Aspects of the EW Standard Model

University of Sussex

Jonas M. Lindert

Science & Technology Facilities Council

UK Research and Innovation

MCnet Summer School Durham July 2023

Global EW fit

Constrain backgrounds in direct searches for New Physics

The EW SM

Symmetry:

$SU(3)_C \times SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} SU(3)_C \times U(1)_{\rm EM}$

Matter content:

- 3 families of matter particles (quarks and leptons) in fundamental representations
- •8+3+1 Gauge fields in adjoint representations
- I Higgs doublet in fundamental representation of SU(2) acquires vacuum expectation \rightarrow electroweak symmetry breaking (EWSB)

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{AL} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{V} + h_{c} \\ &+ \mathcal{V}_{i} \mathcal{Y}_{ij} \mathcal{V}_{j} p + h_{c} \\ &+ |\mathcal{D}_{A} p|^{2} - V(p) \end{aligned}$

 $\mathcal{L}_{\rm SM}^{\rm classical} = \mathcal{L}_{\rm Yang-Mills} + \mathcal{L}_{\rm Fermi} + \mathcal{L}_{\rm Yukawa} + \mathcal{L}_{\rm Higgs}$

$$\begin{aligned} \text{The EW SM in a nutshell} \\ \mathcal{L}_{\text{SM}}^{\text{classical}} &= \mathcal{L}_{\text{Yang-Mills}} + \mathcal{L}_{\text{Fermi}} + \mathcal{L}_{\text{Yukawa}} + \mathcal{L}_{\text{Higgs}} \\ \\ \mathcal{L}_{\text{Yaug-Mills}} &= -\frac{1}{4} G^{a\ \mu\nu} G_{\mu\nu}^{a} - \frac{1}{4} W^{i\ \mu\nu} W_{\mu\nu}^{i} - \frac{1}{4} B^{\mu\nu} B_{\mu\mu} \\ \text{with the field strength tensors:} \\ G_{\mu\nu}^{a} &= \partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a} + g_{s} f^{abc} G_{\mu}^{b} G_{\nu}^{c} , \\ W_{\mu\nu}^{i} &= \partial_{\mu} W_{\nu}^{i} - \partial_{\nu} W_{\mu}^{i} + g_{2} \epsilon^{ijk} W_{\mu}^{j} W_{\nu}^{k} , \\ B_{\mu\nu} &= \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \\ \text{structure constants} \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\text{Fermi}} &= \sum_{i=1}^{3} [q_{L}^{i\ \dagger} \sigma^{\mu} D_{\mu} q_{L}^{i} + u_{R}^{i\ \dagger} \sigma^{\mu} D_{\mu} u_{R}^{i} + d_{R}^{i\ \dagger} \sigma^{\mu} D_{\mu} e_{R}^{i}] \\ \text{with the gauge covariant derivative:} \\ B_{\mu\nu} &= \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \\ \text{structure constants} \end{aligned}$$

The EV

$$\mathcal{L}_{SM}^{classical} = \mathcal{L}_{Yang-M}$$

$$\mathcal{L}_{Yang-Mills} = -\frac{1}{4}G^{a\ \mu\nu}G^{a}_{\mu\nu} - \frac{1}{4}W^{i\ \mu\nu}W^{i}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}$$
with the field strength tensors:

$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + g_{s}f^{abc}G^{b}_{\mu}G^{c}_{\nu},$$

$$W^{i}_{\mu\nu} = \partial_{\mu}W^{i}_{\nu} - \partial_{\nu}W^{i}_{\mu} + g_{2}\epsilon^{ijk}W^{j}_{\mu}W^{k}_{\nu},$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$
structure constants
 \Rightarrow F-F-V, V-V-V (TG) and
 $\Rightarrow f_{L} = 2, f_{R} = 1 \text{ under } SV$

$$\begin{array}{l} \text{The EV} \\ \mathcal{L}_{\mathrm{SM}}^{\mathrm{classical}} = \mathcal{L}_{\mathrm{Yang-M}} \end{array}$$

$$\mathcal{L}_{\text{Higgs}} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - V(\Phi)$$

with Higgs potential:

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2, \quad \mu^2, \lambda > 0$$

minimum at $v = \frac{2\mu}{\sqrt{\lambda}}$

Expand Φ -field around minimum:

$$\Phi(x) = \left(\begin{array}{c} \phi^+(x) \\ \frac{1}{\sqrt{2}}(v + h^0(x) + i\chi^0(x)) \end{array}\right)$$

 $\rightarrow m_h^0 = \sqrt{2}\mu = \frac{v\lambda}{2}$ \rightarrow mass terms for W, B (however, not diagonal) \rightarrow unbroken fields are not eigenstates of $U(1)_{\rm EM}$

V SM in a nutshell $_{\text{fills}} + \mathcal{L}_{\text{Fermi}} + \mathcal{L}_{\text{Yukawa}} + \mathcal{L}_{\text{Higgs}}$

Would-be Goldstone bosons

$$\begin{array}{l} \text{The EM} \\ \mathcal{L}_{\mathrm{SM}}^{\mathrm{classical}} = \mathcal{L}_{\mathrm{Yang-Mi}} \end{array}$$

$$\mathcal{L}_{\text{Higgs}} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - V(\Phi)$$

→ diagonalization of W, B fields:

$$\begin{split} W^{\pm}_{\mu} &= \frac{1}{2} (W^1_{\mu} \pm W^2_{\mu}) \,, \\ Z^0_{\mu} &= \cos \theta_W W^3_{\mu} \,- \, \sin \theta_W B_{\mu} \,, \\ A_{\mu} &= \sin \theta_W W^3_{\mu} \,+ \, \cos \theta_W B_{\mu} \,, \end{split}$$
 physical fields unbroken fields

gauge coupling of remaining $U(1)_{\rm EM}$

✓ SM in a nutshell $\mathcal{L}_{\mathrm{Fermi}} + \mathcal{L}_{\mathrm{Yukawa}} + \mathcal{L}_{\mathrm{Higgs}}$

where:

$$\cos \theta_W = \frac{g_2}{\sqrt{g_1^2 + g_2^2}} = \frac{m_W}{m_Z} ,$$
$$\sin \theta_W = \frac{g_1}{\sqrt{g_1^2 + g_2^2}}$$

and:

$$m_W = \frac{g_2 v}{2}$$
$$m_Z = \frac{v}{2} \sqrt{g_1^2 + g_2^2}$$
$$e = \frac{g_1 g_2}{\sqrt{g_1^2 + g_2^2}}$$

couplings and gauge boson masses are related!

$$\begin{array}{l} \text{The EV} \\ \mathcal{L}_{\mathrm{SM}}^{\mathrm{classical}} = \mathcal{L}_{\mathrm{Yang-M}} \end{array}$$

$$m_{ij}^f = \frac{v}{\sqrt{2}} y_{ij}^f$$

These can be diagonalised:

$$m_{f,i} = \frac{v}{\sqrt{2}} \sum_{k,m}^{3} U_{ik}^{f,L} y_{km}^{f} \left(U_{mi}^{f,R} \right)^{\dagger} \equiv \frac{v}{\sqrt{2}} \lambda_{i}^{f}$$

$$\Phi^c \equiv i\sigma^2 \Phi^*$$

- due to unitarity these matrices drop out in NC interactions: no FCNCs in the SM
- a non-trivial matrix remains in CC interactions: CKM matrix

The global EW fit

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp in line, no
<i>M_H</i> [GeV]	125.1 ± 0.2	yes	$125.1^{+0.2}_{-0.2}$	$100.2^{+24.4}_{-20.6}$	100.3
M_W [GeV]	80.379 ± 0.013	_	80.363 ± 0.007	80.356 ± 0.008	80.356 :
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	$2.091 \pm$
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1879 ± 0.0020	91.1967 ± 0.0099	91.1969 :
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4945 ± 0.0016	$2.4945 \pm$
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.483 ± 0.015	41.474 ± 0.016	41.474 :
R^0_ℓ	20.767 ± 0.025	_	20.744 ± 0.017	20.725 ± 0.026	20.724 :
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01623 ± 0.0001	0.01622 ± 0.0001	0.01624 :
$A_{\ell}^{-}(\star)$	0.1499 ± 0.0018	_	0.1471 ± 0.0005	0.1471 ± 0.0005	$0.1472 \pm$
$\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$	0.2324 ± 0.0012	_	0.23151 ± 0.00006	0.23151 ± 0.00006	0.23150 J
$\sin^2\theta_{\text{eff}}^{\ell}(\text{TEV})$	0.2318 ± 0.0003	_	0.23151 ± 0.00006	0.23150 ± 0.00006	0.23150 J
A_c	0.670 ± 0.027	_	0.6679 ± 0.00022	0.6679 ± 0.00022	$0.6680 \pm$
A_b	0.923 ± 0.020	_	0.93475 ± 0.00004	0.93475 ± 0.00004	0. 9 3475 ±
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	_	0.0737 ± 0.0003	0.0737 ± 0.0003	0.0737 J
$A_{\rm FB}^{0, \overline{b}}$	0.0992 ± 0.0016	_	0.1031 ± 0.0003	0.1033 ± 0.0004	0.1033 J
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	$0.17226 \pm$
R_b^0	0.21629 ± 0.00066	_	0.21579 ± 0.00011	0.21578 ± 0.00012	0.21577 J
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_
\overline{m}_b [GeV]	$4.20 \substack{+0.17 \\ -0.07}$	yes	$4.20 \substack{+0.17 \\ -0.07}$	_	-
$m_t \; ext{[GeV]}^{(igtarrow)}$	173.06 ± 0.94	yes	173.54 ± 0.86	$175.97\substack{+2.11\\-2.12}$	176.00
$\Delta \alpha^{(5)}_{\rm had} (M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2758 ± 10	yes	2756 ± 10	2738 ± 41	2739
$\alpha_s(M_Z^2)$	_	yes	$0.1197 \substack{+0.0030 \\ -0.0029}$	0.1197 ± 0.0030	0.11 9 8 ±

^(*)Average of LEP ($A_{\ell} = 0.1465 \pm 0.0033$) and SLD ($A_{\ell} = 0.1513 \pm 0.0021$) measurements, used as two measurements in the fit. The fit w/o the LEP (SLD) measurement gives $A_{\ell} = 0.1471 \pm 0.0005$ ($A_{\ell} = 0.1469 \pm 0.0005$). ^(\bigtriangledown)Combination of experimental (0.8 GeV) and theory uncertainty (0.5 GeV). ^(†)In units of 10⁻⁵. ^(\bigtriangleup)Rescaled due to α_s dependency.

11

Drell-Yan: M_W measurements

• Motivation: M_W is a derived quantity \rightarrow precise measurement is a stringent test of SM! • Method: template fits of sensitive CC DY distributions $(p_{T,l}, M_T, E_{\text{miss}})$

- Need to control shape effects at the sub-1% level!
- Dominant effects: QCD ISR and QED FSR

\rightarrow Theory precision essential for improvements in mW determination!

EW standard candles at hadron colliders

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$ dimensional scale

X ³		H^6 and H^4D^2		$\psi^2 H^3$	
\mathcal{O}_{G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$\mathcal{O}_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
$ O_W$	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H \right)^{\star} \left(H^{\dagger}D_{\mu}H \right)$	${\cal O}_{{}_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$	
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$\mathcal{O}_{H\tilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$\left(H^{\dagger} i D^{I}_{\mu} H \right) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) $
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	$\mathcal{O}_{_{He}}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	${\cal O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$
\mathcal{O}_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	${\cal O}_{{}_{uB}}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	${\cal O}_{Hq}^{(3)}$	$\left((H^{\dagger}i D^{I}_{\mu} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r}) \right)$
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{{}_{dG}}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$
\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{_{Hd}}$	$(H^{\dagger}i D_{\mu} H)(\bar{d}_p \gamma^{\mu} d_r)$
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	${\cal O}_{_{dB}}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	$\mathcal{O}_{_{Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
$\mathcal{O}_{\iota\iota}$	$(\bar{L}L)(\bar{L}L) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$	\mathcal{O}_{le}	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \end{array} $
$\mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{ee} \mathcal{O}_{uu}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$	$\mathcal{O}_{le} \ \mathcal{O}_{lu}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $
$\mathcal{O}_{ll} \ \mathcal{O}_{qq} \ \mathcal{O}_{qq} \ \mathcal{O}_{qq}^{(3)} \ \mathcal{O}_{qq}^{(3)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \ \mathcal{O}_{dd} \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \end{array}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \end{array} $
\mathcal{O}_{ll} \mathcal{O}_{qq} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & \ \mathcal{O}_{uu} & & \ \mathcal{O}_{dd} & & \ \mathcal{O}_{eu} & & \ \mathcal{O}_{eu} & & \ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	$egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \end{array}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \end{array} $
$egin{array}{c c} & \mathcal{O}_{ll} & & \\ & \mathcal{O}_{qq}^{(1)} & & \\ & \mathcal{O}_{qq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(1)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & \ \mathcal{O}_{uu} & & \ \mathcal{O}_{dd} & & \ \mathcal{O}_{eu} & & \ \mathcal{O}_{eu} & & \ \mathcal{O}_{ed} & & \ \mathcal{O}_{ed} & & \ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \ \mathcal{O}_{qu}^{(1)} & & \ \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$
$egin{array}{c c} & \mathcal{O}_{ll} & & \\ & \mathcal{O}_{qq}^{(1)} & & \\ & \mathcal{O}_{qq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(1)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & \\ \mathcal{O}_{uu} & & \\ \mathcal{O}_{dd} & & \\ \mathcal{O}_{eu} & & \\ \mathcal{O}_{ed} & & \\ \mathcal{O}_{ud}^{(1)} & & \\ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{aligned} & \mathcal{O}_{le} & & \ & \mathcal{O}_{lu} & & \ & \mathcal{O}_{ld} & & \ & \mathcal{O}_{qe} & & \ & \mathcal{O}_{qu}^{(1)} & & \ & \mathcal{O}_{qu}^{(8)} & & \ & \mathcal{O}_{qu}^{$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t) \end{array} $
$egin{array}{c c} & \mathcal{O}_{ll} & & \\ & \mathcal{O}_{qq}^{(1)} & & \\ & \mathcal{O}_{qq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(1)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & \\ \mathcal{O}_{uu} & & \\ \mathcal{O}_{dd} & & \\ \mathcal{O}_{eu} & & \\ \mathcal{O}_{ed} & & \\ \mathcal{O}_{ud}^{(1)} & & \\ \mathcal{O}_{ud}^{(8)} & & \\ \mathcal{O}_{ud}^{(8)} & & \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{array} $	$egin{aligned} & \mathcal{O}_{le} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t) \end{array} $
$egin{array}{c c} & \mathcal{O}_{ll} & & \\ & \mathcal{O}_{qq}^{(1)} & & \\ & \mathcal{O}_{qq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(1)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$egin{aligned} & \mathcal{O}_{ee} & \ & \mathcal{O}_{uu} & \ & \mathcal{O}_{dd} & \ & \mathcal{O}_{eu} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ud} & \ & \mathcal{O}_{ud} & \ & \mathcal{O}_{ud}^{(1)} & \ & \mathcal{O}_{ud}^{(8)} & \ & \mathcal{O}_{u$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{array} $	$egin{aligned} & \mathcal{O}_{le} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$	$egin{aligned} & \mathcal{O}_{ee} & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $B-vio$	$\begin{array}{c c} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \end{array}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t) \end{array}$
$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\rho_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $(\bar{l}_{p}^{j}e_{r})(\bar{d}_{s}q_{t}^{j})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$ $\mathcal{O}_{ud}^{(8)}$	$ \frac{(\bar{R}R)(\bar{R}R)}{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})} \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) $ $ B-vio$	$\begin{bmatrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{bmatrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $
$ \begin{array}{c c} & & & \\ & & $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\rho_{\mu}\tau^{I}l_{r})(\bar{q}_{s}q^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}p_{\mu}r)(\bar{d}_{s}q_{t}^{j})$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} \mathcal{O}_{ud} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$ $\mathcal{O}_{ud}^{(8)}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $ \begin{array}{c} B-\text{vio} \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}) \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\right] \\ \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{matrix}$ lating $\begin{matrix} \alpha \\ p \end{pmatrix}^T C u_r^\beta \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}^{j}q_{\mu}\gamma)(\bar{d}_{s}q_{t}^{j})$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ed} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{ud}	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$ $\begin{array}{c} B\text{-vio} \\ \hline & \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}e_{\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \right] \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \left[(q_{p}^{\alpha}e_{\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \right] \end{array}$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{matrix}$ lating $\begin{matrix} \alpha \\ \beta \\ p \end{matrix} ^T C u_r^\beta \\ \begin{matrix} \beta \\ p \end{matrix} ^T C q_r^{\beta k} \\ \begin{matrix} \alpha \\ \beta \\ p \end{matrix} ^T C q_r^\beta \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $
$\begin{array}{c c} & & & \\ & & &$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}^{j}q_{\mu})(\bar{d}_{s}q_{t}^{j})$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$ $(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ed} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{qqu} \mathcal{O}_{qqq} \mathcal{O}_{qqu} \mathcal{O}_{qqu}	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $ \begin{array}{c} B-\text{vio} \\ \hline \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_{p}^{\alpha})\\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \left[(q_{p}^{\alpha})\\ \varepsilon^{\alpha\beta\gamma}\left[(d_{p}^{\alpha})\right] \end{array} $	$\begin{bmatrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(2)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(2)} \\ \mathcal{O}_{qd}^{(2)} \\ \mathcal{O}_{qd}^{(2)} \end{bmatrix}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$

flavour universality

The global EFT/SMEFT fit

[Ellis, Madigan, Mimasu, Sanze, You]

The global EFT/SMEFT fit

[Ellis, Madigan, Mimasu, Sanze, You]

$d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO}$ NLO QCD O(100%) $+\alpha_{S}^{2} d\sigma_{NNLO}$ O(10%)NNLO QCD $+\alpha_S^3 d\sigma_{NNLO} + \dots$ N3LO QCD O(1%)

 $\alpha_S \sim 0.1$

Higher-order predictions mandatory for reliable predictions

The need for precision

17

Automated in NLO+PS MCs (MG5_aMC@NLO, Sherpa, Powheg,...)

Automated in NLO+PS MCs (MG5_aMC@NLO, Sherpa, Powheg,...)

(public) NNLO fixed-order tools

Automated in NLO+PS MCs (MG5_aMC@NLO, Sherpa, Powheg,...)

(public) NNLO fixed-order tools

← only known for inclusive-H, DY

 $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow | \text{NLO EW} \sim \text{NNLO QCD}$

 $\alpha_{\rm EW} \sim 0.01$

 $\alpha_S \sim 0.1$

• Fixed-order NLO EW largely automated • Still computationally very challenging for high-multiplicity $(2 \rightarrow 5, 6, 7)$ processes: VBS, VVV, off-shell top-processes, ... • Consistent matching to parton showers only available for few selected processes (DY,VV, HV)

Relevance of EW higher-order corrections: virtual Sudakov logs in the tails

I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

Relevance of EW higher-order corrections: collinear QED radiation

exclusive observables.

important for radiative tails, Higgs backgrounds etc.

→ large differences between different photon descriptions. Now settled: LUXqed superior

 \rightarrow O(10%) contributions from photon-induced channels

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{classical}} = \mathcal{L}_{\mathrm{Yang-Mills}}$$

 $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm SM}^{\rm classical} + \mathcal{L}_{\rm gauge-fix} + \mathcal{L}_{\rm ghost}$ At quantum level: (unitary gauge unfeasible at higher-orders in EW) $\mathcal{L}_{\text{gauge-fix}} = -\frac{1}{2} \left(F_A^2 + F_Z^2 + 2F_+ F_- + F_{G^a}^2 \right),$ $F_{A} = \frac{1}{\xi^{A}} \partial^{\mu} A_{\mu}, \qquad \qquad F_{G^{a}} = \frac{1}{\xi^{G}} \partial^{\mu} G^{a}_{\mu},$ $F_{Z} = \frac{1}{\xi^{Z}} (\partial^{\mu} Z^{0}_{\mu} - m_{Z} \xi^{Z} \chi^{0}), \qquad \qquad F_{\pm} = \frac{1}{\xi^{W}} (\partial^{\mu} W^{\pm}_{\mu} \mp i m_{W} \xi^{W} \phi^{\pm})$ Gauge fixing parameter

The EW SM at quantum level in a nutshell

 $_{\rm Is} + \mathcal{L}_{\rm Fermi} + \mathcal{L}_{\rm Yukawa} + \mathcal{L}_{\rm Higgs}$

 $\mathcal{L}_{\text{ghost}} \stackrel{\searrow}{=} \bar{u}^{\alpha}(x) \frac{\delta F^{\alpha}}{\delta \theta^{\beta}(x)} u^{\beta}(x)$

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{\mu}^{a} M^{2} \partial_{\nu}^{a} g_{\mu}^{a} - \frac{1}{2} \partial_{\mu} A_{\mu} \partial_{\mu} A_{\nu} - \partial_{\nu} (\partial_{\nu} A_{\mu}^{a}) W_{\mu}^{-} - M^{2} W_{\mu}^{+} - \frac{1}{2} \partial_{\mu} A_{\mu} \partial_{\mu} A_{\nu} - i g_{\sigma_{\mu}} (\partial_{\nu} A_{\mu}^{a}) W_{\nu}^{-} - W_{\nu}^{+} \partial_{\nu} W_{\nu}^{+} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} + M^{2}_{\nu} \partial_{\nu} W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} + M^{2}_{\nu} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} + M^{2}_{\nu} \partial_{\nu} W_{\nu}^{-} + W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} + M^{2}_{\nu} \partial_{\nu} W_{\nu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} - W_{\nu}^{-} \partial_{\nu} W_{\nu}^{+} + M^{2}_{\nu} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{+} + \frac{1}{2} g^{2} W_{\nu}^{+} W_{\nu}^{-} - \frac{1}{2} g^{2} \partial_{\nu} \partial_{\nu} \partial_{\nu} - g_{\nu}^{-} \partial_{\mu} \partial_{\nu} \partial_{\nu} + 2 d_{\nu} \partial_{\nu} \partial_{\nu} - g_{\nu}^{-} \partial_{\mu} \partial_{\nu} \partial_{\nu} + 2 d_{\nu} \partial_{\nu} \partial_{\nu} - \frac{1}{2} g^{2} W_{\nu}^{+} W_{\nu}^{-} - \frac{1}{2} g^{2} \partial_{\mu} \partial_{\nu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{+} W_{\mu}^{-} + \frac{1}{2} g^{2} W_{\nu}^{-} W_{\mu}^{-} - \frac{1}{2} g^{2} \partial_{\mu} \partial_{\nu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{+} W_{\mu}^{-} - \frac{1}{2} g^{2} \partial_{\nu} \partial_{\nu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{+} W_{\mu}^{-} - \frac{1}{2} g^{2} \partial_{\mu} \partial_{\nu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{+} W_{\mu}^{-} - \frac{1}{2} g^{2} \partial_{\mu} \partial_{\nu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{+} W_{\mu}^{-} + \frac{1}{2} g^{2} W_{\nu}^{+} (H^{2} \phi^{0})^{2} + \frac{1}{2} g^{2} W_{\nu}^{+} (H^{2} \phi^{0})^{2} + \frac{1}{2} g^{2} W_{\nu}^{+} (\partial_{\nu} \partial_{\nu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{-} (\partial_{\mu} \partial_{\mu} \partial_{\nu} - \partial_{\nu} \partial_{\mu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{-} (\partial_{\mu} \partial_{\mu} \partial_{\nu} + \frac{1}{2} g^{2} W_{\nu}^{-} (\partial_{\mu} \partial_{\mu} \partial_{\mu} \partial_{\mu} - \frac{1}{2} g^{2} W_{\nu}^{-} (\partial_{\mu} \partial_{\mu} \partial_{\mu} \partial_{\mu} - \frac{1}{2} g^{2} W_{\nu}^{-} (\partial_{\mu} \partial_{\mu} \partial_{$$

• NLO partonic cross section for a $2 \rightarrow n$ process can be written as

$$d\hat{\sigma}_{\rm NLO} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\rm LO}|^2 + 2\operatorname{Re}\{\mathcal{M}_{\rm LO}\mathcal{M}_{\rm NLO,V}^*\} \right] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\rm NLO,R}|^2$$

$$NLO = B + V + R$$

 $\int a \Psi_{n(+1)}$ n or n+1 particle phase space

Note: real radiation might open up new partonic channels!

NLO Ingredients

NLO Tools: automation of NLO ${\sf EW}$

• Add local subtraction terms S, and corresponding integrated subtraction term I

$$d\hat{\sigma}_{\text{NLO}} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\text{LO}}|^2 + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}_{\text{NLO,V}}^*\} + I \right] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\text{NLO,R}}|^2 - S$$

• ...

- NLO Monte-Carlo integrators (+subtraction):
 - MadGraph_aMC@NLO (FKS)
 - Sherpa (CS)
 - POWHEG-BOX (FKS)
- NLO fixed-order integrators:
 - MUNICH/Matrix (CS)
 - ...

- one-loop (& tree) amplitude provider:
 - MadLoop (OpenLoops)
 - GoSam (Unitarity & OPP)
- OpenLoops (OpenLoops)
- Recola (NLO Recursion)
 - integral reduction libraries:
 - CutTools
 - Golem95
 - COLLIER
 - Ninja

• ...

- scaler one-loop libraries
 - QCDLoop
 - OneLoop
- COLLIER

• ...

NNLO Ingredients

• NNLO partonic cross section for a $2 \rightarrow n$ process can be written as

$$d\hat{\sigma}_{\text{NNLO}} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\text{LO}}|^2 + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}_{\text{NLO,V}}^*\} + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}_{\text{NNLO,V}}^*\} \right]$$

+
$$\frac{1}{2s} \int d\Phi_{n+1} \left[|\mathcal{M}_{\text{NLO,R}}|^2 + 2\text{Re}|\mathcal{M}_{\text{NLO,R}}\mathcal{M}_{\text{NNLO,RV}}^*| \right] + \frac{1}{2s} \int d\Phi_{n+2}|\mathcal{M}_{\text{NNLO,RR}}|^2$$

+
$$R + RV + RR$$

 $d\Phi_{n(+1)}$ n, n+1, n+2 particle phase space

 $\Delta NLO \\ \propto \alpha \qquad \begin{cases} \mathcal{M}_{NLO,V} & \text{virtual one-loop matrix element} \\ \mathcal{M}_{NLO,R} & \text{real tree-level matrix element} \end{cases}$

 $\mathcal{M}_{\mathrm{NLO,R}}$

 $M_{\rm NNLO,V}$ double-virtual two-loop matrix element

Nontrivial features in NLO QCD \rightarrow NLO EW

I. photon contributions in jets and proton \rightarrow photon-jet separation, γ PDF

3. QCD-EW interplay

At NLO EW corrections in production, decay and non-factorizable contributions for V decays
 → complex-mass-scheme

4. virtual EW corrections more involved than QCD (many internal masses)

Decays of heavy particles

- massive particles

- However: this summation mixes different order of perturbation theory. Thus, in general it might (and will) **break gauge invariance when applied naively**.
- (Usually) not a problem at LO, i.e. also not for vector boson decays into leptons at NLO QCD
- Alternative: narrow-width approximation (NWA) Advantage: reduces complexity in NLO compu However: unable to capture off-shell effects

$$\Gamma/M \to 0: \int_{-\infty}^{\infty} \frac{dk^2}{(k^2 - m^2)^2 + m^2\Gamma} = \frac{\pi}{m\Gamma} \delta(k^2 - m)$$
utation
$$\int_{-\infty}^{-\infty} d\sigma = d\sigma_{\rm prod} \frac{d\Gamma_{\rm dec}}{\Gamma}$$

The need for off-shell computations:VV

[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;' I 6]

 \rightarrow sizeable differences in fully off-shell vs. double-pole approximation in tails

Decays of heavy particles

decay and non-factorizable contributions have to be considered.

- Scheme of choice: complex-mass-scheme [Denner, Dittmaier, et. al.]
 - gauge invariant and exact NLO
 - computationally expensive: one extra leg \bullet
- Analytical continuation at the level of the La ➡effects propagators, incl. numerators →all derived couplings, incl. weak mixing angl →position of the pole in the renormalisation

Leptonic decays of gauge bosons are trivial at NLO QCD. At NLO EW corrections in production,

g per two-body decay
agrangian:
$$M \to \mu = M - i\Gamma M$$

le: $\sin \theta_W^2 = 1 - \frac{\mu_W^2}{\mu_Z^2}$
Renormalised self-end
 $\hat{\Sigma}^i(p^2) = \Sigma^i(p^2) - \delta$
with $\delta \mu_i^2 = \Sigma^i(p^2)$

$d\sigma = d\sigma_{\rm LO} + \alpha_{\rm S} d\sigma_{\rm NLO} + \alpha_{\rm EW} d\sigma_{\rm NLO EW}$ NLO QCD NLO EW $+ \alpha_S^2 \,\mathrm{d}\sigma_{\mathrm{NNLO}}$

NNLO QCD

Perturbative expansion: revised

aMC@NLO, Sherpa, Herwig... & Recola, Madloop, Gosam, OpenLoops

dedicated MC's: Matrix, ...

scale variation at NNLO

sufficient?

EW corrections become sizeable at large p_{T,V}: -30% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}(\alpha^2)$?

Large EW corrections dominated by Sudakov logs

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

Universality and factorisation: [Denner, Pozzorini; '01]

$$\delta \mathcal{M}_{\text{LL+NLL}}^{1-\text{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\text{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\} \mathcal{M}_{0}$$

Large EW corrections dominated by Sudakov logs

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

 $\Delta_{\rm EW}^{\rm Sud} \approx \left(k_{\rm NLOEW}\right)^2$

 $\Delta_{\rm EW}^{\rm hard} \approx O(1\%)$

e.g. from scheme variation, e.g. Gmu vs. a(mZ)

Large EW corrections dominated by Sudakov logs

[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

Tools for EW Sudakov corrections

 $C_0^{\text{eik}} \equiv \frac{1}{(p_k + p_l)^2} \left[\log^2 \frac{|r_{kl}|}{M_V^2} - 2i\pi\Theta(r_{kl}) \log \frac{|r_{kl}|}{M_V^2} \right]$

Towards matching of NLO EW to parton showers

• Naive $NLO_{VI} EVV+PS$ matching available in Sherpa \rightarrow CSS dipole shower (not resonance aware) \Rightarrow significant mismodelling \Rightarrow YFS resummation (resonance aware) \Rightarrow valid approximation

YFS (Multi-Photon-Resummation) preserves resonance structure \rightarrow EW effects agree at the few percent level.

Source of differences:

- •Multi-poton effects in YFS
- •Resonance-assignment in YFS

CSS (Catani-Seymour-Shower) unaware of resonance structure → QED effects largely overestimated

Resonance-aware matching: off-shell top-pair

Resonance-aware matching: off-shell top-pair

q

 \overline{q}

- •In a traditional off-shell NLO+PS calculation:

subtraction, matching and PS do not see/preserve intermediate resonances • any (necessary) reshuffling/recoil might distort kinematic shapes!

Problem in POWHEG language

- ► Already at **NLO**:

 $(\Phi_{\rm B}, \Phi_{\rm rad}) \longleftrightarrow \Phi_{\rm R}^{(\alpha)}$ from FKS mappings

• IR cancellation spoiled

\Rightarrow severe efficiency problem!

More severe problems at NLO+PS:

• in POWHEG:

$$d\sigma = \bar{B}(\Phi_{\rm B}) d\Phi_{\rm B} \left[\Delta(q_{\rm cut}) + \sum_{\alpha} \Delta(k_T^{\alpha}) \frac{R_{\alpha}(\Phi_{\alpha}(\Phi_{\rm B}, \Phi_{\rm rad}))}{B(\Phi_{\rm B})} d\Phi_{\rm rad} \right]$$
Sudakov form-factor generated from uncontrollable R/B ratios:

$$\Delta \left(\Phi_B, p_{\mathrm{T}} \right) = \exp \left\{ -\sum_{\alpha} \int_{k_{\mathrm{T}} > p_{\mathrm{T}}} \frac{R(\Phi_{\mathrm{R}}^{(\alpha)})}{B(\Phi_{\mathrm{B}})} \, \mathrm{d}\Phi_{\mathrm{rad}}^{(\alpha)} \right\}$$

preserve the virtuality of intermediate resonances.

\Rightarrow expect uncontrollable distortion of important kinematic shapes!

• FKS (and similar CS) subtraction does not preserve virtuality of intermediate resonances • Real (R) and Subtraction-term ($S \sim B$) with different virtuality of intermediate resonances

• also subsequent radiation by the **PS** itself reshuffles internal momenta and does in general not

The resonance-aware bb4l generator [Jezo, JML, Nason, Oleari, Pozzorini, '16]

- Full process $pp \rightarrow b\overline{b}e^+\nu_e\mu^-\overline{\nu}_\mu$ with massive b's (**4FS scheme**)
- Implemented in the POWHEG-BOX-RES framework

Physics features:

- exact non-resonant / off-shell / interference / **spin-correlation** effects at NLO
- unified treatment of **top-pair and Wt** production with interference at NLO
- consistent NLO+PS treatment of top **resonances**, including quantum corrections to top propagators and off-shell top-decay chains

Standard POWHEG matching:

- Standard FKS/CS subtraction does not preserve virtuality of intermediate resonances \rightarrow R and B $(\sim S)$ with different virtualities.
- R/B enters POWHEG matching via generation of radiation and via Sudakov form-factor

 \rightarrow uncontrollable distortions

Resonance-aware POWHEG matching: [lezo, Nason, '15]

- Separate process in resonances histories
- Modified FKS mappings that retain virtualities

sufficient?

Mixed QCD-EW uncertainties

 $pT_j > 30 \text{ GeV}$

54

EW uncertainties: QCD-EW interplay [M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- ► NNLO/NLO QCD very small at large pTV2
- NNLO QCD uncertainty: few percent

$$\sigma_{\rm e} = d\sigma_{\rm LO} \left(1 + \delta_{\rm QCD} + \delta_{\rm EW} \right) + d\sigma_{\rm LO}^{gg}$$
$$= d\sigma_{\rm LO} \left(1 + \delta_{\rm QCD} \right) \left(1 + \delta_{\rm EW} \right) + d\sigma_{\rm LO}^{gg}$$
$$= d\sigma_{\rm NNLO QCD + EW} + d\sigma_{\rm LO} \delta_{\rm QCD} \delta_{\rm EW}$$

•difference very conservative upper bound on $\mathcal{O}(\alpha_S \alpha)_{:} \mathrm{d}\sigma_{\mathrm{LO}} \,\delta_{\mathrm{QCD}} \,\delta_{\mathrm{EW}}$

• multiplicative/factorised combination superior (EW Sudakov logs x soft QCD)

•alternative: $\delta_{\rm EW}^{\rm NLL} = \delta_{\rm EW}^{\rm DL} + \delta_{\rm EW}^{\rm SL} + \delta_{\rm EW}^{\rm non-log}$ $\rightarrow \mathcal{O}(\alpha_S \alpha) = d\sigma_{\rm LO} \,\delta_{\rm QCD} \,(\delta_{\rm EW}^{\rm SL} + \delta_{\rm EW}^{\rm non-log})$

Combination of QCD and EW corrections

- full calculations of $\mathcal{O}(\alpha \alpha_s)$ out of reach
- Approximate combination: MEPS@NLO including (approximate) EW corrections
- key: QCD radiation receives EW corrections!
- strategy: modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections = VI

$$\overline{B}_{n,QCD+EW_{virt}}(\Phi_n) = \overline{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n)$$

exact virtual contribution
approximate integrated real contribution

ASSOCIATED CONTRIBUTIONS VARIATIONS EW;

• In general combined expansion in α_s and α necessary:

- $(\alpha_s^{n-2}\alpha^{m+2}) + \dots$
- n contributions'': LO2, LO3

• In general combined expansion in α_s and α necessary:

$$d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1})$$

$$(LO) \quad \text{``subleading Bon}$$

$$O(\alpha) \quad O(\alpha)$$

$$\cdots + \sigma(\alpha_s^{n+1} \alpha^m) + d\sigma(\alpha_s^n \alpha^{m+1}) + (\alpha_s^n \alpha^{m+1}) + (\alpha_s^$$

- $^{1}) + \sigma(\alpha_{s}^{n-2}\alpha^{m+2}) + \dots$
- n contributions'': LO2, LO3

 $+ \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$

"subleading one-loop contributions": NLO3, NLO4

• In general combined expansion in α_s and α necessary:

$$d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1})$$

$$LO \quad \text{``subleading Born}$$
• also at NLO:

$$\cdots + \sigma(\alpha_s^{n+1} \alpha^m) + d\sigma(\alpha_s^n \alpha^{m+1}) +$$

$$\text{``NLO QCD''} \quad \text{``NLO EW''}$$

$$\downarrow^{\sigma^{\sigma} \sigma^{\sigma} \sigma^{\sigma} \sigma^{\sigma}} \downarrow^{\sigma^{\sigma}}$$

- $+ \sigma(\alpha_s^{n-2}\alpha^{m+2}) + \dots$
- n contributions'': LO2, LO3

 $\sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$

"subleading one-loop contributions": NLO3, NLO4

• In general combined expansion in α_s and α necessary:

Example: $q\overline{q} \rightarrow q\overline{q}$

• In general combined expansion in α_s and α necessary:

$$\sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"subleading one-loop contributions": NLO3, NLO4

- No diagrammatic separation in NLO QCD
- An IR finite & gauge invariant result is only obtained including all virtual and real contributions of a given perturbative order.

Example: dijet production at the LHC

Be aware of double counting: LO3 = DY with hadronic decays

QCD-background interference

LO NLO

VV+2jets production

- direct access to quartic EW gauge couplings
- VBS: longitudinal gauge bosons at high energies
- window to electroweak symmetry breaking via off-shell Higgs exchange (ensures unitarity)

QCD-background interference

 $d\sigma = d\sigma(\alpha_S^2 \alpha^4) + d\sigma(\alpha_S \alpha^5) + d\sigma(\alpha^6) + \dots$ LO $\mathcal{O}(\alpha_s) \qquad \qquad \qquad \mathcal{O}(\alpha) \qquad \qquad \mathcal{O}(\alpha) \qquad \qquad \mathcal{O}(\alpha) \qquad \qquad \mathcal{O}(\alpha) \qquad \qquad \mathcal{O}(\alpha)$ $\cdots + d\sigma(\alpha_S^3 \alpha^4) + d\sigma(\alpha_S^2 \alpha^5) + d\sigma(\alpha_S \alpha^6) + \sigma(\alpha^7)$ NLO "NLO QCD" "NLO EW" "NLO QCD"

separation formally meaningless at NLO

VV+2jets production

- direct access to quartic EW gauge couplings
- VBS: longitudinal gauge bosons at high energies
- window to electroweak symmetry breaking via off-shell Higgs exchange (ensures unitarity)

- "NLO EW"
- always also consider measurements: fiducial cross sections without QCD subtraction

[Biedermann, Denner, Pellen '16+'17]

VBS-W+W+ @ full NLO

•2 \rightarrow 6 particles at NLO EW! • highly challenging computation!

	$\mathcal{O}(lpha^7)$	$\mathcal{O}(lpha_{ m s}lpha^6)$	$\mathcal{O}(lpha_{ m s}^2 lpha^5)$	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$	Sum
b]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
LO [%]	-13.2	-3.5	0.0	-0.4	-17.1

Conclusions

- Precision is key for EW measurements, as well as for searches.
- Global EFT/SMEFT allows to constrain BSM at higher scales • EW corrections become large at the TeV scale
- Fixed-order NLO EW largely automated
- NLOPS including EW corrections available for dedicated processes and in different approximations
- Higher-order EW and mixed QCD-EW uncertainties are becoming relevant.

Questions?

These Lectures are partly based on:

- Stefan Weinzierl, DESY Monte Carlo school, 2012
- Ansgar Denner, DESY Monte Carlo school, 2014
- Andreas van Hameren, DESY Monte Carlo school, 2017
- Giulia Zanderighi, Graduate Course on QCD, 2013
- Rikkert Frederix, MCnet Summer School, 2015
- Gavin Salam, Basics of QCD, ICTP–SAIFR school on QCD and LHC physics, 2015 Marek Schönherr, CTEQ-MCnet School, 2021

References

Backup

71

Convergence of the perturbative expansion: Drell-Yan

- → Higher-orders are crucial for reliable predictions
- →Use these precision predictions to
- ▶ stress-test the SM: QCD and EW
- determine parameters and PDFs!

- NNLO calculation first performed for the inclusive cross section [Van Neerven et al., 1990] \rightarrow NNLO/NLO at the few percent level
- Rapidity distribution: 13 years later!
- Bands obtained by studying scale variations varied in $\mu = [m_Z/2, 2m_Z]$
- LO and NLO bands do not overlap! ➡Error estimate at LO largely underestimated!
- large contribution coming from qg channel that opens up at NLO
- NLO and NNLO bands do overlap
- ➡Reliable error estimate only when all partonic channels contribute

UNIVERSITAT WÜRZBURG

UNIVERSITÄT

WÜRZBURG

Julius-Maximilians-

 $\int d\Phi_n = (2\pi)^4 \delta^{(4)} \left(P - \sum_{i=1}^n q_i \right) \prod_{i=1}^n \frac{d^3 q_i}{(2\pi)^3 2E_i} \qquad \text{n-particle phase-space}$

 $\mathcal{M}_{\mathrm{LO}}$

$$s = P^2 = (\hat{p}_1 + \hat{p}_2)^2$$

squared centre-of-mass energy of hard process

- Integration over phase space by Monte Carlo methods
- \rightarrow any distribution/histogram can be determined simultaneously
- ➡ Monte Carlo events can be unweighted
- Integration over phase space analytically
- → very fast evaluation
- → analytical structure of the result can be investigated

73

• Expansion in a small coupling α :

$$d\sigma = d\sigma(\alpha^n) + d\sigma(\alpha^{n+1})$$

LO NLO

- at the LHC consider in particular $\alpha = \alpha_s$ (QCD coupling), but also $\alpha = \alpha_{EW}$ (EW coupling) relevant \rightarrow later!
- In QCD running strong coupling: $\alpha_S = \alpha_S(\mu) = \frac{1}{b_0 \ln \frac{\mu^2}{\Lambda^2}} + \dots$

$$d\sigma^{\rm LO}(\mu) = \alpha_S(\mu)^n A^{\rm LO}$$

$$\to d\sigma^{\rm LO}(\mu') = \alpha_S(\mu')^n A^{\rm LO} = \alpha_S(\mu)^n \left(1 + nb^2\right)$$

- So the change of scale is an NLO effect ($\propto \alpha_s$).
- At LO the normalisation is not under control:

Precision for tails of kinematic distributions: direct searches for new physics

Precision for tails of kinematic distributions: indirect searches for new physics

→Theory precision opens the door to new analysis strategies!

- . q Look for BSM effects in small deviations from SM predictions: → Higgs processes natural place to look at
- \rightarrow very good control on theory necessary!

Collinear f \rightarrow fy singularities

- •cancelled clustering f and \mathbf{Y} , within cone of $\Delta R_{f\gamma}$, typically $\Delta R_{f\gamma} = 0.1$
- or regularised via fermion masses (at LHC only relevant for $f = \mu$)
- → problematic for QCD IR safety

Collinear f \rightarrow fy singularities

- •cancelled clustering f and \mathbf{Y} , within cone of $\Delta R_{f\gamma}$, typically $\Delta R_{f\gamma} = 0.1$
- or regularised via fermion masses (at LHC only relevant for $f = \mu$)
- → problematic for QCD IR safety
- Solution: democratic jet-algorithm approach, partonic jets $\equiv \{q, g, \gamma, l\}$

Solution: democratic jet-algorithm approach, partonic jets = {q, g, γ , l)

cancelled in jet-production at NLO EW combined with γ -production at NLO QCD

- However: this yields soft gluon singularities \leftrightarrow hard photons inside jets

Solution: democratic parton approach $p = \{q, g, \gamma, l\}$ already at the level of the process definition

$$\mathcal{O}(\alpha^2 \alpha_S)$$

- In this democratic approach a single isolated photon or lepton constitutes a jet. I.e. this essentially means: one multi-jet merged $pp \rightarrow n jets$ sample for all SM processes.
- Problems:
 - I. How can we now define physical objects that are not jets? I.e leptons and photons.
 - 2. Huge number of processes would have to be generated together. computationally not feasible.
- Separation of jets from photons through $E_{\mathbf{Y}}/E_{jet} < z_{thr}$ inside jets (same for leptons)
 - rigorous approach: fragmentation functions
 - approximation: $q\mathbf{Y}$ recombination in small cone

Solution: democratic parton approach $p = \{q, g, \gamma, l\}$ already at the level of the process definition.

difference < 1% for typical $z_{thr} \sim 0.5$ (analysis dependent)

QED parton showers: YFS

- The Sherpa module PHOTONS implements the YFS approach for higher-order QED corrections
- YFS:
 - allows to resum universal leading soft logarithms to all orders.
 - → can systematically be improved order-byorder through the inclusion of full fixedorder matrix elements, e.g. for V → |+|-
 - → available within any high-precision QCD simulation in Sherpa: MEPS@NLO, UN²LOPS→Allows to study O(aa_s) effects.

Resonance aware POWHEG

Rigorous solution to all these issues within POWHEG-BOX-RES []ežo, Nason; '15]

Idea: preserve invariant mass of intermediate resonances at all stages!

\checkmark NLO:

- within a given resonance history **modify FKS mappings**, such that they *always* preserve intermediate resonances \Rightarrow IR cancellation restored

✓ NLO+PS:

• R and B related via modified FKS mappings \Rightarrow R/B ratio with fixed virtuality of intermediate resonances \Rightarrow Sudakov form-factor preserves intermediate resonances

√ PS:

- tell **PS to respect intermediate resonances** (available in Pythia8)

 \Rightarrow resulting resonance-aware MC indispensable for precision top-mass measurements

• Split phase-space integration into regions dominated by a single resonance history

 \Rightarrow R and S~B *always* with same virtuality of intermediate resonances

$$(\Phi_{\rm B}, \Phi_{\rm rad}) \stackrel{\mathsf{RES}}{\longleftrightarrow} \Phi_{\rm R}^{(\alpha)}$$

• pass information about resonance histories to the shower (via extension of LHE)

Resonance-aware PS matching @ NLO QCD + NLO EW [Chiesa, Re, Oleari '20]

• Missing: photon-induced channels

NLO (QCD + EW) PS (QCD + QED)/ NLO QCD PS (QCD + QED)

NLO (QCD + EW) PS (QCD + QED)/NLO QCD PS QCD

