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Machine learning for particle physics?
Part I



Why care about ML in particle physics?



Why do we care about ML?

simulation and modeling, lead to new discoveries, 
and foster cross-disciplinary collaboration
“ We care about machine learning because it 

can improve data analysis,

ChatGPT
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Giving you the ideas to use it right!



How machine learning often feels like 

Aim of this lecture: 

Giving you the ideas to use it right!

Be aware! 

The core of machine learning is to find 
structure in data - no more no less!
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ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

Phase-space generation



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Monte Carlo integration



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f
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x∼g(x)
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I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Monte Carlo integration



Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

Fit bins with equal probability

and varying width



Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width



How can we do better?



Normalizing Flows
Part II



Normalizing flow — Basics

x z

forward G

Inverse  G−1 ≡ G

pz(z)p(x)
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Normalizing flow — Basics

x z

forward G

Inverse  G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

pθ(x) = pz(z = Gθ(x)) ⋅
∂Gθ(x)

∂x



log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x
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Normalizing flow — Basics

x z

forward G

inverse  G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

generation/sampling

density estimation



How to train it?



Normalizing flow — Training
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Normalizing flow — Training

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

Match  with pθ(x) pdata(x)



Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
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∂Gθ(x)

∂x

Match  with pθ(x) pdata(x)



Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics
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forward G
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Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
pθ(x)

= − ∫ dx pdata(x) log pθ(x) + ∫ dx pdata(x) pdata(x)

Negative log-likelihood loss: LNLL = − ∫ dx pdata(x) log pθ(x) ≈ ⟨−log pθ(x)⟩x∼pdata

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Match  with pθ(x) pdata(x)

No  dependeneθ
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Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is  matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹

Solution: Autoregressive transformations z =
z1
⋮
zd

x =
x1
⋮
xd

z1 ≡ z1(x1)
z2 ≡ z2(x1, x2)
⋮
zd ≡ zd(x1, x2, …, xd)

Jij(x) =

∂z1

∂x1

∂z2

∂x1
…

∂zd

∂x1

0 ∂z2

∂x2
…

∂zd

∂x1

⋮ ⋱ ⋮

0 … 0
∂zd

∂xd

det J = ∏
i

Jii ∼ 𝒪(d) ☺

Requires tractable Jacobian!
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Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

What is the function ?C
Jij(x) =

∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine
[1605.08803]

CA = αθ(xB) ⋅ xA + μθ(xB)

parametrized by NN

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine

Quadratic

Rational 
quadratic

[1605.08803]

[1808.03856]

[1906.04032]

CA = αθ(xB) ⋅ xA + μθ(xB)

C = a x2 + b x + c

C =
a x2 + b x + c
d x2 + e x + f

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine

Quadratic

Rational 
quadratic

[1605.08803]

[1808.03856]

[1906.04032]

CA = αθ(xB) ⋅ xA + μθ(xB)

C = a x2 + b x + c

C =
a x2 + b x + c
d x2 + e x + f

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



[2212.06172]

Neural Importance Sampling
Part III — MadNIS

 [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145]

https://arxiv.org/abs/2212.06172


MadNIS — Basic functionality

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)



I = ∑
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f(x)
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Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Latent space z

Channel i

⟨αi(x)
f(x)
gi(x) ⟩

Normalizing 
Flow i

Analytic Channel 
mapping i

 Φ ⊆ ℝN
Phase space Learned channel 

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Basic functionality



Latent space z Conditional Splitting

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel 
mapping 1

Analytic channel 
mapping 2

Analytic channel 
mapping k

⟨α2(x′ )
f(x′ )
g2(x′ ) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′ ′ )
f(x′ ′ )
gk(x′ ′ ) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2

Normalizing 
Flow k

Combination of 
 channelsk

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

MadNIS — Basic functionality



MadNIS — Overview

Neural 
Channel 
Weights

Buffered 
Training

Symmetries 
between 
channels

VEGAS 
Initialization

Normalizing 
Flow

Trainable 
Rotations

MadGraph 
matrix 

elements

MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS
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Flow

Trainable 
Rotations

MadGraph 
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MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

VEGAS initialization

Overflow 
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VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization



y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

VEGAS grid

Bin reduction

Initialization

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization



Bin reduction
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64 VEGAS bins
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10 RQS bins

0.0 0.2 0.4 0.6 0.8 1.0
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64 VEGAS bins

Bin reduction
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Channel 
Weights
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Stratified 
Sampling/ 
Training

Symmetries 
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VEGAS 
Initialization

Normalizing 
Flow

Trainable 
Rotations

MadGraph 
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MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS
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Overflow 
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Online Training
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LHC example I — Drell-Yan
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LHC example III — W + 2 jets
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Take-home message

Summary and Outlook

• Fast and precise predictions with 
ML-based simulations

Future exercises

• Account for uncertainties with 
Bayesian neural networks

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

ℒ
Theory Shower EventsHard process Hadronization Detectors

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

5@

• Normalizing flows provide statistically 
well-defined likelihoods for inference

https://arxiv.org/abs/2203.00057
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• Stay tuned for many other ML4HEP applications

• More details in our Snowmass report
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