ATLAS_13_GAMMA ATLAS_13_JETS ATLAS_13_L1L2MET ATLAS_13_L1L2METJET ATLAS 13 L1L2MET GAMMA ATLAS 13 LLJET ATLAS 13 LL GAMMA ATLAS 13 LMETJET ATLAS_13_LMET_GAMMA ATLAS_13_METJET ATLAS_13_MMJET ATLAS 13 TTHAD

CMS_13_EEJET CMS_13_HMDY CMS_13_JETS CMS_13_LMETJET CMS_13_MMETJET CMS_13_MMJET CMS_13_TTHAD LHCB_13_L1L2B

Collider likelihoods

 $\bullet\,$ No background covariance info $\to\, {\rm SR}$ with best expeted sensitivity

$$\mathcal{L}(s_i, \gamma_i) = \left[\frac{(s_i + b_i + \gamma_i)_i^n e^{-(s_i + b_i + \gamma_i)}}{n_i!}\right] \times \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{\gamma_i^2}{2\sigma_i^2}}$$

• CMS analyses provide covariance matrices for bkg uncertainties

$$\mathcal{L}(\mathbf{s}, \boldsymbol{\gamma}) = \prod_{i=1}^{n_{\mathrm{SR}}} \left[\frac{(s_i + b_i + \gamma_i)_i^n e^{-(s_i + b_i + \gamma_i)}}{n_i!} \right] \times \frac{1}{\sqrt{\det 2\pi \boldsymbol{\Sigma}}} e^{-\frac{1}{2} \boldsymbol{\gamma}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}}$$

• SM measurement likelihood

$$\ln \mathcal{L}_{\text{meas}}(\boldsymbol{s}) = -\sum_{i \in \text{activebins}} \left[\frac{y_i^{s+b}(\boldsymbol{s}) - y_i^{\text{obs}}}{\Delta y_i} \right]^2 / 2$$

• "Capped" likelihood $\Delta \ln \mathcal{L}^{cap}(s) = \min[\Delta \ln \mathcal{L}(s), \Delta \ln \mathcal{L}(s=0)]$

T. Gonzalo (KIT)

Scan framework

- GAMBIT modules used for the scan
 - ightarrow SpecBit \sim
 - $\rightarrow \ \mathsf{DecayBit} \qquad \leadsto$
 - \rightarrow ColliderBit \rightsquigarrow

- $\rightarrow \ {\sf ScannerBit} \quad \sim \quad$
- Parameter ranges

$M_1(Q)$	[-1, 1] TeV	hybrid, flat
$M_2(Q)$	[0, 1] TeV	hybrid, flat
$\mu(Q)$	[-1, 1] TeV	hybrid, flat
$\tan\beta(m_Z)$	[1, 70]	log, flat
$m_{\tilde{G}}$	1 eV	fixed

one-loop spectrum with FlexibleSUSY $\tilde{\chi}^{0,\pm} \rightarrow \tilde{\chi}^{0,\pm}$ decays with SUSY-HIT $\chi^{0,\pm} \rightarrow \tilde{G}$ decays native MC event generation with Pythia 8 detector simulation with BuckFast LHC search emulation native SM measurements with Rivet and Contur sampling using diver

• Scan details

- $\rightarrow\,$ diver 1.0.4 self-adaptive rand/1/bin evolution
- $\rightarrow~16{\rm M}$ MC events for LHC searches
- $\rightarrow~100 {\rm k}~{\rm MC}$ events for measurements
- $\rightarrow 3.1 \times 10^5$ parameter samples

Exclusion power of measurements

T. Gonzalo (KIT)

GAMBIT

RIF 2023, 29/8/23 14/14

Profile likelihoods

Global Fits

- Many constraints in BSM models
- Exclusion regions do not properly represent the model predictions
- Composite likelihood
- $\mathcal{L} = \mathcal{L}_{Collider} \mathcal{L}_{Higgs} \mathcal{L}_{DM} \mathcal{L}_{Flavour} \dots$

[arXiv:2012.09874 [hep-ph]]

- Hard to find interesting regions
- Random methods are inefficient
- Need smart sampling strategies (differential, nested, genetic,...)
- Rigorous statistical interpretations (frequentist / Bayesian)
- Parameter estimation, goodness-of-fit, model comparison, ...

Core

- Each module contains a collection of module functions
- Module functions provide a *capability*
- They have dependencies and backend requirements
- Allowed for specific models

// SM-like Higgs mass with theoretical uncertainties #define CAPABILITY prec_mh START_CAPABILITY

#define FUNCTION FH HiggsMass START_FUNCTION(trtplet=double>) DEPENDENCY(unipproved_MSSM_spectrum, Spectrum) DEPENDENCY(FH HiggsMasses, Fh HiggsMassObs) ALLOW_MODELS(MSSMG3atQ, MSSMG3atMGUT) #undef FUNCTION

#define FUNCTION SND HiggsHass STAF_FUNCTION(triplet-double>) DEPENDENT(Uninproved_HSSM_spectrum) BACKMD_REG(SUMPUMHIGS), (Meal, (const MList-MReal>&)) BACKMD_REG(SUMPUMHIGS), (const MList-MReal>&)) ALLOW_FUNCTION

#undef CAPABILITY

• At run time a dependency tree is generated and resolved

Models

• Extensive model database

- Parent-daughter hierarchy
- Module functions are activated for each model

Backends

CosmoBit	DarkBit	ColliderBit
Acropolis 1.2.1 AlterBBN 2.2 DarkAges 1.2.0 MontePythonLike 3.5.0 MultiModeCode 2.0.0 classy 3.1.0 plc 3.0	CaptnGeneral 2.1 DDCalc 2.3.0 DarkSUSY 6.4.0 DirectDM 2.2.0 MicrOmegas 3.6.9.2 gamLike 1.0.1 nulike 1.0.9 pbarlike 1.0	Contur 2.1.1 HiggsBounds 4.3.1 HiggsSignals 1.4 Pythia 8.212 Rivet 3.1.5 nulike 1.0.9 phy 0.7
PrecisionBit		FlavBit
FeynHiggs 2.12.0 SUSYHD 1.0.2 gm2calc 1.3.0	SpecBit FlexibleSUSY 2.0.1 SPheno 4.0.3 Vevacious 1.0	HepLike 2.0 HepLikeData 1.4 SuperISO 3.6
		DecayBit
		CalcHEP 3.6.27 SUSY_HIT 1.5
T. Gonzalo (KIT)	GAMBIT	RIF 2023, 29/8/23 14/1

Scan framework

Scan framework

T. Gonzalo (KIT)

RIF 2023, 29/8/23 14/14

 10^{4}

 10^{3}

 10^{4} 10^{5}

An example run

T. Gonzalo (KIT)

RIF 2023, 29/8/23 14/14