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Motivation: jets

[Google Images]
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Motivation: jets (at LHC of course)

[CMS 2011]
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Why Monte Carlos?

We want to understand

Lint←→ Final states .
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Why Monte Carlos?

LHC experiments require
sound understanding of signals and backgrounds.

↑
Full detector simulation.

↑
Fully exclusive hadronic final state.

↑
Monte Carlo event generator with

parton shower, hadronization model, decays of unstable
particles.
↑

Parton level computations.

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 4/141



Experiment and Simulation
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Monte Carlo Event Generators

• Complex final states in full detail (jets).
• Arbitrary observables and cuts from final states.
• Studies of new physics models.

• Rates and topologies of final states.
• Background studies.
• Detector Design.
• Detector Performance Studies (Acceptance).

• Obvious for calculation of observables on the quantum
level

|A|2 −→ Probability.
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pp Event Generator
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Divide and conquer
Partonic cross section from Feynman diagrams

dσ = dσharddP(partons→ hadrons)

dP(partons→ hadrons) = dP(resonance decays) [Γ>Q0]

×dP(parton shower) [TeV→Q0]

×dP(hadronisation) [∼Q0]

×dP(hadronic decays) [O(MeV)]

Underlying event from multiple partonic interactions

dσ ←− dσ(QCD 2→ 2)
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Plan for these lectures

• Monte Carlo Methods

• Hard Scattering

• Parton Showers

• Hadronization and Hadronic Decays

• Underlying Event

• Multiple Parton Interactions (MPI) Modelling
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Monte Carlo Methods
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Monte Carlo Methods

Introduction to the most important MC sampling
(= integration) techniques.

1 Hit and miss.
2 Simple MC integration.
3 (Some) methods of variance reduction.
4 Adaptive MC, VEGAS.
5 Multichannel.
6 Mini event generator in particle physics.
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Probability

Probability density:

dP = f (x)dx

is probability to find value x.

F(x) =
∫ x

x0

f (x)dx

is called probability distribution.

Example: f (x) = cos(x).
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Hit and Miss

Hit and miss method:
• throw N random points

(x,y) into region.
• Count hits Nhit,

i.e. whenever y< f (x).
Then

I ≈ V
Nhit

N
.

approaches 1 again in our
example.

Example: f (x) = cos(x).
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Every accepted value of x can be considered an event in this
picture. As f (x) is the ’histogram’ of x, it seems obvious that the
x values are distributed as f (x) from this picture.
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Hit and Miss
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Hit and Miss
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Hit and Miss

This method is used in many event generators. However, it is
not sufficient as such.

• Can handle any density f (x),
however wild and unknown it is.
• f (x) should be bounded from above.
• Sampling will be very inefficient whenever Var(f ) is large.

Improvements go under the name variance reduction as they
improve the error of the crude MC at the same time.
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Simple MC integration

Mean value theorem of integration:

I =
∫ x1

x0

f (x)dx

= (x1−x0)〈f (x)〉

≈ (x1−x0)
1
N

N

∑
i=1

f (xi)

(Riemann integral).

Sum doesn’t depend on ordering
−→ randomize xi.

Yields a flat distribution of events xi,
but weighted with weight f (xi) (→ unweighting).
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Simple MC integration

Pictorially:

I =
∫ x1

x0

f (x)dx

= (x1−x0)〈f (x)〉
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Simple MC integration

What’s the error?

Again, looks like

σ ∼ 1√
N
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Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

In general: Crude MC

I =
∫

fdV

≈ V〈f 〉±V

√
〈f 〉2−〈f 2〉

N

≈ V〈f 〉±V
σ√
N
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Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

Our example: cos(x),0≤ x≤ π/2,
compute σMC from

〈f 〉=
1
N

N

∑
i=1

f (xi)

〈f 2〉=
1
N

N

∑
i=1

f 2(xi).
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Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

Compute σ directly (V = π/2):

〈f 〉=
∫

π/2

0
cos(x)dx = 1

〈f 2〉=
∫

π/2

0
cos2(x)dx =

π

4

then

σ =

√
12− π

4
≈ 0.4633.
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Simple MC integration

What’s the error?

Now, compare

σMC =
0.4633√

N

with error estimate
from MC.

Spot on.
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Inverting the Integral

Another basic MC method, based on the observation that

Probability ∼ Area
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Inverting the Integral

• Probability density
f (x). Not necessarily
normalized.

• Integral F(x) known,
• P(x< xs) = F(xs) .
• Probability = ’area’,

distributed evenly,
∫ x

x0

dP = r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200

x

100× f(x)

Sample x according to f (x) with

x = F−1
[
F(x0)+ r

(
F(x1)−F(x0)

)]
.
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Inverting the Integral

Another basic MC method, based on the observation that

Probability ∼ Area

Sample x according to f (x) with

x = F−1
[
F(x0)+ r

(
F(x1)−F(x0)

)]
.

Optimal method, but we need to know

• The integral F(x) =
∫

f (x)dx,
• It’s inverse F−1(y).

That’s rarely the case for real problems.

But very powerful in combination with other techniques.
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Importance sampling

Error on Crude MC σMC = σ/
√

N.
=⇒ Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

I =
∫

f dV =
∫ f

p
pdV ≈

〈
f
p

〉
±
√
〈f 2/p2〉−〈f/p〉2

N
.

where we have chosen
∫

pdV = 1 for convenience.

Note: need to sample flat in pdV, so we better know
∫

pdV and
it’s inverse.
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Importance sampling

Consider error term:

E =

〈
f 2

p2

〉
−
〈

f
p

〉2

=
∫ f 2

p2 pdV−
[∫ f

p
pdV

]2

=
∫ f 2

p
dV−

[∫
f dV

]2

.
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Importance sampling
Consider error term:

E =
∫ f 2

p
dV−

[∫
f dV

]2

.

Best choice of p? Minimises E → functional variation of error
term with (normalized) p:

0 = δE = δ

(∫ f 2

p
dV−

[∫
f dV

]2

+ λ

∫
pdV

)

=
∫ (
− f 2

p2 + λ

)
dVδp ,

0 = δE =
∫ (
− f 2

p2 + λ

)
dVδp ,

hence
p =

|f |√
λ

=
|f |∫ |f |dV

.

Choose p as close to f as possible.
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Importance sampling — example
Improving cos(x)
sampling,

I =
∫

π/2

0
cos(x)dx

=
∫

π/2

0

cos(x)

1− 2
π

x

(
1− 2

π
x
)

dx

=
∫ 1

0

cos(x)

1− 2
π

x

∣∣∣∣∣
x=x(ρ)

dρ .
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f
(x
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x

cos(x)

Sample x with inverting the integral technique (flat random
number ρ),

x =
π

2

(
1−
√

1−ρ

)
=̂

π

2
(1−√ρ)

(
I =

∫ 1

0

cos
(

π

2

(
1−√ρ

))
√

ρ
dρ.

)
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cos
(
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(
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√
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Importance sampling — example

Improving cos(x)
sampling,

much better
convergence,

about 80% “accepted
events”.

Reduced variance
(σ ′ = 0.027)
⇒ better efficiency.
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MC error
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√
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Importance sampling — better example

More interesting for divergent
integrands, eg

1
2
√

x
,

with some wiggles,

p(x) = 1−8x+40x2−64x3 +32x4 .

i.e. we want to integrate

f (x) =
p(x)

2
√

x
.
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x
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√
x

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 26/141



Importance sampling — better example

More interesting for divergent
integrands, eg

1
2
√

x
,

with some wiggles,

p(x) = 1−8x+40x2−64x3 +32x4 .

i.e. we want to integrate

f (x) =
p(x)

2
√

x
.

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

x

1/2
√
x

wiggles

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 26/141



Importance sampling — better example

More interesting for divergent
integrands, eg

1
2
√

x
,

with some wiggles,

p(x) = 1−8x+40x2−64x3 +32x4 .

i.e. we want to integrate

f (x) =
p(x)

2
√

x
. 0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

x

1/2
√
x

f(x)
wiggles

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 26/141



Importance sampling — better example

• Crude MC gives
result in reasonable
’time’.
• Error a bit unstable.
• Event generation

with maximum
weight wmax = 20.
(that’s arbitrary.)
• hit/miss/events

with (w> wmax) =
36566/963434/617
with 1M generated
events.
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100

100 101 102 103 104 105 106

N

I = 47/63
|IMC |

MC error
|IMC − I|
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Importance sampling — better example

Want events:
use hit+mass variant
here:
• Choose new random

number r
• w = f (x) in this case.
• if r< w/wmax then

“hit”.
• MC efficiency =

hit/N.

• Efficiency for MC
events only 3.7%.
• Note the wiggly

histogram.
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Importance sampling — better example
Now importance sampling, i.e. divide out 1/2

√
x.

∫ 1

0

p(x)

2
√

x
dx =

∫ 1

0

(
p(x)

2
√

x

/
1

2
√

x

)
dx

2
√

x

=
∫ 1

0
p(x)d

√
x

=
∫ 1

0
p(x(ρ))dρ

=
∫ 1

0
1−8ρ

2 + 40ρ
4−64ρ

6 + 32ρ
8 dρ

so,

ρ =
√

x, dρ =
dx

2
√

x

x sampled with inverting the integral from flat random numbers
ρ , x = ρ2.
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Importance sampling — better example

∫ 1

0

p(x)

2
√

x
dx =

∫ 1

0
p(x(ρ))dρ

with

ρ =
√

x, dρ =
dx

2
√

x

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

x

f(x)
746k/1M evts

Events generated with wmax = 1, as p(x)≤ 1, no guesswork
needed here! Now, we get 74.6% MC efficiency.

. . . as opposed to 3.7%.
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Importance sampling — better example

Crude MC vs Importance sampling.

10−3

10−2

10−1

100

100 101 102 103 104 105 106

N

I = 47/63
|IMC |

MC error
|IMC − I|

10−3
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100

100 101 102 103 104 105 106

N

I = 47/63
|IMC |

MC error
|IMC − I|

σ/
√
N

100×more events needed to reach same accuracy.
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Importance sampling — another useful example
Breit–Wigner peaks appear in many realistic MEs for cross
sections and decays.

I =
∫ s1

s0

ds
(s−m2)2 + m2Γ2

=
1

mΓ

∫ y1

y0

dy
y2 + 1

(y =
s−m2

mΓ
)

=
1

mΓ
arctan

s−m2

mΓ

∣∣∣∣
s1

s0

Inverting the integral gives (“tan mapping”).

f (s) =
mΓ

(s−m2)2 + m2Γ2 ,

F(s) = arctan
s−m2

mΓ
= ρ ,

F−1(ρ) = m2 + mΓ tanρ .
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Importance sampling — another useful example

0

0.005

0.01

0.015

0 50 100 150 200

s

f(s),m = 10,Γ = 3
10M evts

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 33/141



VEGAS

• Classic algorithm.
• Automatic impotance sampling.
• Adopt grid size.
• Often used for multidimensional integration.
• Very robust.
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VEGAS

• start with equidistant grid x0,x1, . . . ,xN.
• Sample a number of points

(
xs,i, f (xs,i)

)
, compute first

estimate of integral as 〈f 〉.
• Resize grid:

choose x′i such that contribution from partial areas inside
xi < x< xi+1 to integral is 〈f 〉/N.
• Remember, optimal p(x)∼ |f (x)|.
• Sample again with same number of points into every bin

xi < x< xi+1. Results in step weight function with steps

pi =
1

N(xi−xi−1)
, xi < x< xi+1 .

• ⇒ Sample often where density is high.
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VEGAS

Rebinning:

x0 x1 x2 xn−1xn

f̄i ≈
mi

Δxi

Figure 5.4: Typical weights used in the rebinning algorithm.

48a �Declaration of divisions procedures 38a�+≡
private :: rebin

We increment k until another Δ (a. k. a. step) of the integral has been
accumulated (cf. figure 5.4). The mismatch will be corrected below.

48b �Increment k until
�

mk ≥ Δ and keep the surplus in δ 48b�≡
do

if (step <= delta) then

exit

end if

k = k + 1

delta = delta + m(k)

end do

delta = delta - step

48c �Interpolate the new xi from xk and δ 48c�≡
x_new(i) = x(k) - (x(k) - x(k-1)) * delta / m(k)

5.1.3 Probability Density

48d �Declaration of divisions procedures 38a�+≡
public :: probability

ξ =
x− xmin

xmax − xmin

∈ [0, 1] (5.6)

and � xmax

xmin

dx p(x) = 1 (5.7)

48e �Implementation of divisions procedures 38b�+≡
elemental function probability (d, x) result (p)

type(division_t), intent(in) :: d

real(kind=default), intent(in) :: x

48

[from T. Ohl, VAMP]
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VEGAS

Example: cos(πx
2 )

Ngrid = 20,100
Convergence
improved.
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VEGAS

Example: cos(πx
2 )

Ngrid = 20,100
Convergence
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VEGAS

Example: cos(πx
2 )

Ngrid = 20,100
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VEGAS

Example: cos(πx
2 )

Ngrid = 20,100
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VEGAS

Second example:
p(x)/

√
x

(divergence with
wiggles)
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VEGAS

Second example:
p(x)/
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(divergence with
wiggles)

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

x

p(x)/
√
x

sample

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 38/141



VEGAS

Second example:
p(x)/

√
x

(divergence with
wiggles)
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VEGAS

Second example:
p(x)/

√
x

(divergence with
wiggles)
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vegas i = 1, N = 100

Acc 10−4 after N = 106 comparable with ’inverting the integral’.
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VEGAS

Second example:
p(x)/
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x
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VEGAS
Problem to adapt in multiple dimensions:

p1(x1)

p2(x2)

domain(1,1) x1 domain(2,1)

domain(1,2)

x2

domain(2,2)

Figure 5.1: vegas grid structure for non-stratified sampling. N.B.: the grid
and the weight functions p1,2 are only in qualitative agreement.

p1(x1)

p2(x2)

domain(1,1) x1 domain(2,1)

domain(1,2)

x2

domain(2,2)

Figure 5.2: vegas grid structure for genuinely stratified sampling, which is
used in low dimensions. N.B.: the grid and the weight functions p1,2 are only
in qualitative agreement.

41

[from T. Ohl, VAMP]
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Multichannel MC

Typical problem:
• f (s) has multiple

peaks (×wiggles
from ME).

• Usually have some
idea of the peak
structure.
• Encode this in sum

of sample functions
gi(s) with weights
αi,∑i αi = 1.

g(s) = ∑
i

αigi(s) .
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Multichannel MC

Now rewrite
∫ s1

s0

f (s)ds =
∫ s1

s0

f (s)
g(s)

g(s)ds

=
∫ s1

s0

f (s)
g(s) ∑

i
αigi(s)ds

= ∑
i

αi

∫ s1

s0

f (s)
g(s)

gi(s)ds

Now gi(s)ds = dρi (inverting the integral).

Select the distribution gi(s) you’d like to sample next event
from acc to weights αi.

αi can be optimized after a number of trials.
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Multichannel MC
Works quite well:
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Multichannel error
Crude MC error
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Hard Scattering
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Hard scattering
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Hard scattering
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Matrix elements

• Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

• OK for very inclusive observables.

• Starting point for further simulation.
• Want exclusive final state at the LHC (O(100)).
• Want arbitrary cuts.
• → use Monte Carlo methods.
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Matrix elements

Where do we get (LO) |M|2 from?
• Most/important simple processes (SM and BSM) are ‘built

in’.
• Calculate yourself (≤ 3 particles in final state).
• Matrix element generators:

• MadGraph/MadEvent.
• Comix/AMEGIC (part of Sherpa).
• HELAC/PHEGAS.
• Whizard.
• CalcHEP/CompHEP.

generate code or event files that can be further processed.
• → FeynRules interface to ME generators.

Also NLO mostly automatically available.
See “Matching and Merging”.
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Cross section formula
From Matrix element, we calculate

σ =
∫

fi(x1,µ
2)fj(x2,µ

2)
1
F∑|M|2

Θ(cuts)

dx1dx2dΦn ,

now,

1
F

dx1dx2dΦn = J(~x)
3n−2

∏
i=1

dxi

(
dΦn = (2π)4

δ
(4)(. . .)

n

∏
i=1

d3~p
(2π)32Ei

)

such that

σ =
∫

g(~x)d3n−2~x ,
(

g(~x) = J(~x)fi fj ∑|M|2Θ(cuts)
)

=
1
N

N

∑
i=1

g(~xi)

p(~xi)
=

1
N

N

∑
i=1

wi .

We generate events~xi with weights wi.
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F

dx1dx2dΦn = J(~x)
3n−2

∏
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(4)(. . .)

n

∏
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Mini event generator

• We generate pairs (~xi,wi).

• Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)
• Keep event~xi with probability

Pi =
wi

wmax
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Mini event generator

• We generate pairs (~xi,wi).
• Use immediately to book weighted histogram of arbitrary

observable (possibly with additional cuts!)
• Keep event~xi with probability

Pi =
wi

wmax
,

where wmax has to be chosen sensibly.
→ reweighting, when max(wi) = w̄max > wmax, as

Pi =
wi

w̄max
=

wi

wmax
· wmax

w̄max
,

i.e. reject events with probability (wmax/w̄max) afterwards.
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Matrix elements

Some comments:
• Use common Monte Carlo techniques to generate events

efficiently. Goal: small variance in wi distribution!

• Efficient generation closely tied to knowledge of f (~xi), i.e.
the matrix element’s propagator structure.
→ build phase space generator already while generating
ME’s automatically.
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Parton Showers
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Hard matrix element
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Hard matrix element→ parton showers
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Parton showers

Quarks and gluons in final state, pointlike.

• Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: Q∼ few GeV to O(TeV).
• Parton shower evolution, multiple gluon emissions

become resolvable at smaller scales. TeV→ 1 GeV.
• Measure hadronic final states, long distance effects,

Q0 ∼ 1GeV.
Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.
Soft and/or collinear emissions.
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ME approximated by parton cascade

Evolution in scale, typically Q∼ 1TeV down to Q∼ 1GeV.
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e+e− annihilation

Good starting point: e+e−→ qq̄g:

Final state momenta in one
plane (orientation usually
averaged).
Write momenta in terms of

xi =
2pi ·q

Q2 (i = 1,2,3) ,

0≤ xi ≤ 1 ,x1 + x2 + x3 = 2 ,
q = (Q,0,0,0) ,

Q≡ Ecm .

(x1,x2) = (xq,xq̄) –plane:

Fig: momentum configuration of q, q̄ and g for
given point (x1,x2), q̄ direction fixed.
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e+e− annihilation

Differential cross section:

dσ

dx1dx2
= σ0

CFαS

2π

x2
1 + x2

2
(1−x1)(1−x2)

Collinear singularities: x1→ 1 or x2→ 1. Soft
singularity: x1,x2→ 1.

Rewrite in terms of x3 and θ = ∠(q,g):

dσ

dcosθdx3
= σ0

CFαS

2π

[
2

sin2
θ

1 +(1−x3)2

x3
−x3

]

Singular as θ → 0 and x3→ 0.
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e+e− annihilation
Can separate into two jets as

2dcosθ

sin2
θ

=
dcosθ

1− cosθ
+

dcosθ

1 + cosθ

=
dcosθ

1− cosθ
+

dcos θ̄

1− cos θ̄

≈ dθ 2

θ 2 +
dθ̄ 2

θ̄ 2

So, we rewrite dσ in collinear limit as

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
CF

1 +(1− z)2

z
dz

= σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

with DGLAP splitting function P(z).
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Collinear limit

Universal DGLAP splitting kernels for collinear limit:

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

Pq→qg(z) = CF
1 + z2

1− z

Pq→gq(z) = CF
1 +(1− z)2

z

Pg→gg(z) = CA
(1− z(1− z))2

z(1− z)

Pg→qq(z) = TR(1−2z(1− z))
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Collinear limit

Universal DGLAP splitting kernels for collinear limit:

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

Note: Other variables may equally well characterize the colline-
ar limit:

dθ 2

θ 2 ∼
dQ2

Q2 ∼
dp2
⊥

p2
⊥
∼ dq̃2

q̃2 ∼
dt
t

whenever Q2,p2
⊥, t→ 0 means “collinear”.

• θ : HERWIG

• Q2: PYTHIA ≤ 6.3, SHERPA.
• p⊥: PYTHIA ≥ 6.4, ARIADNE, Catani–Seymour showers.
• q̃: Herwig++.
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Resolution

Need to introduce resolution t0, e.g. a cutoff in p⊥. Prevent us
from the singularity at θ → 0.

Emissions below t0 are unresolvable.

Finite result due to virtual corrections:

+ = finite.

unresolvable + virtual emissions are included in Sudakov form
factor via unitarity (see below!).
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Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

σ2+1(t0) = σ2(t0)
∫ t

t0

dt′

t′

∫ z+

z−
dz

αS

2π
P̂(z) = σ2(t0)

∫ t

t0

dtW(t) .

Simple example:
Multiple photon emissions, strongly ordered in t.
We want

Wsum = ∑
n=1

W2+n =

∫ ∣∣∣∣
∣∣∣∣
2

dΦ1 +
∫ ∣∣∣∣

∣∣∣∣
2

dΦ2 +
∫ ∣∣∣∣

∣∣∣∣
2

dΦ3 + · · ·
∣∣∣∣∣

∣∣∣∣∣

2

for any number of emissions.
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Towards multiple emissions
(n = 1)

W2+1 =



∫ ∣∣∣∣∣

∣∣∣∣∣

2

+

∣∣∣∣∣

∣∣∣∣∣

2

dΦ1



/∣∣∣∣∣

∣∣∣∣∣

2

=
2
1!

∫ t

t0

dtW(t) .

(n = 2)

W2+2 =

(∫ ∣∣∣∣
∣∣∣∣
2

+

∣∣∣∣
∣∣∣∣
2

+

∣∣∣∣
∣∣∣∣
2

+

∣∣∣∣
∣∣∣∣
2

dΦ2

)/∣∣∣∣∣

∣∣∣∣∣

2

= 22
∫ t

t0

dt′
∫ t′

t0

dt′′W(t′)W(t′′) =
22

2!

(∫ t

t0

dtW(t)
)2

.

We used
∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn W(t1) . . .W(tn) =
1
n!

(∫ t

t0

dtW(t)
)n

.
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Towards multiple emissions
Easily generalized to n emissions by induction. i.e.

W2+n =
2n

n!

(∫ t

t0

dtW(t)
)n

So, in total we get

σ>2(t0) = σ2(t0)
∞

∑
k=1

2k

k!

(∫ t

t0

dtW(t)
)k

= σ2(t0)
(

e2
∫ t

t0
dtW(t)−1

)

= σ2(t0)

(
1

∆2(t0, t)
−1
)

Sudakov Form Factor

in QCD

∆(t0, t) = exp
[
−
∫ t

t0

dtW(t)
]

= exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]
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Sudakov form factor
Note that

σall = σ2 + σ>2 = σ2 + σ2

(
1

∆2(t0, t)
−1
)
,

⇒ ∆
2(t0, t) =

σ2

σall
.

Two jet rate = ∆
2 = P2(No emission in the range t→ t0) .

Sudakov form factor = No emission probability .

Often ∆(t0, t)≡ ∆(t).
• Hard scale t, typically CM energy or p⊥ of hard process.
• Resolution t0, two partons are resolved as two entities if

inv mass or relative p⊥ above t0.
• P2 (not P), as we have two legs that evolve independently.
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Sudakov form factor from Markov property

Unitarity

P(“some emission”)+ P(“no emission”)

= P(0< t≤ T)+ P̄(0< t≤ T) = 1 .

Multiplication law (no memory)

P̄(0< t≤ T) = P̄(0< t≤ t1)P̄(t1 < t≤ T)

Then subdivide into n pieces: ti = i
n T,0≤ i≤ n.

P̄(0< t≤ T) = lim
n→∞

n−1

∏
i=0

P̄(ti < t≤ ti+1) = lim
n→∞

n−1

∏
i=0

(
1−P(ti < t≤ ti+1)

)

= exp

(
− lim

n→∞

n−1

∑
i=0

P(ti < t≤ ti+1)

)
= exp

(
−
∫ T

0

dP(t)
dt

dt
)
.
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Sudakov form factor
Again, no–emission probability!

P̄(0< t≤ T) = exp
(
−
∫ T

0

dP(t)
dt

dt
)

So,

dP(first emission at T) = dP(T)P̄(0< t≤ T)

= dP(T)exp
(
−
∫ T

0

dP(t)
dt

dt
)

That’s what we need for our parton shower! Probability density
for next emission at t:

dP(next emission at t) =

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]
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Parton shower Monte Carlo
Probability density:

dP(next emission at t) =

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]

Conveniently, the probability distribution is ∆(t) itself.
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Parton shower Monte Carlo
Probability density:

dP(next emission at t) =

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]

Conveniently, the probability distribution is ∆(t) itself.
Hence, parton shower very roughly from (HERWIG):

1 Choose flat random number 0≤ ρ ≤ 1.
2 If ρ < ∆(tmax): no resolbable emission, stop this branch.
3 Else solve ρ = ∆(tmax)/∆(t)

(= no emission between tmax and t) for t.
Reset tmax = t and goto 1.

Determine z essentially according to integrand in front of exp.
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Parton shower Monte Carlo
Probability density:

dP(next emission at t) =

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]

Conveniently, the probability distribution is ∆(t) itself.
• That was old HERWIG variant. Relies on (numerical)

integration/tabulation for ∆(t).
• Pythia, now also Herwig++, use the Veto Algorithm.
• Method to sample x from distribution of the type

dP = F(x)exp
[
−
∫ x

dx′F(x′)
]

dx .

Simpler, more flexible, but slightly slower.
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Parton cascade
Get tree structure, ordered in evolution variable t:

Here: t1 > t2 > t3; t2 > t3′ etc.
Construct four momenta from (ti,zi) and (random) azimuth φ .

Not at all unique!
Many (more or less clever) choices still to be made.
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Parton cascade
Get tree structure, ordered in evolution variable t:

• t can be θ , Q2, p⊥, . . .
• Choice of hard scale tmax not fixed. “Some hard scale”.
• z can be light cone momentum fraction, energy fraction, . . .
• Available parton shower phase space.
• Integration limits.
• Regularisation of soft singularities.
• . . .

Good choices needed here to describe wealth of data!
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Soft emissions
• Only collinear emissions so far.
• Including collinear+soft.
• Large angle+soft also important.

Soft emission: consider eikonal factors,
here for q(p + q)→ q(p)g(q), soft g:

u(p) 6 ε 6 p+ 6 q + m
(p + q)2−m2 −→ u(p)

p · ε
p ·q

soft factorisation. Universal, i.e. independent of emitter.
In general:

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π
∑
ij

CijWij (“QCD–Antenna”)

with

Wij =
1− cosθij

(1− cosθiq)(1− cosθqj)
.
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Soft emissions

We define

Wij =
1− cosθij

(1− cosθiq)(1− cosθqj)
≡W(i)

ij + W(j)
ij

with

W(i)
ij =

1
2

(
Wij +

1
1− cosθiq

− 1
1− cosθqj

)
.

W(i)
ij is only collinear divergent if q‖i etc .

After integrating out the azimuthal angles, we find

∫ dφiq

2π
W(i)

ij =





1
1− cosθiq

(θiq < θij)

0 otherwise

That’s angular ordering.
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Angular ordering

Radiation from parton i is
bound to a cone, given by the
colour partner parton j.

i

j

Results in angular ordered
parton shower and suppresses
soft gluons viz. hadrons in a jet.
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Colour coherence from CDF

Events with 2 hard (> 100 GeV) jets and a soft 3rd jet (∼ 10 GeV)

F. Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562.

Best description with angular ordering.
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F. Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562.

Best description with angular ordering.
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Initial state radiation

Similar to final state radiation. Sudakov form factor (x′ = x/z)

∆(t, tmax) = exp

[
−∑

b

∫ tmax

t

dt
t

∫ z+

z−
dz

αS(z, t)
2π

x′fb(x′, t)
xfa(x, t)

P̂ba(z, t)

]

Have to divide out the pdfs.
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Initial state radiation

Evolve backwards from hard scale Q2 down towards cutoff
scale Q2

0. Thereby increase x.

With parton shower we undo the DGLAP evolution of the pdfs.
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Dipoles

Exact kinematics when recoil is taken
by spectator(s).
• Dipole showers.
• Ariadne.
• Recoils in Pythia.
• New dipole showers, based on

• Catani Seymour dipoles.
• QCD Antennae.
• Herwig, Sherpa, Vincia,

Dire, . . .
• Goal: matching with NLO.

• Generalized to IS–IS, IS–FS.
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Hadronization
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Parton shower
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Parton shower −→ hadrons
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Parton shower −→ hadrons

• Parton shower terminated at t0 = lower end of PT.
• Can’t measure quarks and gluons.
• Degrees of freedom in the detector are hadrons.
• Need a description of confinement.
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Physical input

Self coupling of gluons
↔ “attractive field lines”

Linear static potential V(r)≈ κr.

Supported by lattice QCD,
hadron spectroscopy.
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Hadronization models

Older models:
• Flux tube model.
• Independent fragmentation.

Today’s models.
• Lund string model (Pythia).
• Cluster model (Herwig).
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Independent fragmentation
Feynman–Field fragmentation (’78).
• qq̄ pairs created from vacuum to

dress bare quarks.
• Fragmentation function fq→h(z) =

density of momentum fraction z
carried away by hadron h from
quark q.
• Gaussian p⊥ distribution.

• Problems:
• “last quark”.
• not Lorentz invariant.
• infrared safety.
• . . .

• Good at that time.
• Still usefull for inclusive

descriptions.

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 80/141



Independent fragmentation
Feynman–Field fragmentation (’78).
• qq̄ pairs created from vacuum to

dress bare quarks.
• Fragmentation function fq→h(z) =

density of momentum fraction z
carried away by hadron h from
quark q.
• Gaussian p⊥ distribution.
• Problems:

• “last quark”.
• not Lorentz invariant.
• infrared safety.
• . . .

• Good at that time.
• Still usefull for inclusive

descriptions.

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 80/141



Lund string model

String energy ∼ intense chromomagnetic field.
−→ Additional qq̄ pairs created by QM tunneling.

dProb
dxdt

∼ exp
(
−πm2

q/κ

)
κ ∼ 1GeV .

String breaking expected long before yoyo point.
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Lund string model

Ajacent breaks form hadrons.

Works in both directions (symmetry).
Lund symmetric fragmentation function

f (z,p⊥)∼ 1
z

(1− z)a exp

(
−b(m2

h + p2
⊥)

z

)

a,b,m2
h main adjustable parameters.

Note: diquarks→ baryons.
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Lund string model
gluon = kink on string = motion pushed into the qq̄ system.
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Lund string model
gluon = kink on string = motion pushed into the qq̄ system.

2

1

3

“String effect”
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Lund string model

Some remarks:
• Originally invented without parton showers in mind.

• Stong physical motivation.
• Very successful desription of data.
• Universal desription of data

(fit at e+e−, transfer to hadron-hadron).
• Many parameters, ∼ 1 per hadron.
• Too easy to hide errors in perturbative description?

−→ try to use more QCD information/intuition.
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Colour preconfinement

Large NC limit −→ planar graphs dominate.
Gluon = colour — anticolourpair

Parton shower organises partons in colour space. Colour
partners (=colour singlet pairs) end up close in phase space.

−→ Cluster hadronization model
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Cluster hadronization
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Cluster hadronization
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Cluster hadronization
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Cluster Hadronization

After parton shower, partons on constituent mass shell
Find colour singlets as 3-3̄ pairs→ cluster
Colour neighbours ∼ neighbours in momentum space
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Cluster Hadronization

But gluons are not just 3 or 3̄!
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Cluster Hadronization

But gluons are not just 3 or 3̄!
non-perturbative gluon splitting
mg > 2mq
kinematics from masses
quarks and diquarks possible
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Cluster Hadronization

Cluster carries net momentum of its constituents
Spectrum determined by final state of parton shower
Independent of hard scales
Tail of heavy clusters, still large scale available
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Cluster Hadronization

Binary fission along quarks’ direction of motion
Flavour introduced in qq̄ pairs
Mass→multiplicity, momentum
Beam remnant clusters split off as very light clusters
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Cluster Hadronization

End up with fairly light clusters
too light? Decay into single hadron
Exchange momentum with neighbour
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Cluster Hadronization

Decay isotropically into hadron pairs
Individual Hadrons get weight according to flavour multiplet,
CM momentum, spin multiplicity etc.
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Cluster Hadronization

Baryon pairs possible
usually appear from clusters with 1 or 2 diquarks
could also emerge in pairs from mesonic clusters
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Hadronization

• Only string and cluster models used in recent MC
programs.
Independent fragmentation only for inclusive observables.
• Strings started non–perturbatively,

improved by parton shower.
• Cluster model started mostly on perturbative side,

improved by string like cluster fission.
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Hadronic Decays
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Hadronic decays
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Hadronic decays

Many aspects:

B∗0→ γB0

↪→ B̄0

↪→ e−ν̄eD∗+

↪→ π
+D0

↪→ K−ρ
+

↪→ π
+

π
0

↪→ e+e−γ
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Hadronic decays
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↪→ B̄0

↪→ e−ν̄eD∗+

↪→ π
+D0

↪→ K−ρ
+

↪→ π
+

π
0

↪→ e+e−γ

Weak mixing.
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Hadronic decays

Many aspects:

B∗0→ γB0

↪→ B̄0

↪→ e−ν̄eD∗+

↪→ π
+D0

↪→ K−ρ
+

↪→ π
+

π
0

↪→ e+e−γ

Weak decay, ρ+ mass smeared.
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Hadronic decays

Many aspects:

B∗0→ γB0

↪→ B̄0

↪→ e−ν̄eD∗+

↪→ π
+D0

↪→ K−ρ
+

↪→ π
+

π
0

↪→ e+e−γ

ρ+ polarized, angular correlations.

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 91/141



Hadronic decays

Many aspects:

B∗0→ γB0

↪→ B̄0

↪→ e−ν̄eD∗+

↪→ π
+D0

↪→ K−ρ
+

↪→ π
+

π
0

↪→ e+e−γ

Dalitz decay, mee peaked.
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Hadronic decays

Tedious.
100s of different particles, 1000s of decay modes,
phenomenological matrix elements with parametrized form
factors. . .
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Hadronic decays
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A few plots
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How well does it work?

• e+e−→ hadrons, mostly at LEP.
• Jet shapes, jet rates, event shapes, identified particles. . .
• ‘Tuning’ of parameters.
• Use all analyses available in Rivet.
• Want to get everything right with one parameter set.
• Compare to literally ≈ 20000 plots.

• Check out http://herwig.hepforge.org
(→ Plots) for many more and comparisons with the latest
release.
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How well does it work?

Smooth interplay between shower and hadronization.
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How well does it work?

Nch at LEP. Crucial for t0 (Herwig++ 2.5.2)
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How well does it work?

Jet rates at LEP.

Rn = σ(n–jets)/σ(jets)

R6 = σ(> 5–jets)/σ(jets)

(Herwig++ 2.5.2)j
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How well does it work?

Differential Jet Rates at LEP (Herwig++ pre-3.0).
Dipole shower + some merging
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How well does it work?

Event Shapes at LEP (Herwig++ pre-3.0).
Dipole shower + some merging
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Parton showers do very well, today!
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How well does it work?
Hadron Multiplicities at LEP (e.g. π+, Λ0

b).
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How well does it work?
p⊥(Z0)→ intrinsic k⊥ (LHC 7 TeV).
See also in context of matching/marging.
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Transverse thrust
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Integral jet shapes

not too hard, central (30< pT/GeV< 40;0< |y|< 0.3)
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Integral jet shapes

harder, more forward (80< pT/GeV< 110;1.2< |y|< 2.1)
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Limits of parton showers

W + jets, LHC 7 TeV.
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Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 99/141



Unitarized Matching/Merging

Preliminary example: Z production, jet-jet correlation.
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[J. Bellm, KIT]

3LO-2NLO = Z+0, 1, 2 (tree) and Z+0,1 NLO (virtual).
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Min Bias/Underlying
event in data
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pp Event Generator
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pp Event Generator
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pp Event Generator
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pp Event Generator
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pp Event Generator
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pp Event Generator
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pp Event Generator
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Collider cross sections

σtot = σel + ︸ ︷︷ ︸
σDiff

σSD +

σNSD︷ ︸︸ ︷
σDD + σsoft + σhard︸ ︷︷ ︸

σND

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 104/141



Collider cross sections
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What is the Underlying event?

σtot = σel + σSD +

σNSD︷ ︸︸ ︷
σDD +(σsoft + σhard)︸ ︷︷ ︸

σND

elastic
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What is the Underlying event?

σtot = σel + σSD +

σNSD︷ ︸︸ ︷
σDD +(σsoft + σhard)︸ ︷︷ ︸

σND

single diffractive
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What is the Underlying event?

σtot = σel + σSD +

σNSD︷ ︸︸ ︷
σDD +(σsoft + σhard)︸ ︷︷ ︸

σND

double diffractive
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What is the Underlying event?

σtot = σel + σSD +

σNSD︷ ︸︸ ︷
σDD +(σsoft + σhard)︸ ︷︷ ︸

σND

(multiple/soft) interactions
Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 106/141



What is the Underlying event?

σtot = σel + σSD +

σNSD︷ ︸︸ ︷
σDD +(σsoft + σhard)︸ ︷︷ ︸

σND

hard scattering
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What is the Underlying event?

σtot = σel + σSD +

σNSD︷ ︸︸ ︷
σDD +(σsoft + σhard)︸ ︷︷ ︸

σND

hard scattering + underlying event
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What is the Underlying event?

“Everything except the process of interest.”
• Experimentalist: “includes parton showers etc.”
• MC author: “everything on top of primary hard process.”

The Underlying event (UE) is everywhere in the detector.

• Cannot select UE
• May spoil measurements.
• What characteristics?
• Hard?
• Soft?
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Why should I learn about it?

• UE comes with every event.
• Can’t trigger/select it away.
• Gives additional tracks and calorimeter hits, in the same

cells as your signal.
• Jet energy scale determination.
• Important systematic error.
• Jets where your signal shouldn’t give any (VBF).
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Triggers

• Zero bias
• Every event in a perfect 4π detector.

• Minimum bias (MB)
• Require “some activity”
• At least have to distinguish from noise/cosmics.
• small number of tracks of charged tracks (e.g. 1, 2, 6),
• forward calorimeter hits,
• →with some minimum p⊥.
• Often want non–single–diffractive

• Hard scattering
• Very selective trigger
• BUT accompanied by soft stuff→ underlying event.

Physics in MB and UE very similar.
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• Require “some activity”
• At least have to distinguish from noise/cosmics.
• small number of tracks of charged tracks (e.g. 1, 2, 6),
• forward calorimeter hits,
• →with some minimum p⊥.
• Often want non–single–diffractive

• Hard scattering
• Very selective trigger
• BUT accompanied by soft stuff→ underlying event.

Physics in MB and UE very similar.
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Charakteristics of MB events
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Charakteristics of MB events

dN/dη Zero bias vs min bias (Tevatron)
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Charakteristics of MB events
dN/dη ATLAS
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Charakteristics of MB events
p⊥ spectra of all particles
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Charakteristics of MB events

• Inclusive quantities have to be correct, of course.
• Already show, that soft component is important in

modelling.

• Don’t tell much about morphology of event.
• → look at distributions inside detector.
• → leading particles.
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Azimuthal distributions

Measure ∆φ relative to leading particle/jet/track.
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Azimuthal distributions

Observation:
• Events not flat. Have ‘leading object’.
• Harder leading object:
→ harder recoil.
→ more activity everywhere, also transverse.

Trigger: The harder leading object, the more jets are inclusively
just below this threshold (pedestal effect).
Closer look at transverse region!
“Rick Field analysis”.
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Measurements of the UE: separate from hard bit of event.
• How big is the ‘activity’ in the different regions?
• How does it depend on the leading object?
• If UE is really underlying,

should decouple from leading event.
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Spectrum in transverse region

Not only average important. The UE has a jetty substructure!
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Underlying Event (ATLAS 900 GeV)

〈“activity”〉 and 1σ deviation
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Underlying Event (ATLAS 7 TeV)

Nch/StdDev transverse vs plead
t /GeV.
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So far

• Idea of decoupling UE from hard event seems to hold.
• UE has jetty structure.
• Must contain hard physics as well.
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More azimuthal distributions

Require at least two nearly b2b jets.
Dominated by hard physics.

Old Herwig soft model not sufficient.
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More azimuthal distributions

Require at least two nearly b2b jets.
Dominated by hard physics.

Better with harder jets.
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More azimuthal distributions
Now select the hardest of the two transverse regions only
(TransMAX): associated distribution:
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More azimuthal distributions
Now select the hardest of the two transverse regions only
(TransMAX): associated distribution:

Birth of 3rd jet ∼ leading jet in MinBias
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Towards modelling

• Leading jet in Minimum bias ∼ 3rd jet in back–to–back
sample.
• UE and MB really seem to reflect the same physics.
• Hard component important.
• Hard jets not sufficient

(but well described→ D0 dijet angular decorrelation).

Hard jets in the UE via multiple interactions?

• Additional Partonic 2→ 2 interactions (MPI).
• No correlation with hard event.
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Indirect evidence for MPI
Nch distribution (vs UA5; Sjöstrand, van Zijl (1987))

no MPI (left)/MPI (right).
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Indirect evidence for MPI

FB correlation in η bins (vs UA5; Sjöstrand, van Zijl (1987))

no MPI (left)/MPI (right).
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Evidence for MPI

Angle φ from 4 final state objects (jets, γ).
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Evidence for MPI
Angle φ from 4 final state objects (jets, γ). Latest: CDF (’97).

φ = ∠(~p1±~p2,~p3±p4)

53% double parton scattering needed!
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Modelling MPI
(in Herwig)
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Eikonal model basics

Mulitple hard interactions

h1

h2
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Eikonal model basics

Starting point: hard inclusive jet cross section.

σ
inc(s;pmin

t ) = ∑
i,j

∫

pmin
t

2
dp2

t fi/h1(x1,µ
2)⊗ dσ̂i,j

dp2
t
⊗ fj/h2(x2,µ

2) ,

σ inc > σtot eventually (for moderately small pmin
t ).
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Eikonal model basics
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Eikonal model basics

Starting point: hard inclusive jet cross section.

σ
inc(s;pmin

t ) = ∑
i,j

∫

pmin
t

2
dp2

t fi/h1(x1,µ
2)⊗ dσ̂i,j

dp2
t
⊗ fj/h2(x2,µ

2) ,

σ inc > σtot eventually (for moderately small pmin
t ).

Interpretation: σ inc counts all partonic scatters that happen
during a single pp collision⇒more than a single interaction.

σ
inc = n̄σinel.
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Eikonal model basics
Use eikonal approximation (= independent scatters). Leads to
Poisson distribution of number m of additional scatters,

Pm(~b,s) =
n̄(~b,s)m

m!
e−n̄(~b,s) .

Then we get σinel:

σinel =
∫

d2~b
∞

∑
m=1

Pm(~b,s) =
∫

d2~b
(

1−e−n̄(~b,s)
)
.

Cf. σinel from scattering theory in eikonal approx. with
scattering amplitude a(~b,s) = 1

2i(e−χ(~b,s)−1)

σinel =
∫

d2~b
(

1−e−2χ(~b,s)
)

⇒ χ(~b,s) = 1
2 n̄(~b,s) .

χ(~b,s) is called eikonal function.
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Eikonal model basics
Calculation of n̄(~b,s) from parton model assumptions:

n̄(~b,s) = Lpartons(x1,x2,~b)⊗∑
ij

∫
dp2

t
dσ̂ij

dp2
t

= ∑
ij

1
1 + δij

∫
dx1dx2

∫
d2~b′

∫
dp2

t
dσ̂ij

dp2
t

×Di/A(x1,p2
t , |~b′|)Dj/B(x2,p2

t , |~b−~b′|)

= ∑
ij

1
1 + δij

∫
dx1dx2

∫
d2~b′

∫
dp2

t
dσ̂ij

dp2
t

× fi/A(x1,p2
t )GA(|~b′|)fj/B(x2,p2

t )GB(|~b−~b′|)
= A(~b)σ

inc(s;pmin
t ) .

⇒ χ(~b,s) = 1
2 n̄(~b,s) = 1

2 A(~b)σ
inc(s;pmin

t ) .
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Overlap function

A(b) =
∫

d2~b′GA(|~b′|)GB(|~b−~b′|)

G(~b) from electromagnetic FF:

Gp(~b) = Gp̄(~b) =
∫ d2~k

(2π)2
ei~k·~b

(1 +~k2/µ2)2

But µ2 not fixed to the
electromagnetic 0.71 GeV2.
Free for colour charges. ]mbimpact parameter b [

0 2 4

A
(b

) 
[1

/m
b]

0.05

0.1

2 = 1.80 GeV2µ

2 = 0.71 GeV2µ

⇒ Two main parameters: µ2,pmin
t .
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Unitarized cross sections

CM energy [GeV]
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Extending into the soft region
Continuation of the differential cross section into the soft
region pt < pmin

t (here: pt integral kept fixed)

0 2 4 6 8 10

pt(GeV)

0
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1
/

�(5GeV
)
d

�/dp t(1/
G
eV

)

d�soft
dpt
�pt e��(p 2

t�pmin,2
t )

pmin
t =3 GeV,�=�0.5 GeV�2

pmin
t =5 GeV,�=0.06 GeV�2
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Hot Spot model

Fix the two parameters µsoft and σ inc
soft in

χtot(~b,s) =
1
2

(
A(~b; µ)σ

inchard(s;pmin
t )+ A(~b; µsoft)σ

inc
soft

)

from two constraints. Require simultaneous description of σtot
and bel (measured/well predicted),

σtot(s) !
= 2

∫
d2~b

(
1−e−χtot(~b,s)

)
,

bel(s) !
=
∫

d2~b
b2

σtot

(
1−e−χtot(~b,s)

)
.
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Diffractive final states

Strictly low mass diffraction only. Allow M2 large nonetheless.

M2 power-like, t exponential (Regge).

pp→ (baryonic cluster)+ p .

Hadronic content from cluster fission/decay C→ hh . . .
Cluster may be quite light. If very light, use directly

pp→ ∆ + p .

Also double diffraction implemented.

pp→ (cluster)+(cluster) pp→ ∆ + ∆ .

Technically: new MEs for diffractive processes set up.
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Soft particle production model in Herwig

• #ladders = Nsoft (MPI).
• N particles from Poissonian, width 〈N〉.

Model parameter 1/ lnC≡ nladder→ tuned.
• xi smeared around 〈x〉 (calculated).
• p⊥ from Gaussian acc to soft MPI model.
• particles are q,g, see figure.

Symmetrically produced from both remnants.
• Colour connections between neighboured particles.
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Soft particle production model in Herwig

Single soft ladder with MinBias initiating process.

P

q

q̄

g

g

g

g

Remnant1

Remnant2

PBeam, 1

PBeam, 2

Cluster

Further hard/soft MPI scatters possible.
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Colour correlations in hadronic collisions
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Colour correlations in hadronic collisions
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Colour correlations in hadronic collisions

Stefan Gieseke · Introduction to Event Generators ·MCnet summer school 2023 · Durham, 10–13 July 2023 137/141



Colour reconnection (CR) in Herwig
i

j

k

l

Extend cluster hadronization:
• QCD parton showers provide

pre-confinement⇒
colour-anticolour pairs

• → clusters
• CR in the cluster hadronization

model: allow reformation of
clusters, e.g. (il)+(jk)

Plain CR, iterate cluster pairs in “random order”:

• Allow CR if the cluster mass decreases,

Mil + Mkj <Mij + Mkl,

• Accept alternative clustering with probability preco (model
parameter)⇒ this allows to switch on CR smoothly
• Alternative Statistical CR (Metropolis)

[SG, C. Röhr, A. Siodmok, EPJ C72 (2012) 2225]
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[SG, C. Röhr, A. Siodmok, EPJ C72 (2012) 2225]
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Colour reconnections

• Sensitivity to CR
already known
since UA1.
• (From Sjöstrand/

van Zijl)
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MPI Summary

• MPI (with colour reconnections) currently model of choice.
• Describes averages and fluctuations.
• Not always universal, but all models tunable.
• soft component needed for MB modelling.
• Constraints from inclusive cross sections.
• Different emphasis on hard/soft modelling between

generators.
• Many details still only models.
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Brief graphical summary
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