
1

ADL/CutLang  
developments towards

transparent  
(re)interpretation

Documentation and references : cern.ch/adl

 Sezen Sekmen (Kyungpook Nat. U.)

for the ADL/CutLang team

Reinterpretation Forum Workshop
29 Aug - 1 Sep 2023, IPPP Durham

Dec 2022

http://adl.web.cern.ch/index.html

ADL is a declarative domain specific language (DSL) that describes the physics content of a HEP
analysis in a standard and unambiguous way.

• External DSL: Custom-designed syntax to express analysis-specific concepts. Reflects conceptual
reasoning of particle physicists. Focus on physics, not on programming.

• Declarative: States what to do, but not how to do it.

• Easy to read: Clear, self-describing syntax.

• Designed for everyone: experimentalists, phenomenologists, students, interested public…

ADL is framework-independent —> Any framework recognizing ADL can perform tasks with it.

• Decouples physics information from software / framework details.

• Multi-purpose use: Can be automatically translated or incorporated into the GPL / framework most
suitable for a given purpose, e.g. exp. analysis, (re)interpretation, analysis queries, …

• Easy communication between groups: exp., pheno, referees, students, public, …

• Easy preservation of analysis logic.

Analysis Description Language for HEP

2

The ADL construct

ADL consists of

• a plain text file (an ADL file) describing the

analysis logic using an easy-to-read DSL
with clear syntax.

• a library of self-contained functions
encapsulating variables that are non-trivial
to express with the ADL (e.g. MT2, ML
models). Internal or external (user)
functions.

blocktype	blockname

		keyword1	instruction1 
		keyword1	instruction2

		keyword2	instruction3	#	comment

• ADL file consists of blocks separating object,
variable and event selection definitions.
Blocks have a keyword-instruction structure.

• keywords specify analysis concepts and

operations.

3

ADL syntax with usage examples: link

LHADA (Les Houches Analysis Description Accord): Les Houches 2015 new physics WG report (arXiv:1605.02684, sec 17)

CutLang: Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), Front. Big Data 4:659986, 2021  
 Several proceedings for ACAT and vCHEP

• Syntax includes mathematical and logical
operations, comparison and optimization
operators, reducers, 4-vector algebra and HEP-
specific functions (dφ, dR, …). See backup.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL
https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1801.05727

A very simple analysis example with ADL

#	OBJECTS

object	goodMuons

		take	muon

		select	pT(muon)	>	20

		select	abs(eta(muon))	<	2.4 
 
object	goodEles

		take	ele

		select	pT(ele)	>	20

		select	abs(eta(ele))	<	2.5 
 
object	goodLeps

		take	union(goodEles,	goodMuons) 
 
object	goodJets

		take	jet

		select	pT(jet)	>	30

		select	abs(eta(jet))	<	2.4

		reject	dR(jet,	goodLeps)	<	0.4

4

#	EVENT	VARIABLES

define	HT	=	sum(pT(goodJets))

define	MTl	=	Sqrt(2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0]))))

#	EVENT	SELECTION

region	baseline

		select	size(goodJets)	>=	2

		select	HT	>	200

		select	MET	/	HT	<=	1

region	signalregion

		baseline

		select	Size(goodLeps)	==	0

		select	dphi(METLV[0],	jets[0])	>	0.5

region	controlregion 
		baseline 
		select	size(goodLeps)	==	1

		select	MTl	<	120

ADL implementations of some LHC analyses: https://github.com/ADL4HEP/ADLLHCanalyses

#	EVENT	VARIABLES

define	HT	=	sum(pT(goodJets))

define	MTl	=	Sqrt(2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0]))))

#	EVENT	SELECTION

region	baseline

		select	size(goodJets)	>=	2

		select	HT	>	200

		select	MET	/	HT	<=	1

region	signalregion

		baseline

		select	Size(goodLeps)	==	0

		select	dphi(METLV[0],	jets[0])	>	0.5

region	controlregion 
		baseline 
		select	size(goodLeps)	==	1

		select	MTl	<	120

https://github.com/ADL4HEP/ADLLHCanalyses

Running analyses with ADL

5

Once an analysis is written, it needs to run on events.

ADL is multipurpose & framework-independent: It can be translated / integrated into any language or
framework for analysis tasks:

Physics information is fully contained in ADL. Current compiler infrastructures can be easily
replaced by future tools / languages / frameworks.

CutLang (CL) runtime interpreter and framework

6

CutLang runtime interpreter:

• No compilation. User writes an ADL file and
runs CutLang directly on events.

• CutLang itself is written in C++, works in any
modern Unix environment.

• Based on ROOT classes for Lorentz vector
operations and histograms.

• ADL parsing by Lex & Yacc.

CutLang framework: interpreter + tools

• Input events via ROOT files.

• multiple input formats: Delphes, CMS

NanoAOD, ATLAS/CMS Open Data, LVL0,
FCC. More can be easily added.

• All event types converted into predefined
particle object types. —> can run the same
ADL file on different input types.

• Includes many internal functions.

• Output in ROOT files: ADL file, cutflows, bins

and histograms; event pass/fail ntuples for
each region in a separate directory

• Available in Docker, Conda, Jupyter (via
Conda or binder). (win/lin/mac + portables)

CutLang Github repository: https://github.com/unelg/CutLang 
Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727),
Front. Big Data 4:659986, 2021 (arXiv:2101.09031),  
Several proceedings for ACAT and vCHEP

https://github.com/unelg/CutLang
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/2101.09031

ADL allows practical exchange of experimental analysis information with the pheno community.

• Clear description of the complete analysis logic.

• Enables straightforward adaptation from experiments to public input event formats.

• Repurpose ADL files: swap experimental object definition blocks with simplified object blocks
based on numerical object ID / tagging efficiencies.

• Event selections stay almost the same: can swap trigger selections with trigger efficiencies

• Efficiencies can be implemented via hit-and-miss function (see backup slides).

• Generic syntax available for expressing analysis output in the ADL file: (see backup slides)  
Data counts, BG estimates, signal predictions —> counts, uncertainties, cutflows.

• Running CutLang puts preexisting results in histograms with the same format as the run output.
—> Direct comparison of cutflows, limit calculations.

• Could facilitate communicating information to/from HEPDATA or similar platforms.

ADL/CL for reinterpretation

7

Validation for reinterpretation: Efficiency Map Creator - I

8

We launched a large scale analysis implementation and validation effort with ADL/CutLang.

• Main focus still SUSY, but also extending to EXO.

Use SModelS Efficiency Map Creator for validation:

• Developed by Wolfgang W. to produce selection

efficiency maps on SMSs for input to SModelS.

• can be used to validate analyses by comparing

to experimental results.

• Configurable user interface: can specify which

models and mass points to produce, which
steps to run, which output to save.

• EM-creator was adapted to work with ADL/
CutLang by Wolfgang W. and Jan Mrozek.

• Final step: Efficiency maps.

• Limit calculation currently within SModelS.

Validation for reinterpretation: Efficiency Map Creator - II

9

Recent validation example:
CMS-SUS-21-009: “photons +
multijets + MET”.

Working to validate several recently published ATLAS and CMS analyses.

• Working with a group of ATLAS and CMS students and partially with CMS analysis teams.

https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-009/index.html

Integrating ML models

10

ADL/CutLang is now adapted to execute ML models.

• Currently work with .onnx models. (https://onnx.ai/) (see https://netron.app/ for an online viewer)

• Integrated in ADL/CL via the downloadable Onnx Model Executer function, with the following syntax:

• Implemented the two ATLAS analyses for which onnx functions are available: 
ATLAS-SUSY-2019-04 (RPV leptons + jets) and ATLAS-SUSY-2018-30 (multi-b + MET). 
(analyses discussed during RIF’22.)

• Thanks Krzysztof Rolbiecki for sharing information from the CheckMate experience!.

• Validation in progress for ATLAS-SUSY-2018-30 .

#	define	the	list	of	inputs

define	listofinputs	=	{var1	var2	var3	……	varN}

#	define	the	ML	output

define	myMLvar	=	OME(my/directory/myfunc.onnx,	listofinputs)

https://onnx.ai/
https://netron.app/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-04/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-30/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-30/

ADL/CL and LHC Open Data - I

11

ADL/CL can be used to run analyses with ATLAS (educational) and CMS (research) open data.

• Use related to reinterpretation: Provide capability to re-optimize and re-run recasted analyses from
ADL database to maximize sensitivity to new models.

• A first example / tutorial for “reinterpretation with open data” was prepared using ADL/CL for the
2023 CMS Open Data Workshop in June 2023.

• Study exact and “optimized” reinterpretation of a ttbar analysis for vector-like T quark signal.

• Focus on reoptimizing the analysis to enhance sensitivity to VLT. 
Complete tutorial link.

• Runs on a full set of relevant open data & MC events.

• Runs on a docker container hosting CutLang, ROOT, xrootd access to open data, and VNC. 

• Earlier complete tutorial for 2022 CMS Open Data Workshop — reimplement CMS Run 1 vector-
like quark analysis with boosted W and Higgs bosons, CMS-B2G-16-024:

• Complete tutorial link

https://indico.fnal.gov/event/58914/timetable/
https://cms-opendata-workshop.github.io/workshop2022-lesson-run2-adlcl/
https://indico.cern.ch/event/1139022/
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-16-024/index.html
https://cms-opendata-workshop.github.io/workshop2022-lesson-run2-adlcl/

ADL/CL and LHC Open Data - II

12

Cutflow histograms automatically
generated by CutLang.

Data, BG and 2 VLT
signals vs. top candidate
mass for the ttbar analysis
selection.

Top candidate mass pT
and ST after reoptimizing

the ttbar selection by
adding several new cuts.  

(B2G-16-024 uses ST)

Histogramming and plotting tools

13

ADL/CL have extensive histogramming capabilities:

• 1D and 2D fixed bin and variable bin histograms defined with single line syntax.

• Histogram lists can be defined and reused in different regions and cut levels.

• Cutflow histograms and analysis bin histograms automatically drawn.

CutLang is enhanced with various easily configurable plotting tools based on standalone PyROOT or
PyROOT in Jupyter notebooks (link).

• Shape comparisons between different processes.

• Weighted comparison between two processes (e.g. signal and background)

• Weighted full plotting including data, different backgrounds (stacked) and multiple signals (e.g. as
in the previous page).

https://github.com/unelg/CutLang/tree/master/binder

Recent infrastructure developments

14Daniel Riley, Grigory Fedyukovich (Florida State U.), Gokhan Unel (UC Irvine)

Various developments in the CutLang core infrastructure are ongoing:

• Decoupling the grammar implementation from input data attributes, external functions, … :

• Particle and function names are no longer needed to be hardcoded in the ADL parser.

• After initial parsing, function and particle names are matched to those within an external library .

 => Portability of different data types, attributes, functions.

• Abstract syntax tree (AST) can be produced.

• Visualization tools: Converting analyses to graphs / flowcharts from the AST.

• Many stability and functionality improvements.

• Infrastructure in place and partially deployed. Tests ongoing.

15

• ADL and CutLang present a multipurpose and practical analysis approach.

• ADL/CutLang highly suitable for reinterpretation studies.

• Large scale analysis reimplementation / validation effort ongoing.

• SModelS EM-creator is used for SUSY analysis validation.

• PyROOT (and Jupyter) based plotting tools available.

• 2 complete CMS Open Data tutorials available, one featuring reinterpretation via optimization.

• ADL syntax refinements and formal compiler/interpreter infrastructure developments are ongoing.

• ML models added,

• ADL/CL keywords and ntuple variables now decoupled,

• new parser with AST and automatic graphic generation is being deployed,

• many stability and functionality improvements…

ADL / CL intended as a community effort !  
Everyone is welcome to join the development of the language and tools.

To conclude

16

Extra slides

Documentation and references : cern.ch/adl

Dec 2022

http://adl.web.cern.ch/index.html

ADL syntax: main blocks, keywords, operators

17

Block purpose Block keyword
object definition blocks object
event selection blocks region
analysis or ADL information info
tabular information table

Keyword purpose Keyword
define variables, constants define
select object or event select
reject object or event reject
define the mother object take
apply weights weight
bin events in regions bin, bins
sort objects sort
define histograms histo
save variables for events save

Operation Operator

Comparison operators > < => =< == !=

 [] (include)][(exclude)

Mathematical operators + - * / ^
Logical operators and or not

Ternary operator condition ? truecase :
falsecase

Optimization operators ~= (closest to) 
~! (furthest from)

Lorentz vector addition LV1 + LV2

LV1 LV2

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Syntax also available to write existing analysis results
(e.g. counts, errors, cutflows…).

 
Syntax develops further as we implement
more and more analyses.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

ADL syntax: functions

18

Standard/internal functions: Sufficiently
generic math and HEP operations could be
a part of the language and any tool that
interprets it.

•Math functions: abs(), sqrt(), sin(), cos(),

tan(), log(), …

•Collection reducers: size(), sum(), min(),

max(), any(), all(),…

•HEP-specific functions: dR(), dphi(), deta(),

m(), ….

•Object and collection handling: union(),

comb()…

External/user functions: Variables that cannot
be expressed using the available operators or
standard functions would be encapsulated in
self-contained functions that would be
addressed from the ADL file and accessible by
compilers via a database.

•Variables with non-trivial algorithms: MT2,

aplanarity, razor variables, …

•Non-analytic variables: Object/trigger

efficiencies, variables/efficiencies computed
with ML, …

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

ADL/CL scope

19

• Event processing: Priority focus!

• Analysis results, i.e. counts and uncertainties: Available

• Histogramming: Available => HistoSets, 1D, 2D, variable width...

• Systematic uncertainties: ATLAS type syntax now available. 

Following HEP community discussions on how to express systematics.

• Data/MC comparison, limits: Within the scope, implementation being tested.

• Operations with selected events, e.g. background estimation, scale factor derivation: Very

versatile. Not yet within the scope.

ADL helps to design and document a single analysis in a clear and organized way.

BONUS: Library functions guaranteed to be bug free

 WYGIWYS analysis, no double counting, correct sorting, 𝝌2 evaluation, combinatorics, unions...

Its distinguishing strength is in navigating and exploring the multi-analysis landscape.

• Analysis design (experimental or pheno):

• Quick prototyping.

• Simultaneous test of numerous selection options in a self-documenting way.

• Easy comparison with existing analyses: “Was my phase space already covered?”

• Objects handling:

• Easy reuse in new analyses.

• Compare object definitions within or between analyses.

• Compare definitions in different input data types.

• Analysis visualization:

• Build analysis flow graphs and tables from analyses using static program analysis tools.

• Communication:

• Between analysis team members (easy synchronization); with reviewers; between teams;

between experiments or exp. and pheno.

Versatile uses of ADL - I

20

• Analysis preservation: Queryable databases for analysis logic and objects.

• Queries in analysis or object databases: Use static analysis tools to answer questions such as

• “Which analyses require MET > at least 300?”; “Which use b-jets tagged with criterion X? ”,

“Which muons use isolation?”

• Analysis comparisons / combinations:

• Determine analysis overlaps, identify disjoint analyses or search regions;

• Automate finding the combinations with maximal sensitivity; phase space fragmentation.

• Education:

• Provide a learning database for students (and everyone).

• Easy entry to running analyses (several schools & trainings organized).

• Reinterpretation: Next page.

• … … and how would YOU use it?

Versatile uses of ADL - II

21

Auto-generated graph of an ADL analysis (using graphviz)

22
arXiv:2205.09597: CMS Search for Electroweak SUSY in WW, WZ and WH hadronic final states

Burak Şen (Middle East Tech. U.)

https://arxiv.org/abs/2205.09597

Object efficiencies

23

• Object efficiencies versus (multiple)
attributes and their uncertainties
provided by the experiments can be
recorded in the ADL file via tables.

• CutLang can apply these efficiencies
to input objects via the hit-and-miss
method, for selecting objects with the
efficiency probability.

• both at object selection and  

event selection level.

Counts and cutflows

24

• Record cutflow values from the experiment.

• Run CL on local sample and obtain cutflow. 

(same histogram format)

• Compare with  

experiment.

• Record data and BG estimates from the exp.

• Run CL and obtain signal predictions. 

(same histogram format)

• Compute limits.

25

Onnx Runtime Execution

onnx model viewerOME details

