Aspects of the EW Standard Model

Jonas M. Lindert

us
University of Sussex

Facilities Council

UK Research and Innovation

MCnet Summer School
Durham
July 2023

\Rightarrow Study dynamics of the EW SM at the TeV scale
\Rightarrow Test BSM via indirect EW probes
\Rightarrow Constrain backgrounds in direct searches for New Physics

The EW SM

Symmetry:
$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \xrightarrow{\langle H\rangle} S U(3)_{C} \times U(1)_{\mathrm{EM}}$
Matter content:

- 3 families of matter particles (quarks and leptons) in fundamental representations
- $8+3+1$ Gauge fields in adjoint representations
- I Higgs doublet in fundamental representation of $S \cup(2)$ acquires vacuum expectation \rightarrow electroweak symmetry breaking (EWSB)

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \not \subset D \psi+h_{c c} \\
& +\psi_{i} y_{i j} \psi_{j} \phi+h c \\
& +\left|D_{m} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

The EW SM in a nutshell
$\mathcal{L}_{\text {SM }}^{\text {classical }}=\mathcal{L}_{\text {Yang-Mills }}+\mathcal{L}_{\text {Fermi }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\text {Higgs }}$
$\mathcal{L}_{\text {Yang-Mills }}=-\frac{1}{4} G^{a \mu \nu} G_{\mu \nu}^{a}-\frac{1}{4} W^{i}{ }^{\mu \nu} W_{\mu \nu}^{i}-\frac{1}{4} B^{\mu \nu} B_{\mu \mu}$
with the field strength tensors:

$$
G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}+g_{s} f^{a b c} \overleftarrow{G_{\mu}^{b} G_{\nu}^{c}}
$$

$$
W_{\mu \nu}^{i}=\partial_{\mu} W_{\nu}^{i}-\partial_{\nu} W_{\mu}^{i}+g_{2} \epsilon^{i j k} W_{\mu}^{j} W_{\nu}^{k}
$$

$$
B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
$$

structure constants
$\mathcal{L}_{\text {Fermi }}=\sum_{i=1}^{3}\left[q_{L}^{i}{ }^{\dagger}{ }^{\mu}{ }^{\mu} D_{\mu} q_{L}^{i}+u_{R}^{i}{ }^{\dagger} \sigma^{\mu} D_{\mu} u_{R}^{i}+d_{R}^{i}{ }^{\dagger} \sigma^{\mu} D_{\mu} d_{R}^{i}\right.$

$$
\left.+l_{L}^{i}{ }^{\dagger} \bar{\sigma}^{\mu} D_{\mu} l_{L}^{i}+e_{R}^{i}{ }^{\dagger} \sigma^{\mu} D_{\mu} e_{R}^{i}\right]
$$

with the gauge covariant derivative:

The EW SM in a nutshell
$\mathcal{L}_{\text {SM }}^{\text {classical }}=\mathcal{L}_{\text {Yang-Mills }}+\mathcal{L}_{\text {Fermi }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\text {Higgs }}$
$\mathcal{L}_{\text {Yang-Mills }}=-\frac{1}{4} G^{a \mu \nu} G_{\mu \nu}^{a}-\frac{1}{4} W^{i}{ }^{\mu \nu} W_{\mu \nu}^{i}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu}$
with the field strength tensors:

$$
G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}+g_{s} f^{a b c} \overleftarrow{G_{\mu}^{b} G_{\nu}^{c}}
$$

$$
W_{\mu \nu}^{i}=\partial_{\mu} W_{\nu}^{i}-\partial_{\nu} W_{\mu}^{i}+g_{2} \epsilon^{i j k} W_{\mu}^{j} W_{\nu}^{k}
$$

with the gauge covariant derivative:

$$
B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
$$

$D_{\mu} \Rightarrow \partial_{\mu}+i g_{s} \mathbf{T}^{a} G_{\mu}^{a}+i g_{2} \mathbf{I}^{i} W_{\mu}^{i}+i g_{1} \frac{Y}{2} \mathbf{1} B_{\mu}$

$$
\begin{gathered}
\mathcal{L}_{\text {Fermi }}=\sum_{i=1}^{3}\left[q_{L}^{i}{ }^{\dagger} \bar{\sigma}^{\mu} D_{\mu} q_{L}^{i}+u_{R}^{i} \dagger\right. \\
\sigma^{\mu} D_{\mu} u_{R}^{i}+d_{R}^{i} \dagger \\
\sigma^{\mu} D_{\mu} d_{R}^{i} \\
\left.+l_{L}^{\dagger} \bar{\sigma}^{\mu} D_{\mu} l_{L}^{i}+e_{R}^{i}{ }^{\dagger} \sigma^{\mu} D_{\mu} e_{R}^{i}\right]
\end{gathered}
$$

$\Rightarrow F-F-V, V-V-V(T G)$ and $V-V-V-V(Q G)$ couplings are related!
$\Rightarrow f_{L}=\mathbf{2}, f_{R}=1$ under $\underset{Y}{S U(2)}$
$\Rightarrow Y$ such that $Q=I_{3}+\frac{Y}{2}$ (Gell-Mann-Nishijima relation)

The EW SM in a nutshell
$\mathcal{L}_{\mathrm{SM}}^{\text {classical }}=\mathcal{L}_{\text {Yang-Mills }}+\mathcal{L}_{\text {Fermi }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\text {Higgs }}$
$\mathcal{L}_{\text {Higgs }}=\left(D^{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)-V(\Phi)$
with Higgs potential:
$V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{4}\left(\Phi^{\dagger} \Phi\right)^{2}, \mu^{2}, \lambda>0$
minimum at $v=\frac{2 \mu}{\sqrt{\lambda}}$
Expand Φ-field around minimum:

Would-be Goldstone bosons
$\Phi(x)=\binom{\phi^{+}(x)}{\frac{1}{\sqrt{2}}\left(v+h^{0}(x)+i \chi^{0}(x)\right)}$
$\rightarrow m_{h}^{0}=\sqrt{2} \mu=\frac{v \lambda}{2} \quad \rightarrow$ mass terms for W, B (however, not diagonal)

\rightarrow unbroken fields are not eigenstates of $U(1)_{\mathrm{EM}}$

The EW SM in a nutshell
$\mathcal{L}_{\text {SM }}^{\text {classical }}=\mathcal{L}_{\text {Yang-Mills }}+\mathcal{L}_{\text {Fermi }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\text {Higgs }}$
$\mathcal{L}_{\text {Higgs }}=\left(D^{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)-V(\Phi)$
\rightarrow diagonalization of W, B fields:

$$
\begin{aligned}
W_{\mu}^{ \pm} & =\frac{1}{2}\left(W_{\mu}^{1} \pm W_{\mu}^{2}\right) \\
Z_{\mu}^{0} & =\cos \theta_{W} W_{\mu}^{3}-\sin \theta_{W} B_{\mu} \\
A_{\mu} & =\sin \theta_{W} W_{\mu}^{3}+\cos \theta_{W} B_{\mu}
\end{aligned}
$$

physical fields
unbroken fields
where:

$$
\begin{aligned}
\cos \theta_{W} & =\frac{g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}=\frac{m_{W}}{m_{Z}} \\
\sin \theta_{W} & =\frac{g_{1}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}
\end{aligned}
$$

and:

$$
\begin{aligned}
m_{W} & =\frac{g_{2} v}{2} \\
m_{Z} & =\frac{v}{2} \sqrt{g_{1}^{2}+g_{2}^{2}}
\end{aligned}
$$

\Rightarrow couplings and gauge boson masses

$$
e=\frac{g_{1} g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}
$$ are related! $\longrightarrow e=\frac{g_{1} g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}$

gauge coupling of remaining $U(1)_{\mathrm{EM}}$

The EW SM in a nutshell

$$
\mathcal{L}_{\mathrm{SM}}^{\text {classical }}=\mathcal{L}_{\text {Yang-Mills }}+\mathcal{L}_{\text {Fermi }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\text {Higgs }}
$$

$$
\mathcal{L}_{\text {Yukawa }}=-\sum_{i, j=1}^{3}\left[y_{i j}^{d}\left(q_{L}^{i}\right)^{\dagger} \Phi d_{R}^{j}+y_{i j}^{u}\left(q_{L}^{i}\right)^{\dagger} \Phi^{c} u_{R}^{j}+y_{i j}^{l}\left(l_{L}^{i}\right)^{\dagger} \Phi e_{R}^{j}+\text { h.c. }\right]
$$

Yukawa couplings
After EWSB:

$$
m_{i j}^{f}=\frac{v}{\sqrt{2}} y_{i j}^{f}
$$

These can be diagonalised:

- due to unitarity these matrices drop out in NC interactions: no FCNCs in the SM
- a non-trivial matrix remains in CC interactions:

$$
m_{f, i}=\frac{v}{\sqrt{2}} \sum_{k, m}^{3} U_{i k}^{f, L} y_{k m}^{f}\left(U_{m i}^{f, R}\right)^{\dagger} \equiv \frac{v}{\sqrt{2}} \lambda_{i}^{f}
$$

The global EW fit

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
$M_{H}[\mathrm{GeV}]$	125.1 ± 0.2	yes	$125.1_{-0.2}^{+0.2}$	$100.2_{-20.6}^{+24.4}$	$100.3_{-19.9}^{+23.5}$
$M_{W}[\mathrm{GeV}]$	80.379 ± 0.013	-	80.363 ± 0.007	80.356 ± 0.008	80.356 ± 0.007
$\Gamma_{W}[\mathrm{GeV}]$	2.085 ± 0.042	-	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
$M_{Z}[\mathrm{GeV}]$	91.1875 ± 0.0021	yes	91.1879 ± 0.0020	91.1967 ± 0.0099	91.1969 ± 0.0096
$\Gamma_{z}[\mathrm{GeV}]$	2.4952 ± 0.0023	-	2.4950 ± 0.0014	2.4945 ± 0.0016	2.4945 ± 0.0016
$\sigma_{\text {hadd }}^{0}[\mathrm{nb}]$	41.540 ± 0.037	-	41.483 ± 0.015	41.474 ± 0.016	41.474 ± 0.015
R_{ℓ}^{0}	20.767 ± 0.025	-	20.744 ± 0.017	20.725 ± 0.026	20.724 ± 0.026
$A_{\text {FB }}^{0, \ell}$	0.0171 ± 0.0010	-	0.01623 ± 0.0001	0.01622 ± 0.0001	0.01624 ± 0.0001
$A_{\ell}{ }^{(*)}$	0.1499 ± 0.0018	-	0.1471 ± 0.0005	0.1471 ± 0.0005	0.1472 ± 0.0004
$\sin ^{2} \theta_{\text {eff }}^{\ell}\left(Q_{\text {FB }}\right)$	0.2324 ± 0.0012	-	0.23151 ± 0.00006	0.23151 ± 0.00006	0.23150 ± 0.00005
$\sin ^{2} \theta_{\mathrm{eff}}^{e}(\mathrm{TEV})$	0.2318 ± 0.0003	-	0.23151 ± 0.00006	0.23150 ± 0.00006	0.23150 ± 0.00005
A_{c}	0.670 ± 0.027	-	0.6679 ± 0.00022	0.6679 ± 0.00022	0.6680 ± 0.00016
A_{b}	0.923 ± 0.020	-	0.93475 ± 0.00004	0.93475 ± 0.00004	0.93475 ± 0.00003
$A_{\mathrm{FB}}^{0, c}$	0.0707 ± 0.0035	-	0.0737 ± 0.0003	0.0737 ± 0.0003	0.0737 ± 0.0002
$A_{\text {FB }}^{0, b}$	0.0992 ± 0.0016	-	0.1031 ± 0.0003	0.1033 ± 0.0004	0.1033 ± 0.0003
R_{c}^{0}	0.1721 ± 0.0030	-	$0.17226{ }_{-0.00008}^{+0.0009}$	0.17226 ± 0.00008	0.17226 ± 0.00006
R_{b}^{0}	0.21629 ± 0.00066	-	0.21579 ± 0.00011	0.21578 ± 0.00012	0.21577 ± 0.00004
$\bar{m}_{c}[\mathrm{GeV}]$	$1.27{ }_{-0.11}^{+0.07}$	yes	$1.27{ }_{-0.11}^{+0.07}$	-	-
$\bar{m}_{b}[\mathrm{GeV}]$	$4.20{ }_{-0.07}^{+0.17}$	yes	$4.20{ }_{-0.07}^{+0.17}$	-	-
$m_{t}[\mathrm{GeV}]^{(\nabla)}$	173.06 ± 0.94	yes	173.54 ± 0.86	$175.97_{-2.12}^{+2.11}$	$176.00{ }_{-2.04}^{+2.03}$
$\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}^{2}\right)^{(\dagger \Delta)}$	2758 ± 10	yes	2756 ± 10	2738 ± 41	2739 ± 39
$\alpha_{s}\left(M_{Z}^{2}\right)$	-	yes	$0.1197{ }_{-0.0029}^{+0.0030}$	0.1197 ± 0.0030	0.1198 ± 0.0028

[^0] fit. The fit w/o the LEP (SLD) measurement gives $A_{\ell}=0.1471 \pm 0.0005\left(A_{\ell}=0.1469 \pm 0.0005\right)$. ${ }^{(\nabla)}$ Combination of experimental (0.8 GeV) and theory uncertainty (0.5 GeV). ${ }^{(+)}$In units of 10^{-5}. ${ }^{(\Delta)}$ Rescaled due to α_{s} dependency.

Drell-Yan: Mw measurements

- Motivation: Mw is a derived quantity \rightarrow precise measurement is a stringent test of SM!
- Method: template fits of sensitive CC DY distributions $\left(p_{T, l}, M_{T}, E_{\text {miss }}\right)$

\rightarrow Theory precision essential for improvements in mW determination!

EW standard candles at hadron colliders

The global EFT/SMEFT fit

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i=1}^{2499} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i} \mathbf{W i l}_{\text {dimensional scale }}
$$

X^{3}		H^{6} and $H^{4} D^{2}$		$\psi^{2} H^{3}$	
$\begin{aligned} & \mathcal{O}_{G} \\ & \mathcal{O}_{\bar{G}} \\ & \mathcal{O}_{W} \\ & \mathcal{O}_{\bar{W}} \end{aligned}$	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$ $f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$ $\varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$ $\varepsilon^{I J K} \widetilde{W}_{\mu}^{I L} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$\begin{aligned} & \mathcal{O}_{H} \\ & \mathcal{O}_{H \square} \\ & \mathcal{O}_{H D} \end{aligned}$	$\begin{gathered} \left(H^{\dagger} H\right)^{3} \\ \left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) \\ \left(H^{\dagger} D^{\mu} H\right)^{\star}\left(H^{\dagger} D_{\mu} H\right) \end{gathered}$	$\begin{aligned} & \mathcal{O}_{e H} \\ & \mathcal{O}_{u H} \\ & \mathcal{O}_{d H} \end{aligned}$	$\begin{aligned} & \left(H^{\dagger} H\right)\left(\bar{l}_{p} e_{r} H\right) \\ & \left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \widetilde{H}\right) \\ & \left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right) \end{aligned}$
$X^{2} H^{2}$		$\psi^{2} \mathrm{XH}$		$\psi^{2} H^{2} D$	
$\begin{gathered} \mathcal{O}_{H G} \\ \mathcal{O}_{H \bar{G}} \\ \mathcal{O}_{H W} \\ \mathcal{O}_{H \bar{W}} \\ \mathcal{O}_{H B} \\ \mathcal{O}_{H \bar{B}} \\ \mathcal{O}_{H W B} \\ \mathcal{O}_{H \bar{W} B} \end{gathered}$	$H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}$ $H^{\dagger} H \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$ $H^{\dagger} H W_{\mu \nu}^{I} W^{I \mu \nu}$ $H^{\dagger} H \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$ $H^{\dagger} H B_{\mu \nu} B^{\mu \nu}$ $H^{\dagger} H \widetilde{B}_{\mu \nu} B^{\mu \nu}$ $H^{\dagger} \tau^{I} H W_{\mu \nu}^{I} B^{\mu \nu}$ $H^{\dagger} \tau^{I} H \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$\mathcal{O}_{e w}$ $\mathcal{O}_{c B}$ $\mathcal{O}_{u G}$ $\mathcal{O}_{u w}$ $\mathcal{O}_{u B}$ $\mathcal{O}_{d G}$ $\mathcal{O}_{d W}$ $\mathcal{O}_{d B}$	$\begin{gathered} \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} H W_{\mu \nu}^{I} \\ \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) H B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{H} G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\nu \nu} u_{r}\right) \tau^{I} \widetilde{H} W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\prime \nu} u_{r}\right) \widetilde{H} B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) H G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} H W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\prime \nu} d_{r}\right) H B_{\mu \nu} \end{gathered}$	$\begin{aligned} & \mathcal{O}_{H i}^{(1)} \\ & \mathcal{O}_{H i}^{(3 i j} \\ & \mathcal{O}_{H e} \\ & \mathcal{O}_{H q}^{(1)!} \\ & \mathcal{O}_{H q}^{(3)} \\ & \mathcal{O}_{H u} \\ & \mathcal{O}_{H d} \\ & \mathcal{O}_{H u d} \end{aligned}$	
$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$\begin{aligned} & \mathcal{O}_{l \mid} \\ & \mathcal{O}_{q q}^{(1)} \\ & \mathcal{O}_{q 9}^{(3)} \\ & \mathcal{O}_{1}^{(1)}()^{(1)} \\ & \mathcal{O}_{19}^{(3)} \end{aligned}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\prime} \tau^{I} q_{t}\right) \\ \left(\bar{l}_{\mu} l_{r}\right)\left(\bar{q}_{s}{ }^{\prime} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \end{gathered}$	$\begin{aligned} & \mathcal{O}_{e e} \\ & \mathcal{O}_{u u} \\ & \mathcal{O}_{d d} \\ & \mathcal{O}_{e u} \\ & \mathcal{O}_{e x} \\ & \mathcal{O}_{e d} \\ & \mathcal{O}_{u d}^{(1)} \\ & \mathcal{O}_{u d}^{(8)} \end{aligned}$	$\begin{gathered} \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{e}^{2} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}^{\prime} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$		$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{p}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{p}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \\ \hline \hline \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
		$\begin{aligned} & \mathcal{O}_{\text {duq }} \\ & \mathcal{O}_{q q u} \\ & \mathcal{O}_{q q q} \\ & \mathcal{O}_{\text {duu }} \end{aligned}$	$\begin{gathered} \varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}[(d) \\ \varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{q}\right.\right. \\ \varepsilon^{\alpha \beta \gamma} \varepsilon_{j n} \varepsilon_{k m}[(, \\ \varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right.\right. \end{gathered}$		$\begin{aligned} & \left.\left(q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right] \\ & {\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]} \\ &]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right] \\ & \left.\left.u_{s}^{\gamma}\right)^{T} C e_{t}\right] \end{aligned}$

The global EFT/SMEFT fit

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\sum_{i=1}^{2499} \frac{C_{i}}{\Lambda^{2}} \boldsymbol{\mathcal { O }}_{i} \text { Wilson coefficients }_{\text {dimensional scale }}
$$

The need for precision

Diboson Cross Section Measurements Status: February 2022

$$
\begin{array}{lll}
\mathrm{d} \sigma=\mathrm{d} \sigma_{\mathrm{LO}} & +\alpha_{S} \mathrm{~d} \sigma_{\mathrm{NLO}} & \\
& \mathrm{NLO} \mathrm{QCD} & \mathrm{O}(100 \%) \\
& +\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}} & \\
& \mathrm{NNLO} \text { QCD } & \mathrm{O}(10 \%) \\
& +\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots \\
& \mathrm{N} 3 \mathrm{LO} \text { QCD } & \mathrm{O}(1 \%) \\
& \\
\hline \alpha_{S} \sim 0.1
\end{array}
$$

$\begin{array}{lllllllllllll}0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.4\end{array}$ data/theory
Higher-order predictions mandatory for reliable predictions

Theory frontier

Theory frontier

Theory frontier

Theory frontier
\#loops

- Automated in NLO+PS MCs (MG5_aMC@NLO, Sherpa, Powheg,...)

Theory frontier
\#loops

- Automated in NLO+PS MCs (MG5_aMC@NLO, Sherpa, Powheg,...)
- (public) NNLO fixed-order tools for all SM processes $p p \rightarrow H, V$ $\mathrm{pp} \rightarrow \mathrm{VV}, H V, H H, V j, j \mathrm{j}, \mathrm{Q} \overline{\mathrm{Q}}$

Theory frontier
\#loops

- Automated in NLO+PS MCs (MG5_aMC@NLO, Sherpa, Powheg,...)
- (public) NNLO fixed-order tools for all SM processes
- fixed-order frontier

Theory frontier

The need for precision

$$
\begin{aligned}
& \mathrm{d} \sigma=\mathrm{d} \sigma_{\mathrm{LO}}+\alpha_{S} \mathrm{~d} \sigma_{\mathrm{NLO}}+\alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\mathrm{NLO}} \mathrm{EW} \\
& \text { NLO QCD NLO EW } \\
& \text { dedicated MC's: Matrix, } \\
& +\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}} \\
& \text { NNLO QCD } \\
& +\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots \\
& \text { N3LO QCD }
\end{aligned}
$$

\longleftrightarrow only known for inclusive-H, DY

$$
\alpha_{S} \sim 0.1 \quad \alpha_{\text {EW }} \sim 0.01 \quad \mathcal{O}(\alpha) \sim \mathcal{O}\left(\alpha_{s}^{2}\right) \Rightarrow \text { NLO EW } \sim \text { NNLO QCD }
$$

Relevance of EW higher-order corrections: virtual Sudakov logs in the tails

I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

 [Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]
\rightarrow overall large (negative) effect in the tails of distributions: PT, $m_{\text {inv }}, H_{T}, \ldots$ (relevant for BSM searches!)

Relevance of EW higher-order corrections: collinear QED radiation

II. Possible large enhancement due to soft/collinear logs from photon radiation $\sim \alpha \log \left(\frac{m_{f}^{2}}{Q^{2}}\right)$ in sufficiently exclusive observables.

\rightarrow important for radiative tails, Higgs backgrounds etc.
\rightarrow typically considered via QED PS (PHOTOS /YFS)

Relevance of EW higher-order corrections: photon-induced channels

III. QED factorisation and thus photon luminosities needed to absorb IS photon singularities.
\rightarrow Possible large enhancement due to photon-induced channels in the tails of kinematic distributions, in particular in WW:
${ }^{2} \sim_{n}^{w^{-}-t^{t^{-}}}$(t-channel enhancement)
$\mathrm{d} \sigma_{\mathrm{LO}}=\mathrm{d} \sigma_{\mathrm{LO}}^{q \bar{q}}+\mathrm{d} \sigma_{\mathrm{LO}}^{\gamma \gamma}$

\rightarrow large differences between different photon descriptions. Now settled: LUXqed superior
$\rightarrow \mathrm{O}$ (IO\%) contributions from photon-induced channels

EWTheoretical Predictions for the LHC
Hard (perturbative)
scattering process
@ N(N)LO QCD + EW

The EW SM at quantum level in a nutshell

$$
\mathcal{L}_{\text {SM }}^{\text {classical }}=\mathcal{L}_{\text {Yang-Mills }}+\mathcal{L}_{\text {Fermi }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\text {Higgs }}
$$

At quantum level:

$$
\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\mathrm{SM}}^{\text {classical }}+\mathcal{L}_{\text {gauge-fix }}+\mathcal{L}_{\text {ghost }}
$$

(unitary gauge unfeasible at higher-orders in EW)
$\mathcal{L}_{\text {gauge-fix }}=-\frac{1}{2}\left(F_{A}^{2}+F_{Z}^{2}+2 F_{+} F_{-}+F_{G^{a}}^{2}\right)$,

Gauge fixing parameter

EWTheoretical Predictions for the LHC
Hard (perturbative)
scattering process
@ N(N)LO QCD + EW

Hard (perturbative)
scattering process

 ${ }_{i g} s_{w}\left(\partial_{\nu} A_{\mu}^{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-A_{\nu}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}\right.\right.$ $\left.\left.W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-\frac{1}{2} g^{\nu} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{\mu}\right.$ $\left.Z_{\nu}^{\nu} Z_{\mu}^{0} W_{\nu}^{\mu} W_{\nu}^{-}\right)+g^{2} s_{v}^{\mu}\left(A_{\mu}^{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{\mu}\right)+g^{2} s_{w} c_{\nu}\left(A_{\mu} Z_{\nu}^{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}\right.\right.$ $\left.\left.W_{\nu}^{+} W_{\mu}^{-}\right)-2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-2 M^{2} \alpha_{h} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}$

$$
\begin{gathered}
\beta_{h}\left(\frac{2 M^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right)+\frac{2 M^{2}}{g^{2}} \alpha_{h} . \\
a_{1} M\left(H^{3}+H \phi^{\circ} \phi^{0}+2 H \phi^{+}+\phi^{-}\right)-
\end{gathered}
$$

$\left.\frac{1}{8} g^{2} \alpha_{h}\left(H^{4}+\left(\phi^{0}\right)^{g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right)-}{ }^{-1} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right)-$ $g M W_{\mu}^{+} W_{\mu}^{-} H-\frac{1}{2} g \frac{M}{c_{\mu}^{2}} Z_{\mu}^{0} Z_{\mu}^{0} H$
$\left.\frac{1}{2} i g\left(W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W_{\mu}^{-}-\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right)+$
$\frac{1}{2} g\left(W^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)+W_{-}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right)+\frac{1}{2} g \frac{1}{2}\left(Z^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)+\right.$
$\left(\frac{1}{Z^{0}} \phi^{0}+W^{+} \partial_{\mu} \phi^{-}+W^{-} \partial_{\mu} \phi^{+}\right)-i g^{s_{M}^{2}} M Z^{0}\left(W^{+} \phi^{-}-W^{-} \phi^{+}\right)+i g s A^{(} W^{+} \phi^{-}$

 $\left.W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-g^{2} \hat{s}_{\omega_{\mu}}^{\omega_{\mu}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}$

$\frac{i}{4} \frac{i}{4 Z_{w}^{0}} Z_{\mu}^{0}\left(\bar{\nu}^{\wedge} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\wedge}\right)+\left(\bar{e}^{\wedge} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{d}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{s}-1-\gamma^{5}\right) d_{j}^{\lambda}\right)+$
$\left.\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1-\frac{8}{3} s_{w}^{2}+\gamma^{5}\right) u_{j}^{\lambda}\right)\right\}+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left(\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) U^{l e p_{\lambda}}{ }_{\lambda k} e^{\kappa}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{k}\right)\right)+$
$\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left(\left(\bar{e}^{\kappa} U^{l e^{\dagger}{ }_{k}^{p}} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{k} C_{\hbar \lambda}^{\dagger} \lambda^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right)+$ $\frac{{ }_{i g}^{2 \sqrt{2}} \phi^{+}}{2 M \sqrt{2}}{ }^{+}\left(-m_{e}^{\kappa}\left(\bar{\nu}^{\lambda} U^{l e p}{ }_{\lambda k}\left(1-\gamma^{5}\right) e^{\kappa}\right)+m_{\nu}^{\lambda}\left(\bar{\nu}^{\lambda} U^{l e p_{\lambda k}}\left(1+\gamma^{5}\right) e^{\kappa}\right)+\right.$
$\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{e}^{\lambda}\left(\bar{e}^{\lambda} U^{l e e_{\lambda} \dagger}\left(1+\gamma^{5}\right) \nu^{\kappa}\right)-m_{\nu}^{\kappa}\left(\bar{e}^{\lambda} U^{l e p} \dagger \lambda\left(1-\gamma^{5}\right) \nu^{\kappa}\right)-\frac{g}{2} \frac{m^{\lambda}}{M} H\left(\bar{\nu}^{\lambda} \nu^{\lambda}\right)-\right.$ $\frac{g}{2} \frac{m^{\lambda}}{M} H\left(\bar{e}^{\lambda} e^{\lambda}\right)+\frac{i g}{2} \frac{m^{\hat{\lambda}}}{M} \phi^{0}\left(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}\right)-\frac{i g}{2} \frac{m^{\lambda}}{M} \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)-\frac{1}{4} \bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}-$

 $\bar{X}^{+}\left(\partial^{2}-M^{2}\right) X^{+}+\bar{X}^{-}\left(\partial^{2}-M^{2}\right) X^{-}+\bar{X}^{0}\left(\partial^{2}-\frac{M^{2}}{c_{\tilde{W}}^{2}}\right) X^{0}+\bar{Y} \partial^{2} Y+i g c_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{X}^{0} X^{-}\right.$
$\left.\partial_{\mu} \bar{X}^{+} X^{0}\right)+i g s_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{Y}_{\bar{X}} X^{-}-\partial_{\mu} \bar{X}^{+} Y\right)+i g c_{w} W_{\mu}^{-}\left(\partial_{\mu} X^{-} X^{0}\right.$
$\left.\partial_{\mu} \bar{X}^{0} X^{+}\right)+i g s_{w} W_{\mu}^{-}\left(\partial_{\mu} \bar{X}^{-} Y-\partial_{\mu} \bar{Y} X^{+}\right)+i g c_{w} Z_{\mu}^{0}\left(\partial_{\mu} \bar{X}^{+} X^{+}\right.$
$\left.\partial_{\mu} \bar{X}^{-} X^{-}\right)-\frac{1}{2} g M\left(\bar{X}^{+} X^{+} H+\bar{X}^{-} X^{-} H+\frac{c^{2}}{c^{2}} \bar{X}^{0} X^{0} H\right)+\frac{1-c c^{2}}{2 c_{w}} i g M\left(\bar{X}^{+} X^{0} \phi^{+}-\bar{X}^{-} X^{0} \phi^{-}\right)+$ $\frac{1}{2 c_{w}} i g M\left(\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right)+i g M s_{w}\left(\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right)$ igM $\left(\bar{X}^{+} X^{+} \phi^{0}-\bar{X}^{-} X^{-} \phi^{0}\right)$
@ N(N)LO QCD + EW

NLO Ingredients

- NLO partonic cross section for a $2 \rightarrow \mathrm{n}$ process can be written as

Note: real radiation might open up new partonic channels!

NLO Tools: automation of NLO EW

- Add local subtraction terms S , and corresponding integrated subtraction term I

$$
d \hat{\sigma}_{\mathrm{NLO}}=\frac{1}{2 s} \int d \Phi_{n}\left[\left|\mathcal{M}_{\mathrm{LO}}\right|^{2}+2 \operatorname{Re}\left\{\mathcal{M}_{\mathrm{LO}} \mathcal{M}_{\mathrm{NLO}, \mathrm{~V}}^{*}\right\}+I\right]+\frac{1}{2 s} \int d \Phi_{n+1}\left|\mathcal{M}_{\mathrm{NLO}, \mathrm{R}}\right|^{2}-S
$$

- NLO Monte-Carlo integrators (+subtraction):
- MadGraph_aMC@NLO (FKS)
- Sherpa (CS)
- POWHEG-BOX (FKS)
- NLO fixed-order integrators:
- MUNICH/Matrix (CS)
- ...
...

- CutTools
- Golem95
- COLLIER
- Ninja
- ...
- ...

NNLO Ingredients

- NNLO partonic cross section for a $2 \rightarrow \mathrm{n}$ process can be written as

$$
\begin{aligned}
& d \hat{\sigma}_{\mathrm{NNLO}}= \frac{1}{2 s} \int d \Phi_{n}\left[\left|\mathcal{M}_{\mathrm{LO}}\right|^{2}+2 \operatorname{Re}\left\{\mathcal{M}_{\mathrm{LO}} \mathcal{M}_{\mathrm{NLO}, \mathrm{~V}}^{*}\right\}+2 \operatorname{Re}\left\{\mathcal{M}_{\mathrm{LO}} \mathcal{M}_{\mathrm{NNLO}, \mathrm{~V}}^{*}\right\}\right] \\
&+\frac{1}{2 s} \int d \Phi_{n+1} \mathrm{NNLO}^{\left[\left|\mathcal{M}_{\mathrm{NLO}, \mathrm{R}}\right|^{2}+2 \operatorname{Be}\left|\mathcal{M}_{\mathrm{NLO}, \mathrm{R}} \mathcal{M}_{\mathrm{NNLO}, \mathrm{RV} \mid}^{*}\right|\right]+\frac{1}{2 s} \int d \Phi_{n+2}\left|\mathcal{M}_{\mathrm{NNLO}, \mathrm{RR}}\right|^{2}} \\
&+\mathrm{V} 2+\ldots \\
& \downarrow
\end{aligned}
$$

$d \Phi_{n(+1)} \quad \mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$ particle phase space

Nontrivial features in NLO QCD \rightarrow NLO EW

I. photon contributions in jets and proton
\rightarrow photon-jet separation, γ PDF

3. QCD-EW interplay

2. At NLO EW corrections in production, decay and non-factorizable contributions for V decays
\rightarrow complex-mass-scheme

4. virtual EW corrections more involved than QCD (many internal masses)

Decays of heavy particles

- Naively processes with a massive s-channel propagator diverge when $p^{2}=M^{2}$
- Experimentally we now resonances follow Breit-Wigner (BW) shape
- Origin: all-order summation of IPI corrections to propagator of

- However: this summation mixes different order of perturbation theory.

Thus, in general it might (and will) break gauge invariance when applied naively.

- (Usually) not a problem at LO, i.e. also not for vector boson decays into leptons at NLO QCD
- Alternative: narrow-width approximation (NWA)

Advantage: reduces complexity in NLO computation However: unable to capture off-shell effects

$$
\begin{aligned}
\Gamma / M & \rightarrow 0: \int_{-\infty}^{\infty} \frac{d k^{2}}{\left(k^{2}-m^{2}\right)^{2}+m^{2} \Gamma}=\frac{\pi}{m \Gamma} \delta\left(k^{2}-m^{2}\right) \\
& \longrightarrow \mathrm{d} \sigma=\mathrm{d} \sigma_{\text {prod }} \frac{\mathrm{d} \Gamma_{\mathrm{dec}}}{\Gamma}
\end{aligned}
$$

The need for off-shell computations:VV
[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;'I 6]

\Rightarrow sizeable differences in fully off-shell vs. double-pole approximation in tails

Decays of heavy particles

- Leptonic decays of gauge bosons are trivial at NLO QCD. At NLO EW corrections in production, decay and non-factorizable contributions have to be considered.

- Scheme of choice: complex-mass-scheme [Denner, Dittmaier, et. al.]
- gauge invariant and exact NLO
- computationally expensive: one extra leg per two-body decay

Renormalised self-energy:
$\hat{\Sigma}^{i}\left(p^{2}\right)=\Sigma^{i}\left(p^{2}\right)-\delta \mu_{i}^{2}$
with $\quad \delta \mu_{i}^{2}=\left.\Sigma^{i}\left(p^{2}\right)\right|_{p^{2}=\mu_{i}^{2}}$
-all derived couplings, incl. weak mixing angle:
\Rightarrow position of the pole in the renormalisation

$$
\sin \theta_{W}^{2}=1-\frac{\mu_{W}^{2}}{\mu_{Z}^{2}}
$$

Perturbative expansion: revised
aMC@NLO, Sherpa, Herwig... \&
Recola, Madloop, Gosam, OpenLoops

$$
\begin{aligned}
& \mathrm{d} \sigma=\mathrm{d} \sigma_{\mathrm{LO}}+ \alpha_{S} \mathrm{~d} \sigma_{\mathrm{NLO}}+\alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\mathrm{NLO} \mathrm{EW}} \\
& \mathrm{NLO} \mathrm{QCD} \\
&+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}} \\
& \mathrm{NNO} \mathrm{EW} \\
& \mathrm{NNLO} \mathrm{QCD}
\end{aligned}
$$

Perturbative expansion: revised
aMC@NLO, Sherpa, Herwig... \&
Recola, Madloop, Gosam, OpenLoops
dedicated MC's: Matrix

$+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\mathrm{EW}}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO} \mathrm{EW}}+\alpha_{S} \alpha_{\mathrm{EW}} \mathrm{d} \sigma_{\mathrm{NNLO} \text { QCDxEW }} ?$ NNLO QCD , NNLO EW NNLO QCD-EW $+\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+{ }^{?}$.

scale variation at NNLO

Perturbative expansion: revised

EW uncertainties: Sudakov

EW corrections become sizeable at large pт,v: -30\% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}\left(\alpha^{2}\right)$?

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

Universality and factorisation: [Denner, Pozzorini; '0 I]

$$
\begin{aligned}
\delta \mathcal{M}_{\mathrm{LL}+\mathrm{NLL}}^{1-\mathrm{loop}}=\frac{\alpha}{4 \pi} \sum_{k=1}^{n}\{ & \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{ \pm}} I^{a}(k) I^{\bar{a}}(l) \ln ^{2} \frac{\hat{s}_{k l}}{M^{2}} \\
& \left.+\gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}}\right\} \mathcal{M}_{0}
\end{aligned}
$$

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs \downarrow

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

$$
\Delta_{\mathrm{EW}}^{\mathrm{Sud}} \approx\left(k_{\mathrm{NLOEW}}\right)^{2}
$$

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

check against two-loop Sudakov logs
[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

Tools for EW Sudakov corrections

Sherpa
[Bothmann, Napoletano, '20]

MadGraph5_aMC@NLO
[Pagani, Zaro, '2 I]

OpenLoops
[IML, Mai, to appear]

- all based on
[Denner, Pozzorini, '00, '0 I]

$$
C_{0}^{\mathrm{eik}} \equiv \frac{1}{\left(p_{k}+p_{l}\right)^{2}}\left[\log ^{2} \frac{\left|r_{k l}\right|}{M_{V}^{2}}-2 i \pi \Theta\left(r_{k l}\right) \log \frac{\left|r_{k l}\right|}{M_{V}^{2}}\right]
$$

EW uncertainties: QED radiation

NLOPS EW needs to be
resonance-aware: [Jezo, Nason, 'I 5]

Conservative estimate of higher-order QED radiation:

NLO EW

VS.
multi-photon radiation (YFS) or QED-PS

$$
\Delta_{\mathrm{EW}}^{\mathrm{QED}}=\left|\delta_{\mathrm{EW}}-\delta_{\mathrm{EW}+\mathrm{PS} / \mathrm{YFS}}\right|
$$

[Gütschow, Schönherr, '20]

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, '22]

- Naive NLOvı EW+PS matching available in Sherpa
\Rightarrow CSS dipole shower (not resonance aware) \Rightarrow significant mismodelling
\Rightarrow YFS resummation (resonance aware) \Rightarrow valid approximation

YFS (Multi-Photon-Resummation) preserves resonance structure
\rightarrow EW effects agree at the few percent level.

Source of differences:

- Multi-poton effects in YFS
-Resonance-assignment in YFS

CSS (Catani-Seymour-Shower) unaware of resonance structure \rightarrow QED effects largely overestimated

Resonance-aware matching: off-shell top-pair

Resonance-aware matching: off-shell top-pair

- In a traditional off-shell NLO+PS calculation:
subtraction, matching and PS do not see/preserve intermediate resonances
-any (necessary) reshuffling/recoil might distort kinematic shapes!

Problem in POWHEG language

- Already at NLO:
- FKS (and similar CS) subtraction does not preserve virtuality of intermediate resonances
- Real (R) and Subtraction-term $(S \sim B)$ with different virtuality of intermediate resonances

$$
\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}\right) \longleftrightarrow \Phi_{\mathrm{R}}^{(\alpha)} \text { from FKS mappings }
$$

- IR cancellation spoiled
\Rightarrow severe efficiency problem!
- More severe problems at NLO+PS:
- in POWHEG: $\quad \mathrm{d} \sigma=\bar{B}\left(\Phi_{\mathrm{B}}\right) \mathrm{d} \Phi_{\mathrm{B}}\left[\Delta\left(q_{\mathrm{cut}}\right)+\sum_{\alpha} \Delta\left(k_{T}^{\alpha}\right) \frac{R_{\alpha}\left(\Phi_{\alpha}\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}\right)\right)}{B\left(\Phi_{\mathrm{B}}\right)} \mathrm{d} \Phi_{\mathrm{rad}}\right]$

Sudakov form-factor generated from uncontrollable R/B ratios:

$$
\Delta\left(\Phi_{B}, p_{\mathrm{T}}\right)=\exp \left\{-\sum_{\alpha} \int_{k_{\mathrm{T}}>p_{\mathrm{T}}} \frac{R\left(\Phi_{\mathrm{R}}^{(\alpha)}\right)}{B\left(\Phi_{\mathrm{B}}\right)} \mathrm{d} \Phi_{\mathrm{rad}}^{(\alpha)}\right\}
$$

- also subsequent radiation by the PS itself reshuffles internal momenta and does in general not preserve the virtuality of intermediate resonances.
\Rightarrow expect uncontrollable distortion of important kinematic shapes!

The resonance-aware bb4l generator [Jezo, JML, Nason, Oleari, Pozzorini, ' 1 6]

- Full process $p p \rightarrow b \bar{b} e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu}$ with massive b's (4FS scheme)
- Implemented in the POWHEG-BOX-RES framework

Physics features:

- exact non-resonant / off-shell / interference / spin-correlation effects at NLO
- unified treatment of top-pair and Wt production with interference at NLO
- consistent NLO+PS treatment of top resonances, including quantum corrections to top propagators and off-shell top-decay chains

Standard POWHEG matching:

- Standard FKS/CS subtraction does not preserve virtuality of intermediate resonances $\rightarrow R$ and B $(\sim S)$ with different virtualities.
- R/B enters POWHEG matching via generation of radiation and via Sudakov form-factor
\rightarrow uncontrollable distortions
Resonance-aware POWHEG matching:[Jezo, Nason, 'I 5]
- Separate process in resonances histories
- Modified FKS mappings that retain virtualities

Perturbative expansion: revised

Mixed QCD-EW uncertainties

Bold estimate:

Consider real $\mathcal{O}\left(\alpha \alpha_{s}\right)$ correction to X production $\simeq \mathrm{NLO} \mathrm{EW}$ to $\mathrm{X}+1$ jets
and we often observe

$$
\left.\frac{\mathrm{d} \sigma_{\mathrm{NLOEW}}}{\mathrm{~d} \sigma_{\mathrm{LO}}}\right|_{X+\text { jet }}-\left.\frac{\mathrm{d} \sigma_{\mathrm{NLOEW}}}{\mathrm{~d} \sigma_{\mathrm{LO}}}\right|_{X} \quad \lesssim 1 \%
$$

In these cases strong support for

- factorisation
- multiplicative QCD \times EW combination
- Consider only such non-factorising effects as uncertainty!?

EW uncertainties: QCD-EW interplay

Combination of QCD and EW corrections

Combination of QCD and EW corrections

- full calculations of $\mathcal{O}\left(\alpha \alpha_{s}\right)$ out of reach
- Approximate combination: MEPS@NLO including (approximate) EW corrections
- key: QCD radiation receives EW corrections!
- strategy: modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections $=\mathrm{VI}$

$$
\overline{\mathrm{B}}_{n, \mathrm{QCD}+\mathrm{EW}_{\text {virt }}\left(\Phi_{n}\right)=\overline{\mathrm{B}}_{n, \mathrm{QCD}}\left(\Phi_{n}\right)+\mathrm{V}_{n, \mathrm{EW}}\left(\Phi_{n}\right)+\mathrm{I}_{n, \mathrm{EW}}\left(\Phi_{n}\right)}^{\text {exact virtual contribution }} \begin{aligned}
& \text { approximate integrated real contribution }
\end{aligned}
$$

MEPS @ NLO QCD + EW: ZZ(+jet)

[Bothmann, Napoletano, Schönherr, Schumann, Villani; '2 I]

Perturbative expansion: revised II

- In general combined expansion in $\boldsymbol{\alpha}_{\mathrm{s}}$ and $\boldsymbol{\alpha}$ necessary:

$$
d \sigma=d \sigma\left(\alpha_{s}^{n} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n-1} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+2}\right)+\ldots
$$

LO "subleading Born contributions": LO2, LO3

Example: $q \bar{q} \rightarrow q \bar{q}$

Perturbative expansion: revised II

- In general combined expansion in $\boldsymbol{\alpha}_{\mathrm{s}}$ and $\boldsymbol{\alpha}$ necessary:

$$
d \sigma=d \sigma\left(\alpha_{s}^{n} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n-1} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+2}\right)+\ldots
$$

"NLO QCD"
"NLO EW"
"subleading one-loop contributions": NLO3, NLO4

Perturbative expansion: revised II

- In general combined expansion in $\boldsymbol{\alpha}_{\mathrm{s}}$ and $\boldsymbol{\alpha}$ necessary:

$$
d \sigma=d \sigma\left(\alpha_{s}^{n} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n-1} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+2}\right)+\ldots
$$

LO "subleading Born contributions": LO2, LO3

- also at NLO:

$$
\cdots+\sigma\left(\alpha_{s}^{n+1} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-1} \alpha^{m+2}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+3}\right)+\ldots
$$

"NLO QCD"
"NLO EW"
"subleading one-loop contributions": NLO3, NLO4

Perturbative expansion: revised II

- In general combined expansion in $\boldsymbol{\alpha}_{\mathrm{s}}$ and $\boldsymbol{\alpha}$ necessary:

$$
d \sigma=d \sigma\left(\alpha_{s}^{n} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n-1} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+2}\right)+\ldots
$$

LO "subleading Born contributions": LO2, LO3

- also at NLO:

$$
\cdots+\sigma\left(\alpha_{s}^{n+1} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-1} \alpha^{m+2}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+3}\right)+\ldots
$$

"NLO QCD" "NLO EW" "subleading one-loop contributions": NLO3, NLO4

Perturbative expansion: revised II

- In general combined expansion in $\boldsymbol{\alpha}_{\mathrm{s}}$ and $\boldsymbol{\alpha}$ necessary:

$$
d \sigma=d \sigma\left(\alpha_{s}^{n} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n-1} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+2}\right)+\ldots
$$

LO "subleading Born contributions": LO2, LO3

- also at NLO:

$$
\cdots+\sigma\left(\alpha_{s}^{n+1} \alpha^{m}\right)+d \sigma\left(\alpha_{s}^{n} \alpha^{m+1}\right)+\sigma\left(\alpha_{s}^{n-1} \alpha^{m+2}\right)+\sigma\left(\alpha_{s}^{n-2} \alpha^{m+3}\right)+\ldots
$$

"NLO QCD" "NLO EW" "subleading one-loop contributions": NLO3, NLO4

Note:

- No diagrammatic separation in NLO QCD and EW
- An IR finite \& gauge invariant result is only obtained including all virtual and real contributions of a given perturbative order.

Example: dijet production at the LHC

Be aware of double counting: $L O 3$ = DY with hadronic decays

Note: severe QCD background to VBS signatures + interference:

VS.

- direct access to quartic EW gauge couplings
- VBS: longitudinal gauge bosons at high energies
- window to electroweak symmetry breaking
via off-shell Higgs exchange (ensures unitarity)

QCD-background interference VBS-signal
LO

$$
\mathrm{d} \sigma=\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha^{6}\right)+\ldots
$$

NLO

$$
\cdots+\mathrm{d} \sigma\left(\alpha_{S}^{3} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{6}\right)+\sigma\left(\alpha^{7}\right)
$$

"NLO QCD" "NLO EW"' "NLO QCD" "NLO EW"

Note: severe QCD background to VBS signatures + interference:

VS.

- direct access to quartic EW gauge couplings
- VBS: longitudinal gauge bosons at high energies
- window to electroweak symmetry breaking
via off-shell Higgs exchange (ensures unitarity)

QCD-background interference VBS-signal
LO

$$
\mathrm{d} \sigma=\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha^{6}\right)+\ldots
$$

NLO

$$
\cdots+\mathrm{d} \sigma\left(\alpha_{S}^{3} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{6}\right)+\sigma\left(\alpha^{7}\right)
$$

"NLO QCD" "NLO EW"' "NLO QCD" "NLO EW"
\Rightarrow separation formally meaningless at NLO
\Rightarrow always also consider measurements: fiducial cross sections without QCD subtraction

VBS-W+W+ @ full NLO

[Biedermann, Denner, Pellen '|6+'|7]

Conclusions

- Precision is key for EW measurements, as well as for searches.
- Global EFT/SMEFT allows to constrain BSM at higher scales
- EW corrections become large at the TeV scale

- Fixed-order NLO EW largely automated
- NLOPS including EW corrections available for dedicated processes and in different approximations
- Higher-order EW and mixed QCD-EW uncertainties are becoming relevant.

Questions?

References

These Lectures are partly based on:

- Stefan Weinzierl, DESY Monte Carlo school, 2012
- Ansgar Denner, DESY Monte Carlo school, 2014
- Andreas van Hameren, DESY Monte Carlo school, 2017
- Giulia Zanderighi, Graduate Course on QCD, 2013
- Rikkert Frederix, MCnet Summer School, 2015
- Gavin Salam, Basics of QCD, ICTP-SAIFR school on QCD and LHC physics, 2015
- Marek Schönherr, CTEQ-MCnet School, 202 I

Backup

Convergence of the perturbative expansion: Drell-Yan

[Anastasiou et al.,2003]

- NNLO calculation first performed for the inclusive cross section [Van Neerven et al., 1990] $\rightarrow \mathrm{NNLO} / \mathrm{NLO}$ at the few percent level
- Rapidity distribution: I3 years later!
- Bands obtained by studying scale variations varied in $\mu=[\mathrm{mz} / 2,2 \mathrm{mz}]$
- LO and NLO bands do not overlap!
\Rightarrow Error estimate at LO largely underestimated!
- large contribution coming from qg channel that opens up at NLO
- NLO and NNLO bands do overlap
\Rightarrow Reliable error estimate only when all partonic channels contribute
\Rightarrow Higher-orders are crucial for reliable predictions
\Rightarrow Use these precision predictions to
- stress-test the SM: QCD and EW
- determine parameters and PDFs!

LO Ingredients

- LO partonic cross section for a $2 \rightarrow \mathrm{n}$ process can be written as

$$
\begin{array}{r}
\mathrm{d} \hat{\sigma}_{\mathrm{LO}}=\frac{1}{2 s} \int \mathrm{~d} \Phi_{n}\left|\mathcal{M}_{\mathrm{LO}}\right|^{2} \\
\int \mathrm{~d} \Phi_{n}=(2 \pi)^{4} \delta^{(4)}\left(P-\sum_{i=1}^{n} q_{i}\right) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} q_{i}}{(2 \pi)^{3} 2 E_{i}} \quad \text { n-particle phase-space }
\end{array}
$$

$$
\mathcal{M}_{\mathrm{LO}}
$$

LO matrix element: tree-level

$s=P^{2}=\left(\hat{p}_{1}+\hat{p}_{2}\right)^{2}$
squared centre-of-mass energy of hard process

- Integration over phase space by Monte Carlo methods
- any distribution/histogram can be determined simultaneously
- Monte Carlo events can be unweighted
- Integration over phase space analytically
\Rightarrow very fast evaluation
\Rightarrow analytical structure of the result can be investigated

Perturbative expansion

- Expansion in a small coupling α :

$$
\begin{gathered}
d \sigma=d \sigma\left(\alpha^{n}\right)+d \sigma\left(\alpha^{n+1}\right)+d \sigma\left(\alpha^{n+2}\right)+d \sigma\left(\alpha^{n+3}\right)+\ldots \\
\text { NLO NLO N3LO }
\end{gathered}
$$

- at the LHC consider in particular $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{\mathrm{S}}$ (QCD coupling), but also $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{\mathrm{EW}}(\mathrm{EW}$ coupling) relevant \rightarrow later!
- In QCD running strong coupling: $\alpha_{S}=\alpha_{S}(\mu)=\frac{1}{b_{0} \ln \frac{\mu^{2}}{\Lambda^{2}}}+\ldots$

$$
\begin{aligned}
d \sigma^{\mathrm{LO}}(\mu) & =\alpha_{S}(\mu)^{n} A^{\mathrm{LO}} \\
\rightarrow d \sigma^{\mathrm{LO}}\left(\mu^{\prime}\right) & =\alpha_{S}\left(\mu^{\prime}\right)^{n} A^{\mathrm{LO}}=\alpha_{S}(\mu)^{n}\left(1+n b_{0} \alpha_{S}(\mu) \ln \frac{\mu^{2}}{\mu^{\prime 2}}+\ldots\right) A^{\mathrm{LO}}
\end{aligned}
$$

- So the change of scale is an NLO effect $(\propto \boldsymbol{\alpha} \mathrm{S})$.
- At LO the normalisation is not under control:

$$
\frac{d \sigma^{\mathrm{LO}}(\mu)}{d \sigma^{\mathrm{LO}}\left(\mu^{\prime}\right)}=\left(\frac{\alpha_{S}(\mu)}{\alpha_{S}\left(\mu^{\prime}\right)}\right)^{n}
$$

Precision for tails of kinematic distributions: direct searches for new physics

Precision for tails of kinematic distributions: indirect searches for new physics

\rightarrow Theory precision opens the door to new analysis strategies!

QED radiation: IR safety

rcollinear $\mathbf{f} \boldsymbol{\rightarrow} \mathbf{f} \mathbf{\gamma}$ singularities

- cancelled clustering f and γ,
within cone of $\Delta \stackrel{R}{f \gamma}$,
typically $\Delta R_{f \gamma}=0.1$
- or regularised via fermion masses
(at LHC only relevant for $f=\mu$)
- However: for processes with jets at LO this spoils universality between quarks and gluons!
\rightarrow problematic for QCD IR safety

SAFETY
BE CAREFUL BE AWARE BE SAFE

QED radiation: IR safety

collinear $\mathbf{f} \rightarrow \mathbf{f} \mathbf{\gamma}$ singularities

- cancelled clustering f and γ,
within cone of $\Delta \stackrel{R}{f \gamma}$,
typically $\Delta R_{f \gamma}=0.1$
- or regularised via fermion masses
(at LHC only relevant for $f=\mu$)
- However: for processes with jets at LO this spoils universality between quarks and gluons!
\rightarrow problematic for QCD IR safety
- Solution: democratic jet-algorithm approach, partonic jets $\equiv\{q, g, \gamma, I)$

QED radiation: IR safety

- Solution: democratic jet-algorithm approach, partonic jets $\equiv\{\mathrm{q}, \mathrm{g}, \gamma, \mathrm{I})$

However: this yields soft gluon singularities \leftrightarrow hard photons inside jets cancelled in jet-production at NLO EW combined with γ-production at NLO QCD

- Solution: democratic parton approach $p \equiv\{q, g, \gamma, I)$ already at the level of the process definition
- E.g.: $p p \rightarrow V+$ jets @ NLO EW

$$
\left.\begin{array}{l}
p p \rightarrow V+j @ \mathrm{NLOEW} \\
p p \rightarrow V+\gamma @ \mathrm{NLOQCD}
\end{array}\right\} \mathcal{O}\left(\alpha^{2} \alpha_{S}\right)
$$

QED radiation: IR safety

- Solution: democratic parton approach $p \equiv\{q, g, \gamma, \mid)$ already at the level of the process definition.
- In this democratic approach a single isolated photon or lepton constitutes a jet.
I.e. this essentially means: one multi-jet merged $p p \rightarrow \mathrm{n}$ jets sample for all SM processes.
-Problems:
I. How can we now define physical objects that are not jets? I.e leptons and photons.

2. Huge number of processes would have to be generated together. computationally not feasible.

- Separation of jets from photons through Ey/Ejet < $Z_{\text {thr }}$ inside jets (same for leptons)
- rigorous approach: fragmentation functions
- approximation: qr recombination in small cone

$$
\text { difference }<1 \% \text { for typical Zthr } \sim 0.5 \text { (analysis dependent) }
$$

QED parton showers:YFS

- The Sherpa module PHOTONS implements the YFS approach for higher-order QED corrections
- YFS:
- allows to resum universal leading soft logarithms to all orders.
- can systematically be improved order-byorder through the inclusion of full fixedorder matrix elements, e.g. for $\vee \rightarrow I^{+\mid}$
\Rightarrow available within any high-precision QCD simulation in Sherpa: MEPS@NLO, UN2LOPS \rightarrow Allows to study O(aas) effects.

[M. Schönherr, A. Huss in LH'15]

Resonance aware POWHEG

Rigorous solution to all these issues within POWHEG-BOX-RES [Ježo, Nason; ' 15]

Idea: preserve invariant mass of intermediate resonances at all stages!
\checkmark NLO:

- Split phase-space integration into regions dominated by a single resonance history
- within a given resonance history modify FKS mappings, such that they always preserve intermediate resonances

$$
\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}\right) \stackrel{\mathrm{RES}}{\longleftrightarrow} \Phi_{\mathrm{R}}^{(\alpha)}
$$

$\Rightarrow R$ and $S \sim B$ always with same virtuality of intermediate resonances
$\Rightarrow \mathrm{IR}$ cancellation restored

\checkmark NLO+PS:

- R and B related via modified FKS mappings
$\Rightarrow R / B$ ratio with fixed virtuality of intermediate resonances
\Rightarrow Sudakov form-factor preserves intermediate resonances
\checkmark PS:
- pass information about resonance histories to the shower (via extension of LHE)
- tell PS to respect intermediate resonances (available in Pythia8)
\Rightarrow resulting resonance-aware $M C$ indispensable for precision top-mass measurements

Resonance-aware PS matching @ NLO QCD + NLO EW

[Chiesa, Re, Oleari '20]

NLO (QCD + EW) PS (QCD + QED)/ NLO QCD PS (QCD + QED)
NLO (QCD + EW) PS (QCD + QED)/ NLO QCD PS QCD

- Missing: photon-induced channels

[^0]: ${ }^{(*)}$ Average of LEP ($A_{\ell}=0.1465 \pm 0.0033$) and SLD ($A_{\ell}=0.1513 \pm 0.0021$) measurements, used as two measurements in the

