Matching, Merging \& Higher-Order Corrections

Leif Gellersen
Lund University
leif.gellersen@hep.lu.se

MCnet Summer School 2023

Durham, July 9th - 13th, 2023

OHard Interaction

- Resonance Decays
- MECs, Matching \& Merging
- FSR
- ISR*
- QED
- Weak Showers
- Hard Onium

OMultiparton Interactions
ㅁ Beam Remnants*
© Strings
© Ministrings / Clusters
Colour Reconnections

- String Interactions
- Bose-Einstein \& Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
(*: incoming lines are crossed)

Suggested reading

- R. K. Ellis, W. J. Stirling, B. R. Webber

QCD and Collider Physics

Cambridge University Press, 2003

- M. E. Peskin, D. V. Schroeder

An Introduction to Quantum Field Theory

 Westview Press, 1995- L. Dixon, F. Petriello (Editors)

Journeys Through the Precision Frontier
Proceedings of TASI 2014, World Scientific, 2015

- Pythia collaboration

A comprehensive guide to the physics and usage of PYTHIA 8.3
SciPost Phys. Codebases 8 (2022)
Additional references provided on the slides.

Matrix Elements vs. Parton Showers

Matrix Elements

Fixed order good for hard jets

- + Contains all terms in given order of α_{s}
- + Valid also for high relative p_{\perp}^{2}
- - Only feasible for a few emissions

Parton Showers

Approx. excl. multi-parton cross section

- + Always finite
- + Can produce any number of emissions
- - Is only valid in soft/collinear regions

Combine strengths of Matrix Elements and Parton Showers

Experiments measure both high and low p_{\perp}^{2} phenomena

- Describe hard emissions by fixed order predictions
- Add further emissions and include no-emission probabilities from PS

Matching \& Merging Overview

Combine Matrix Element calculations and Parton Showers. Improve in different ways:
Matrix Element Corrections Oldest scheme, correct first emission of parton shower according
to full process-dependent real emission calculation
Multi-jet Merging Improve radiation pattern of parton shower by adding higher-multiplicity
matrix elements
NLO Matching Improve the perturbative precision by one higher order (NLO in α_{s}) cross
section matched to parton showers
NLO Multi-jet Matching/Merging Combine multiple higher-multiplicity and higher-order cross sections in parton shower
Also: NLO splittings in parton showers and comments on shower accuracy

Recap:

Parton Showers

Recap: Parton Showers

Start from hard $2 \rightarrow 2$ scattering, dress with extra partons to get exclusive $2 \rightarrow n$ cross section

$$
\mathrm{d} \sigma_{n}^{\mathrm{ex}}=F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \mathrm{~d} \phi_{0} \times\left[\prod_{i=1}^{n} \frac{\alpha_{\mathrm{s}}\left(\rho_{i}\right)}{2 \pi} \frac{F_{i}}{F_{i-1}} P_{i} \frac{\mathrm{~d} \rho_{i}}{\rho_{i}} \mathrm{~d} z \Pi_{i-1}\left(\rho_{i-1}, \rho_{i}\right)\right] \Pi_{n}\left(\rho_{n}, \rho_{\min }\right)
$$

- $\left|M_{0}\right|^{2} \mathrm{~d} \phi_{0}$: Born-level ME and phase space
- $F_{i}=x_{i} f_{i}\left(x_{i}, \rho_{i}\right)$: PDF's from both sides of i-parton state, \pm for $\pm p_{z}$ beams
- $P_{i} \mathrm{~d} z \mathrm{~d} \rho_{i} / \rho_{i}$: Differential emission rate, correct for soft/collinear splittings
- ρ, z : Splitting variables, ρ jet resolution scale, z energy/momentum fraction
- $\Pi\left(\rho_{i-1}, \rho_{i}\right)$: No-emission probabilities
- $\rho_{\text {min }}$: Minimal resolution scale / shower cut-off scale

Recap: No-emission Probabilities

$$
\Pi_{i}\left(\rho_{i}, \rho_{i+1}\right)=\exp \left(-\int_{\rho_{i+1}}^{\rho_{i}} \frac{\mathrm{~d} \rho}{\rho} \frac{\alpha_{\mathrm{s}}(\rho)}{2 \pi} \int_{z_{\min }}^{z_{\max }} \mathrm{d} z \frac{F_{i+1}}{F_{i}} P_{i}(z)\right)
$$

- Probability of not having any emissions harder than ρ_{i+1} when starting shower from ρ_{i}
- Introduces all order corrections in α_{s}
- F_{i+1} / F_{i} only included for ISR
- Exclusive description of final state needs no-emission probabilities

Unitarity of Parton Shower: Fixed Order Expansion

Expand to $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$
Use $\frac{1}{2 \pi \rho} \frac{F_{i+1}}{F_{i}} P_{i}(z)=\bar{P}_{i}$ for ISR, $\frac{1}{2 \pi \rho} P_{i}(z)=\bar{P}_{i}$ for FSR to simplify notation

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{0}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2}\left[1-\alpha_{\mathrm{s}} \int_{\rho_{\min }}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}+\frac{\alpha_{s}^{2}}{2}\left(\int_{\rho_{\min }}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}\right)^{2}\right] \\
\frac{\mathrm{d} \sigma_{1}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \alpha_{\mathrm{s}} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \bar{P}_{1}\left[1-\alpha_{\mathrm{s}} \int_{\rho_{1}}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}-\alpha_{\mathrm{s}} \int_{\rho_{\min }}^{\rho_{1}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{2}\right] \\
\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \alpha_{\mathrm{s}}^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \bar{P}_{1} \mathrm{~d} \rho_{2} \mathrm{~d} z_{2} \bar{P}_{2} \Theta\left(\rho_{1}-\rho_{2}\right)
\end{aligned}
$$

\Rightarrow Unitarity in every order of α_{s}, total cross-section

$$
\frac{\mathrm{d} \sigma_{0}^{\text {inc }}}{\mathrm{d} \phi_{0}}=\frac{\mathrm{d} \sigma_{0}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}}+\int \frac{\mathrm{d} \sigma_{1}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}}+\iint \frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \phi_{0}}=F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2}
$$

But 1-jet cross section not correct for hard/wide-angle emissions

Matrix Element Corrections

Matrix Element Corrections / Tree-level Matching

Want improved parton shower with full matrix elements for hard emissions \Rightarrow First step: Use full real-emission matrix element for hardest emission, process-dependent!

$$
\alpha_{\mathrm{s}} \bar{P}_{i} \rightarrow \alpha_{s} \bar{P}_{i}^{\mathrm{ME}} \equiv \frac{\left|M_{i}\right|^{2} \mathrm{~d} \phi_{i}}{\left|M_{i-1}\right|^{2} \mathrm{~d} \phi_{i-1} \mathrm{~d} \rho \mathrm{~d} z}
$$

- Old, but very good! [Bengtsson, Sjöstrand (1987)]
- + Natural and efficient within PS: Use modified acceptance probability
- - Difficult to generalize beyond one emission
- Vincia \& Dire parton showers exponentiate n-parton matrix elements
[Giele, Kosower, Skands (2008)] [Fischer, Prestel (2017)]

Matrix Element Corrections Preserve PS Unitarity

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{0}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2}\left[1-\alpha_{s} \int_{\rho_{\min }}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}^{\mathrm{ME}}+\frac{\alpha_{s}^{2}}{2}\left(\int_{\rho_{\min }}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}^{\mathrm{ME}}\right)^{2}\right] \\
\frac{\mathrm{d} \sigma_{1}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \alpha_{\mathrm{s}} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \bar{P}_{1}^{\mathrm{ME}}\left[1-\alpha_{\mathrm{s}} \int_{\rho_{1}}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}^{\mathrm{ME}}-\alpha_{\mathrm{s}} \int_{\rho_{\min }}^{\rho_{1}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{2}\right] \\
\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \alpha_{\mathrm{s}}^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \bar{P}_{1}^{\mathrm{ME}} \mathrm{~d} \rho_{2} \mathrm{~d} z_{2} \bar{P}_{2} \Theta\left(\rho_{1}-\rho_{2}\right)
\end{aligned}
$$

- Still unitary to all orders in α_{s}
- Valid in whole shower emission phase space, down to scale $\rho_{\text {min }}$

borrwed from Keith Hamilton

borrwed from Keith Hamilton

- Consider matrix element state $\left|\mathcal{M}\left(\Phi_{0}\right)\right|^{2}$
- Parton-shower produces branching according to $P\left(\Phi_{1} / \Phi_{0}\right)\left|\mathcal{M}\left(\Phi_{0}\right)\right|^{2} \mathrm{~d} \Phi_{1}$
- Apply MEC factor to correct weight of Φ_{1} to full fixed-order matrix element

$$
\mathcal{R}\left(\Phi_{1}\right)=\frac{\left|\mathcal{M}\left(\Phi_{1}\right)\right|^{2}}{\sum_{\Phi_{0}^{\prime}} P\left(\Phi_{1} / \Phi_{0}^{\prime}\right)\left|\mathcal{M}\left(\Phi_{0}^{\prime}\right)\right|^{2}}
$$

- Iterate, taking all possible PS histories into account

$$
\mathcal{R}\left(\Phi_{2}\right)=\frac{\left|\mathcal{M}\left(\Phi_{2}\right)\right|^{2}}{\sum_{\Phi_{1}^{\prime}} P\left(\Phi_{2} / \Phi_{1}^{\prime}\right) \mathcal{R}\left(\Phi_{1}^{\prime}\right) \sum_{\Phi_{0}^{\prime}} P\left(\Phi_{1}^{\prime} / \Phi_{0}^{\prime}\right)\left|\mathcal{M}\left(\Phi_{0}^{\prime}\right)\right|^{2}}
$$

Leading Order Multi-Jet Merging

Multi-jet Merging: The Naive (and Wrong) Way

Want to improve PS emissions for more than hardest emission. Naive approach:

- Generate $[X]_{\mathrm{ME}}+$ parton shower
- Generate $[X+1 \text { jet }]_{\mathrm{ME}}+$ parton shower
- Generate $[X+2 \mathrm{jet}]_{\mathrm{ME}}+$ parton shower
- ...

And combine everything into one sample. Does not work, double counting!

- $[X]_{\mathrm{ME}}+$ parton shower is inclusive
- $[X+1 j e t]_{\mathrm{ME}}+$ parton shower is inclusive

See also Skands: Introduction to QCD

Multi-jet Merging: Exclusive Description without Double-counting

Solve double-counting issue by dividing phase space in "hard and soft region":

- Generating inclusive few jet samples according to exact tree-level $F_{n}^{+} F_{n}^{-}\left|M_{n}\right|^{2} \equiv B_{n}$ in "hard region"
- Using some merging scale ρ_{ms} to cut off divergences
- Making exclusive by reweighting with no-emission probabilities (and α_{s} and PDF ratios), i.e. how would PS have produced this configuration
- Using normal shower in "soft region" below ρ_{ms}

Remaining issues:

- Merging scale dependence
- Merging scale might not be defined in terms of shower evolution variable
- Might break unitarity of shower

Multi-jet Merging: $e^{+} e^{-} \rightarrow q \bar{q}+$ jets example

Durham jet resolution $3 \rightarrow 2$

Durham jet resolution $5 \rightarrow 4$

How to Reweight: Parton Shower Histories

Want to apply no-emission probabilities and scale dependent ratios \Rightarrow need ρ_{i}. Two ways:

- Find unique history by applying sequential $2 \rightarrow 1$ jet algorithm
- Find all possible parton shower histories by $3 \rightarrow 2$ clustering, choose one according to product of splitting probabilities
- Choose one history according to product of splitting probabilities
- Combine partons according to parton shower kinematics

Multi-jet Merging: Illustration in FSR

Combine MEs with different multiplicities, avoid overlap by reweighting

$$
\langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal{O}_{0} B_{0} w_{0}+\int d \phi_{1} \mathcal{O}_{1} B_{1} w_{1}+\int d \phi_{1} \int d \phi_{2} \mathcal{O}_{2} B_{2} w_{2}\right\}
$$

with the weights

$$
\begin{aligned}
& w_{0}=\Pi_{0}\left(\rho_{0}, \rho_{\mathrm{ms}}\right), w_{1}=\Pi_{0}\left(\rho_{0}, \rho_{1}\right) \frac{\alpha_{s}\left(\rho_{1}\right)}{\alpha_{s}\left(\mu_{R}\right)} \Pi_{1}\left(\rho_{1}, \rho_{\mathrm{ms}}\right), \\
& w_{2}=\Pi_{0}\left(\rho_{0}, \rho_{1}\right) \frac{\alpha_{s}\left(\rho_{1}\right)}{\alpha_{s}\left(\mu_{R}\right)} \Pi_{1}\left(\rho_{1}, \rho_{2}\right) \frac{\alpha_{s}\left(\rho_{2}\right)}{\alpha_{s}\left(\mu_{R}\right)}
\end{aligned}
$$

Multi-jet Merging: Illustration in ISR

Inclusive Matrix Element:

$$
\frac{\mathrm{d} \sigma_{2}^{\mathrm{in}}}{\mathrm{~d} \phi_{0+2}}=F_{1}\left(x_{1}, \rho_{0}\right) F_{2}\left(x_{2}, \rho_{0}\right)\left|M_{2}\right|^{2}
$$

Exclusive Parton Shower:

$$
\frac{\mathrm{d} \sigma_{2}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0} \mathrm{~d} \phi_{1,2}}=F_{1}^{\prime}\left(x_{1}^{\prime}, \rho_{0}\right) F_{2}\left(x_{2}, \rho_{0}\right)\left|M_{0}\right|^{2} \Pi_{0}\left(\rho_{0}, \rho_{1}\right)
$$

$$
\begin{aligned}
& \frac{\alpha_{\mathrm{s}}\left(\rho_{1}\right)}{2 \pi} \frac{F_{1}\left(x_{1}, \rho_{1}\right)}{F_{1}^{\prime}\left(x_{1}^{\prime}, \rho_{1}\right)} \frac{P_{1}}{\rho_{1}} \Pi_{1}\left(\rho_{1}, \rho_{2}\right) \\
& \frac{\alpha_{\mathrm{s}}\left(\rho_{2}\right)}{2 \pi} \frac{P_{2}}{\rho_{2}} \Pi_{2}\left(\rho_{2}, \rho_{\mathrm{ms}}\right)
\end{aligned}
$$

Find weight to make inclusive matrix element exclusive:

$$
\frac{\mathrm{d} \sigma_{2}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0} \mathrm{~d} \phi_{1,2}}=w \frac{\mathrm{~d} \sigma_{2}^{\mathrm{in}}}{\mathrm{~d} \phi_{0+2}}
$$

Multi-jet Merging: Merging Weight in ISR

$$
\begin{aligned}
w & =w_{\alpha_{\mathrm{s}}} w_{\mathrm{pdf}} w_{\mathrm{no}-\mathrm{em}} \\
w_{\alpha_{\mathrm{s}}} & =\frac{\alpha_{\mathrm{s}}\left(\rho_{1}\right)}{\alpha_{\mathrm{s}}\left(\rho_{0}\right)} \frac{\alpha_{\mathrm{s}}\left(\rho_{2}\right)}{\alpha_{\mathrm{s}}\left(\rho_{0}\right)} \\
w_{\mathrm{pdf}} & =\frac{f\left(x_{1}^{\prime}, \rho_{0}\right)}{f\left(x_{1}^{\prime}, \rho_{1}\right)} \frac{f\left(x_{1}, \rho_{1}\right)}{f\left(x_{1}, \rho_{0}\right)} \\
w_{\mathrm{no}-\mathrm{em}} & =\Pi_{0}\left(\rho_{0}, \rho_{1}\right) \Pi_{1}\left(\rho_{1}, \rho_{2}\right) \Pi_{2}\left(\rho_{2}, \rho_{\mathrm{ms}}\right)
\end{aligned}
$$

Multi-Jet Merging Algorithm

Summary of general multi-jet merging procedure:
(1) Calculate inclusive cross sections for $X+n$ partons (with kinematic cut ρ_{ms} to avoid singularities)
(2) Cluster according to jet algorithm or find parton shower history to find scales for no-emission probabilities and scale dependent ratios
(3) Multiply with merging weight: α_{s}-ratios, no-emission probabilities (and PDF ratios)
(9) If $n<N$, with N highest fixed order multiplicity, multiply no-emission probability towards merging scale ρ_{ms}
(5) Allow further parton shower emissions below ρ_{ms}, for $n=N$ also above

CKKW Merging [Catani, Kruss, Kum, Webber (2001)]

- Cluster according to k_{\perp} jet algorithm
- Apply analytic Sudakov factors (NLL accuracy) as no-emission probabilities
- Perform "truncated showering", since parton shower evolution variable not exactly identical to merging scale cut: Start shower from ρ_{0}, but forbid emissions above t_{ms}. Handle hard emissions (in ρ) below t_{ms} with care!
- + Appealing theoretical treatment
- - Requires dedicated PS implementation
- - Mismatch between analytical Sudakov and parton shower
- Implemented in Sherpa (v 1.1) [Krauss (2002)]

CKKW-L Merging ${ }_{[\text {LEmntad (2001)] }}$

- Cluster back to parton shower history according to splitting probabilities in PS
- Generate of no-emission probabilities using parton shower
- Perform showering step-by-step for each step in history, starting from respective clustering scale
- Veto event if emission at larger scale than next clustering scale or ρ_{ms} in last step
- Keep PS emissions below ρ_{ms} (and between ρ_{n} and ρ_{ms} at highest multiplicity)
- + Agreement between Sudakov and shower by construction \Rightarrow Reduced merging scale dependence
- + Use simple veto in shower if ρ_{ms} in terms of PS evolution variable
- - Requires dedicated PS implementation
- Implemented in Sherpa (≥ 1.2) [Höche, Krauss, Schumann, Siegert (2009)], Pythia8 [Lönnblad, Prestel (2012)] and Herwig7 [Bellm, Gieseke, Plätzer (2018)]

MLM
 [Mangano (2002)] [Mangano, Moretti, Piccinini, Treccani (2007)]

- Simplest way to estimate Sudakov suppression: Run shower on ME state without prior reclustering, starting from ρ_{0}
- Perform jet clustering, and reject if PS emits any jets harder than original partons or partons that are not clustered to hard partons
- No reconstructed history \Rightarrow Sudakov factor corresponds to final partons only, not taking into account intermediate states
- Approximation turns out to be good enough
- + Simplest available scheme
- + Matching with any shower algorithm without specific implementation
- - Sudakov suppression not exact \Rightarrow mismatch with shower

Sudakov Factor: MLM vs. CKKW-L

- First shower from ρ_{0} to ρ_{ms}
- Then do jet clustering to veto if hard emissions occured
- Resulting no-emission probability: $\Pi_{q}^{2}\left(\rho_{0}, \rho_{\mathrm{ms}}\right) \Pi_{q}^{2}\left(\rho_{0}, \rho_{\mathrm{ms}}\right)$

- First construct parton shower history
- Then do trial shower on reconstructed history, veto event if emission above merging scale
- Resulting no-emission probability: $\Pi_{q}^{2}\left(\rho_{0}, \rho_{2}\right) \Pi_{g}\left(\rho_{1}, \rho_{2}\right) \Pi_{q}^{4}\left(\rho_{2}, \rho_{\mathrm{ms}}\right)$

What about high multiplicities?

- Merging requires reconstruction of parton shower histories, grow factorially
- For high multiplicities beyond 5 or so: need to be creative
- One way: winner-takes-all: go for highest probability in first clusering steps [Höche, Prestel, Schulz (2019)]
- Another way: sector showers, i.e., unique histories [Brooks, Preuss (2021)]

Unitarity in Multi-jet Merging

Unitarity in Multi-jet Merging

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{0}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2}\left[1-\alpha_{s} \int_{\rho_{\min }}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}+\frac{\alpha_{s}^{2}}{2}\left(\int_{\rho_{\min }}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}\right)^{2}\right] \\
\frac{\mathrm{d} \sigma_{1}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \alpha_{\mathrm{s}} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \bar{P}_{1}^{\mathrm{ME}}\left[1-\alpha_{\mathrm{s}} \int_{\rho_{1}}^{\rho_{0}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{1}-\alpha_{\mathrm{s}} \int_{\rho_{\min }}^{\rho_{1}} \mathrm{~d} \rho \mathrm{~d} z \bar{P}_{2}\right] \\
\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \alpha_{\mathrm{s}}^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \bar{P}_{1}^{\mathrm{ME}} \mathrm{~d} \rho_{2} \mathrm{~d} z_{2} \bar{P}_{2}^{\mathrm{ME}} \Theta\left(\rho_{1}-\rho_{2}\right)
\end{aligned}
$$

- Unitarity of parton shower broken in multi-jet merging schemes mentioned above
- Inclusive cross-section only preserved if splitting probabilities in no-emission probability identical to full fixed order splitting probabilities

Unitary Merging: UMEPS [Loontlad, Prestel (2012]

Start from CKKW-L scheme, want to restore PS unitarity. Use:

$$
\Pi_{n}\left(\rho_{n}, \rho_{\mathrm{ms}}\right)=1-\int_{\rho_{\mathrm{ms}}}^{\rho_{n}} \mathrm{~d} \rho \mathrm{~d} z \alpha_{\mathrm{s}} \bar{P}_{n+1}^{\mathrm{ME}}(\rho, z) \Pi_{n}\left(\rho_{0}, \rho\right)
$$

i.e. probability of no emission is 1 - probability of at least one emission

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{0}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \Pi_{0}\left(\rho_{0}, \rho_{\mathrm{ms}}\right) \\
\frac{\mathrm{d} \sigma_{1}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{1}^{+} F_{1}^{-}\left|M_{1}\right|^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \Pi_{0}\left(\rho_{0}, \rho_{1}\right) \Pi_{1}\left(\rho_{1}, \rho_{\mathrm{ms}}\right) \\
\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \phi_{0}} & =F_{2}^{+} F_{2}^{-}\left|M_{2}\right|^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \Pi_{0}\left(\rho_{0}, \rho_{1}\right) \mathrm{d} \rho_{2} \mathrm{~d} z_{2} \Pi_{1}\left(\rho_{1}, \rho_{2}\right)
\end{aligned}
$$

Unitary Merging: UMEPS [Loontlad, Prestel (2012]

Start from CKKW-L scheme, want to restore PS unitarity. Use:

$$
\Pi_{n}\left(\rho_{n}, \rho_{\mathrm{ms}}\right)=1-\int_{\rho_{\mathrm{ms}}}^{\rho_{n}} \mathrm{~d} \rho \mathrm{~d} z \alpha_{\mathrm{s}} \bar{P}_{n+1}^{\mathrm{ME}}(\rho, z) \Pi_{n}\left(\rho_{0}, \rho\right)
$$

i.e. probability of no emission is 1 - probability of at least one emission

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{0}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =F_{0}^{+} F_{0}^{-}\left|M_{0}\right|^{2} \Pi_{0}\left(\rho_{0}, \rho_{\mathrm{ms}}\right) \\
\frac{\mathrm{d} \sigma_{1}^{\mathrm{ex}}}{\mathrm{~d} \phi_{0}} & =\left.F_{1}^{+} F_{1}^{-}\left|M_{1}\right|^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \Pi_{0}\left(\rho_{0}^{-}, \rho_{1}\right) \Pi_{1}\right|^{2}\left(\rho_{1}, \rho_{1} \mathrm{~d} z_{1} \Pi_{0}\left(\rho_{0}, \rho_{1}\right)\right. \\
& -\mathrm{d} \rho_{1} \mathrm{~d} z_{1} \Pi_{0}\left(\rho_{0}, \rho_{1}\right) \int F_{2}^{+} F_{2}^{-}\left|M_{2}\right|^{2} \mathrm{~d} \rho_{2} \mathrm{~d} z_{2} \Pi_{1}\left(\rho_{1}, \rho_{2}\right) \\
\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \phi_{0}} & =F_{2}^{+} F_{2}^{-}\left|M_{2}\right|^{2} \mathrm{~d} \rho_{1} \mathrm{~d} z_{1} \Pi_{0}\left(\rho_{0}, \rho_{1}\right) \mathrm{d} \rho_{2} \mathrm{~d} z_{2} \Pi_{1}\left(\rho_{1}, \rho_{2}\right)
\end{aligned}
$$

Unitary Merging: UMEPS [Loontlad, Prestel (2012)]

- Still add CKKW-L reweighted samples
- Instead of last Sudakov, subtract +1 parton integrated sample \Rightarrow Individual multiplicities still exclusive
- Can still add normal PS below merging scale
- + Procedure does not change inclusive cross section
- - UMEPS introduces negative weights \Rightarrow less efficient

Summary Lecture I

Summary Lecture I

Goal: Combine matrix elements and parton showers. The Problem:

- Parton showers generate singular terms of higher-order matrix elements
- Same terms present in $X+$ jet(s) matrix elements
- Combination must not double count

ME Corrections

- Oldest scheme, correct PS emissions to match full real emission ME
- Can be iterated beyond one emission
- Developments: higher multiplicity, NLO in VINCIA

Multi-jet Merging

- Combine multiple LO ME samples by reweighting
- Separate phase space regions to deal with divergence
- Different schemes available

NLO Matching

Towards NLO

- So far, considered only higher multiplicities $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$, ie., legs, no loops
- In consistent expansion in coupling parameter, need to consider loops as well!
$\theta(a$,

Divergent Loop integral
$\theta\left(\alpha_{s}\right)$

- IR singularities cancel between different multiplicities in inclusive cross sections
- Measurements that ensure singularity cancellation are IR safe

What is NLO?

- Leading order is first order in α_{S} that gives non-zero result for given observable
- NLO is next order. If large correction \rightarrow need NNLO
- Can be tricky: consider $W+j$, and measure azimuthal angle between W and (leading) jet.
- Need second jet for non back-to-back \Rightarrow implicitly two-jet, so only described at LO for NLO $W+j$

- What if $\Delta \phi<\frac{2 \pi}{3}$?

Finite Numerical NLO Cross Section

NLO prediction for observable \mathcal{O} given by

$$
\langle\mathcal{O}\rangle=\int \mathrm{d} \phi_{n}\left(B_{n}+V_{n}\right) \mathcal{O}_{n}\left(\phi_{n}\right)+\int \mathrm{d} \phi_{n+1} B_{n+1} \mathcal{O}_{n+1}\left(\phi_{n+1}\right)
$$

but both V_{n} and B_{n+1} separately divergent, only sum is finite.
Use universal subtraction terms to get finite results: [Frixione, Kunszt, Siegner (1996)] [Catani, Seymour (1997)]

$$
\begin{aligned}
\langle\mathcal{O}\rangle= & \int \mathrm{d} \phi_{n}\left(B_{n}+V_{n}+B_{n} \otimes I_{1}\right) \mathcal{O}_{n}\left(\phi_{n}\right) \\
& +\int \mathrm{d} \phi_{n+1}\left(B_{n+1} \mathcal{O}_{n+1}\left(\phi_{n+1}\right)-B_{n} \otimes D_{1} \mathcal{O}_{n}\left(\phi_{n+1}\right)\right)
\end{aligned}
$$

Event interpretation not yet possible, \mathcal{O}_{n} and \mathcal{O}_{n+1} contributions must be finite separately

Matching of NLO Matrix Elements \& Parton Showers

We want precision predictions: Combine NLO fixed order calculations with Parton showers.
Parton Shower \longrightarrow

- Again problem of double counting of emissions by real emission matrix element and emissions generated by parton shower
- Also double counting of virtual terms through virtual corrections and Sudakov factors

Real emission

Shower Subtraction

Want to attach shower (include factor α_{s} in \bar{P})

$$
\begin{aligned}
\mathcal{O}_{n}\left(\phi_{n}\right) \rightarrow \mathcal{F}_{n}\left(\mathcal{O}, \phi_{n}\right) & =\Pi\left(\rho_{n}, \rho_{\min }\right) \mathcal{O}_{n}\left(\phi_{n}\right)+\int \mathrm{d} \phi_{+1} \Pi\left(\rho_{n}, \rho_{n+1}\right) \bar{P}_{n+1} \mathcal{F}_{n+1}\left(\mathcal{O}, \phi_{n+1}\right) \\
& \xrightarrow{\mathcal{O}\left(\alpha_{s}\right)} 1-\int \mathrm{d} \phi_{+1} \bar{P}_{n+1} \mathcal{O}_{n}\left(\phi_{n+1}\right)+\int \mathrm{d} \phi_{+1} \bar{P}_{n+1} \mathcal{O}_{n+1}\left(\phi_{n+1}\right)
\end{aligned}
$$

But $B_{n} \mathcal{F}_{n}$ contains $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ terms \Rightarrow subtract shower terms to first order in α_{s} such that accuracy of NLO not spoiled by shower

MC@NLO [FFixixone, Webber (2002)]

With shower subtraction, arrive at MC@NLO prescription

$$
\begin{aligned}
\langle\mathcal{O}\rangle_{\mathrm{MC@NLO}}= & \int \mathrm{d} \phi_{n}\left(B_{n}+V_{n}+B_{n} \otimes I_{1}\right) \mathcal{F}_{n}\left(\mathcal{O}, \phi_{n}\right) & & \text { Born }+ \text { subtracted virtual } \\
& \left.+\int \mathrm{d} \phi_{n+1}\left(B_{n} \bar{P}_{n+1}-B_{n} \otimes D_{1}\right) \mathcal{F}_{n}\left(\mathcal{O}, \phi_{n+1}\right)\right) & & \text { Shower virtual - subtraction } \\
& +\int \mathrm{d} \phi_{n+1}\left(B_{n+1}-B_{n} \bar{P}_{n+1}\right) \mathcal{F}_{n+1}\left(\mathcal{O}, \phi_{n+1}\right) & & \text { Real - shower real }
\end{aligned}
$$

- Event generation possible since \mathcal{O}_{n} and \mathcal{O}_{n+1} separately finite
- Sudakov supression agrees with shower prediction
- Distribution correct only if parton shower is attached to cancel MC counterterms
- Can lead to many events with negative weights
- Needs to be implemented for each shower separately
- Automated in Sherpa [Höche, Krauss, Schönherr, Siegert (2012)] and aMC@NLO [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli (2012)]

MC@NLO

- MC@NLO gives smooth transition between real emission pattern at high scales and parton shower at low scales
- Inclusive cross section correct at NLO

Plot form [Nason, Webber (2012)]

POWHEG ${ }_{[N a s o n ~(2004)] ~ F F r i x i o n e, ~ N a s o o n, ~ O l e a r i ~(2007)] ~}^{\text {I }}$

Positive Weight Hardest Emission Generator

$$
\begin{aligned}
\langle\mathcal{O}\rangle_{\text {POWHEG }}= & \int \mathrm{d} \phi_{n}\left(B_{n}+V_{n}+B_{n} \otimes I_{1}\right) \mathcal{F}_{n}^{\mathrm{HI}}\left(\mathcal{O}, \phi_{n}\right) & & \text { Born }+ \text { subtracted virtual } \\
& \left.+\int \mathrm{d} \phi_{n+1}\left(B_{n+1}-B_{n} \otimes D_{1}\right) \mathcal{F}_{n}^{\mathrm{HI}}\left(\mathcal{O}, \phi_{n+1}\right)\right) & & \text { Shower virtual - subtraction }
\end{aligned}
$$

Based on MC@NLO, modify shower to get "shower real" = "real" for hardest emission (similar to matrix element corrections)

- Less negative weights \Rightarrow Improved efficiency
- Hardest emission modified \Rightarrow Differences compared to MC@NLO, but both NLO correct
- Implementation process by process, but independent of attached shower

MC@NLO- \triangle

- Let's look at MC@NLO again:

$$
\begin{array}{rlrl}
\langle\mathcal{O}\rangle_{\mathrm{MC@NLO}}= & \int \mathrm{d} \phi_{n}\left(B_{n}+V_{n}+B_{n} \otimes I_{1}\right) \mathcal{F}_{n}\left(\mathcal{O}, \phi_{n}\right) & \text { Born }+ \text { subtracted virtual } \\
& +\int \mathrm{d} \phi_{n+1}\left(B_{n} \bar{P}_{n+1} \Delta-B_{n} \otimes D_{1}\right. & \text { Shower virtual - subtractio } \\
\left.\left.B_{n+1}(1-\Delta)\right) \mathcal{F}_{n}\left(\mathcal{O}, \phi_{n+1}\right)\right) & \\
& +\int \mathrm{d} \phi_{n+1}\left(B_{n+1}-B_{n} \bar{P}_{n+1}\right) \Delta \mathcal{F}_{n+1}\left(\mathcal{O}, \phi_{n+1}\right) & & \text { Real - shower real }
\end{array}
$$

- With $\Delta \rightarrow 0$ in soft/collinear limit, $\Delta \rightarrow 1$ in hard regions. Use shower no-emission probability (between hard scale and scale of emission)
- Also: optimize shower starting scales and sampling
- \Rightarrow Reduces fraction of negative weights [Frederix, Frixione, Prestel, Torrelli (2020)]

There's more

- Matching: discussed matrix element corrections a.k.a. LO multiplicative matching, MC@NLO and Powheg
- Multiplicative matching also possible for NLO: KrkNLO [Jadach, Pazcek, Sapeta, Siodmok, Skrypek (2015)]
- Can be applied as weights \rightarrow fast, but also efficient?
- No negative weights
- Hard to extend to generic processes
- MAcNLOPS: Multiplicative for $P_{\text {exact }}<P_{\text {shower }}$, MC@NLO otherwise [Nason, Salam (2022)]
- No negative weights
- Unrestricted applicability?

NLO Multi-jet Merging

Combine NLO Matching and Multi-leg Merging

Goal: Combine several NLO matrix elements for same process: NLO for $X, X+1, X+2, \ldots$ Mostly based on parton shower unitarity
Different methods available:

- UNLOPS, based on UMEPS [Lönnlad, Prestel (2013)][Pätzer (2013)]
- MiNLO, based on POWHEG [Hamilton, Nason, Zanderighi (2012)] [Frederix, Hamilton (2016)]
- FxFx, based on MC@NLO [Frederix, Frixione (2012)]
- MEPs@NLO, based on CKKWL[Ḧ̈che, Krauss, Schönherr, Siegert (2013)]
- (Vincia, based on NLO MEC) [Hartgring, Laenen, Skands (2013)]
- ...

Multi-jet Merging at NLO

- UNLOPS [Lönnblad, Prestel (2013): Combine NLO matrix elements in unitary merging
- Subtract $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ from weights to preserve perturbative accuracy

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\int d \phi_{0}\left\{\mathcal{O}_{0}\left[\bar{B}_{0}-\int_{S} \bar{B}_{1 \rightarrow 0}-\int_{S} B_{1 \rightarrow 0}\left(w_{1}-\left.w_{1}\right|_{\mathcal{O}\left(\alpha_{\mathrm{s}}\right)}\right)\right]\right. \\
& \left.+\int d \phi_{1} \mathcal{O}_{1}\left[\bar{B}_{1}+B_{1}\left(w_{1}-\left.w_{1}\right|_{\mathcal{O}\left(\alpha_{\mathrm{s}}\right)}\right)\right]\right\}
\end{aligned}
$$

with \bar{B} subtracted NLO cross sections, w CKKW-L weight as before

Freedom in Choice of Merging Scheme

Merging scheme should

- preserve fixed order quantum interference model
- preserve parton shower state evolution model

Define three valid variants of UNLOPS, look at 1 jet contribution UNLOPS-1

$$
B_{1} w_{1}+\left[\bar{B}_{1}-\left.B_{1} w_{1}\right|_{\mathcal{O}\left(\alpha_{s}\right)}\right]
$$

UNLOPS-P

$$
B_{1} w_{1}+\left[\bar{B}_{1}-\left.B_{1} w_{1}\right|_{\mathcal{O}\left(\alpha_{s}\right)}\right] \Pi_{0}\left(\rho_{0}, \rho_{1}, b\right)
$$

UNLOPS-PC

$$
B_{1} w_{1}+\left[\bar{B}_{1}-\left.B_{1} w_{1}\right|_{\mathcal{O}\left(\alpha_{s}\right)}\right] \Pi_{0}\left(\rho_{0}, \rho_{1}, b\right) \frac{\alpha_{s}\left(b \rho_{1}\right)}{\alpha_{s}\left(b \mu_{R}\right)}
$$

Durham jet resolution $3 \rightarrow 2\left(E_{\text {CMS }}=91.2 \mathrm{GeV}\right)$

k_{\perp} scale of $0 \rightarrow 1$ clustering ($W \rightarrow \mu v$)

Beyond NLO

Beyond NLO

- NNLO results become available: combine with parton shower for fully exclusive predictions
- Unitarization well suited: replace lowest multiplicity to get inclusive NNLO cross section
- UN2LOPS implemented in Sherpa [Höche, Li, Prestel (2015)]
- Yet higher orders thinkable, see UN3LOPS/Tomte for toy implementation [Prestel (2021)]
- Fully differential NNLO+PS
- Extension of Powheg philosophy to NNLO
- Born-local NNLO K-factor
- Hardest-emission spectrum of PS given by NLO result (real-virtual and double-real corrections)
- Proof-of-concept worked out for $e^{+} e^{-} \rightarrow 2 j$ [Campbell, Höche, Li, Preuss, Skands (2023)]
- And more, e.g. MINNLOPS [Monni, Nason, Re, Wiesemann, Zanderighi (2020)], GENEVA [Alioli, Bauer, Berggren, Tackmann, Walsh (2015)]

Higher Orders in Parton Shower

The Lund plane

- Compute everything in center-of-mass frame of quarks

- Write momenta in Sudakov decomposition

$$
p_{1}=p_{1}^{+}+p_{1}^{-}+p_{T, 1}
$$

- On-shell condition: $p_{1}^{2}=2\left(p_{1}^{+} p_{1}^{-}-p_{T, 1}^{2}\right)$
- "-"-projection: $p_{1}^{-}=2 p_{i} p_{1} / \sqrt{2 p_{i} p_{j}}$
- "+"-projection: $p_{1}^{+}=2 p_{j} p_{1} / \sqrt{2 p_{i} p_{j}}$
- Simple expressions for transverse momentum and rapidity
- $p_{T, 1}^{2}=\frac{2\left(p_{i} p_{1}\right)\left(p_{j} p_{1}\right)}{p_{i} p_{j}}$
- $\eta_{1}=\frac{1}{2} \ln \frac{p_{i} p_{1}}{p_{j} p_{1}}$
- Semi-classical matrix element squared $\propto 1 / p_{T}^{2}$

The Lund plane

- Rewrite rapidity using transverse momentum

$$
\eta_{1}=\frac{1}{2} \ln \frac{p_{i} p_{1}}{p_{j} p_{1}}=\frac{1}{2} \ln \frac{s_{i 1}^{2}}{p_{T, 1}^{2} s_{i j}}=\frac{1}{2} \ln \frac{p_{T, 1}^{2} s_{i j}}{s_{j 1}^{2}}
$$

- In momentum conserving parton branching $\left(\tilde{p}_{i}, \tilde{p}_{j}\right) \rightarrow\left(p_{i}, p_{j}, p_{1}\right)$

$$
-\frac{1}{2} \ln \frac{\tilde{s}_{i j}}{p_{T, 1}^{2}} \leq \eta_{1} \leq \frac{1}{2} \ln \frac{\tilde{s}_{i j}}{p_{T, 1}^{2}}
$$

- Differential phase-space element $\propto \mathrm{d} p_{T}^{2} \mathrm{~d} \eta$
- The Lund plane
- $\eta, \ln \left(p_{T}^{2} / \tilde{s}\right)$ plane
- Phase space bounded by diagonals
- Single-emission semi-classical radiation probability a constant

NLO Splitting Kernels: Motivation

- QCD amplitudes factorise in soft and collinear limits
- Leading order shower has factorized $2 \rightarrow 3$ splitting kinematics implemented
- Higher orders in LO parton shower generated by iterating LO kernels
- Shower must reproduce the factorised amplitude for sufficiently independent emissions
- \Rightarrow Any particle emitted after first one may NOT influence the kinematics of it (too much)

- First two should be correctly described by LO shower, third requires NLO splitting kernels

Double Soft and Triple Collinear Emissions

- Inclusion of double soft and triple collinear effects into NLO parton shower treated separately in [Höche, Prestel (2017)] and [Dulat, Höche, Prestel (2018) [hep-ph]]
- Two structurally different approximations. Implemented in shower as additional kernel, avoiding double counting with LO shower by subtracting iterated LO shower

Combining Double Soft and Triple Collinear Emissions

- Need both double soft and triple collinear emissions in full NLO shower, needed for NNLL/NNDL accuracy
- Remove overlap: include double soft, and subtract corresponding contribution from each triple collinear kernel [LG, Höche, Prestel (2022)]

Validation and impact of soft-subtracted triple-collinear splittings

Shower Accuracy

What Determines Shower Accuracy?

- Assume we have correct splitting functions
- Freedom to choose ordering variable
- Freedom to choose recoil scheme
- ... and more
- \Rightarrow Need to make careful choices!
- Problems with default dipole shower recoil, can spoil accuracy even for LO shower [Dasgupta, Dreyer,Hamilton,Monni,Salam] arXiv:1805.09327

Ordering Variables in the Lund plane

Angular Ordering:

Lund plane filled from center to edges

- Dipole ends evolve separately: Parton shower
- Not ordered in p_{\perp}^{2}
- Color factors correct if observable insensitive to azimuthal correlations

Dipole Showers:

Lund plane filled from top to bottom

- Unified dipole and parton evolution
- Not ordered in η
- Color factors in improved leading color approximation

Structure of semi-classical matrix element

- Dipole shower approach: partial fraction matrix element \& match to collinear sectors [Ellis,Ross, Terrano] NPB178(1981)421, [Catani,Seymour] hep-ph/9605323

$$
\frac{p_{i} p_{k}}{\left(p_{i} p_{j}\right)\left(p_{j} p_{k}\right)} \rightarrow \frac{1}{p_{i} p_{j}} \frac{p_{i} p_{k}}{\left(p_{i}+p_{k}\right) p_{j}}+\frac{1}{p_{k} p_{j}} \frac{p_{i} p_{k}}{\left(p_{i}+p_{k}\right) p_{j}}
$$

- Convenient, Lorentz invariant formulation
- Easy to integrate and use in NLO IR subtraction
- Captures matrix element both in angular ordered and unordered region

Final state momentum mapping

- Generate off-shell momentum by rescaling

$$
p_{i j}^{\mu}=\tilde{p}_{i j}^{\mu}+\frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}} \tilde{p}_{k}^{\mu}, \quad p_{k}^{\mu}=\left(1-\frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}}\right) \tilde{p}_{k}^{\mu}
$$

- Then branch into two on-shell momenta

$$
p_{i}^{\mu}=\tilde{z} \tilde{p}_{i j}^{\mu}+(1-\tilde{z}) \frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}} \tilde{p}_{k}^{\mu}+k_{\perp}^{\mu}, \quad p_{j}^{\mu}=(1-\tilde{z}) \tilde{p}_{i j}^{\mu}+\tilde{z} \frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}} \tilde{p}_{k}^{\mu}-k_{\perp}^{\mu}
$$

- On-shell conditions require that

$$
\vec{k}_{T}^{2}=p_{i j}^{2} \tilde{z}(1-\tilde{z}) \quad \leftrightarrow \quad \tilde{z}_{ \pm}=\frac{1}{2}\left(1 \pm \sqrt{1-4 \vec{k}_{T}^{2} / p_{i j}^{2}}\right)
$$

\rightarrow for any finite \vec{k}_{T} we have $0<\tilde{z}<1$

Momentum mapping in dipole-like showers

[Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] arXiv:2002.11114

- Problem can be solved by partitioning of antenna radiation pattern and choosing a suitable evolution variable ($\beta \sim 1 / 2$)

$$
k_{T}=\rho v e^{\beta|\bar{\eta}|} \quad \rho=\left(\frac{s_{i} s_{j}}{Q^{2} s_{i j}}\right)^{\beta / 2}
$$

- Three different recoil schemes lead to NLL result if β chosen appropriately: Local dipole, local antenna, and global antenna
- NLL correct for global and non-global observables in $e^{+} e^{-} \rightarrow$ hadrons

Momentum mapping in angular ordered showers

[Bewick,Ferrario-Ravasio,Richardson,Seymour] arXiv:1904.11866

- Recoil schemes affect logarithmic accuracy but impact also phase-space coverage
- In context of angular ordered Herwig 7 (NLL accurate for global observables)
- q_{T} preserving scheme:

Maintains logarithmic accuracy
Overpopulates hard region

- q^{2} preserving scheme:

Breaks logarithmic accuracy
Good description of hard region

- Dot product preserving scheme (new):

Maintains logarithmic accuracy

Good description of hard radiation

Alaric

[Herren, Höche, Krauss, Reichelt, Schönherr (2022)]

- Partial fractioning of eikonal \rightarrow positive definite splitting function with full phase space coverage
- Drawback: splitting kernels depend on azimuthal angle
- Global kinematics scheme enables analytic proof of NLL accuracy \& numerical validation

Summary Lecture II

Summary Lecture II

Goal: Add higher-order corrections into the picture

- NLO matrix element calculations require matching to parton showers
- NLO multi-jet merging allows for higher multiplicities at NLO
- Higher-order corrections also in shower

NLO Matching

- MC subtraction allows for NLO ME + PS
- MC@NLO and POWHEG
- Work towards NNLO

NLO Multi-jet Merging NLO in parton shower

- Combine multiple NLO ME samples
- Careful extension of LO techniques
- Different schemes available
- Work on higher-order splitting kernels in parton showers
- It's not just about orders: recoil can spoil accuracy

Backup

Collinear Factorization

and Initial State Radiation

Collinear Factorization of QCD Cross Sections

Hadronic cross section for scattering $a b \rightarrow n$ given by

$$
\sigma=\sum_{a, b} \int_{0}^{1} \frac{\mathrm{~d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} \int x_{a} f_{a}^{h_{1}}\left(x_{a}, \mu_{\mathrm{F}}\right) x_{b} f_{b}^{h_{2}}\left(x_{b}, \mu_{\mathrm{F}}\right) \mathrm{d} \hat{\sigma}_{a b \rightarrow n}\left(\mu_{\mathrm{F}}, \mu_{\mathrm{R}}\right)
$$

- $\hat{\sigma}$ Partonic cross section
- $f_{a}^{h}\left(x_{a}, \mu_{F}\right)$ parton distribution functions (PDFs)
- x_{a} light cone momentum fraction $\rightarrow x_{a} f_{a}$ momentum flux of parton a at x_{a}
- μ_{F} factorization scale

Need to take PDFs into account in initial state radiation (ISR), since they change flux

DGLAP Equations

[Dokshitzer (1977)] [Gribov, Lipatov (1972)] [Altarelli, Parisi (1977)]

- Coupled differential equations describing the parton flux of a hadron at different resolution scales

Initial State Radiation and PDFs

- Modify emission and no-emission probabilities to include PDFs: $x_{\text {new }}=x / z$:

$$
\begin{aligned}
\mathrm{d} \mathcal{P}_{\text {emission }}(\rho) & =\frac{\mathrm{d} f_{j}}{f_{j}}=\frac{\mathrm{d} \rho}{\rho} \frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{z_{\min }}^{z_{\max }} \mathrm{d} z P_{i j}(z) \frac{\frac{x}{z} f_{i}\left(\frac{x}{z}, \rho\right)}{x f_{j}(x, \rho)} \\
\mathcal{P}_{\text {no-em }}\left(\rho_{1}, \rho_{2}\right) & =\exp \left(-\int_{\rho_{2}}^{\rho_{1}} \frac{\mathrm{~d} \rho}{\rho} \frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{z_{\min }}^{z_{\max }} \mathrm{d} z P_{i j}(z) \frac{\frac{x}{z} f_{i}\left(\frac{x}{z}, \rho\right)}{x f_{j}(x, \rho)}\right):=\Pi\left(\rho_{1}, \rho_{2}\right)
\end{aligned}
$$

- Initial state shower (more or less) reproduces DGLAP
- DGLAP evolution from small to large scale
- ISR usually uses "backwards evolution": from large to small scales \Rightarrow makes sure we can start from partonic process of interest at high scale [sjostrand (1985)]

