Machine Learning for Event Generation

Sapienta ex machina?

IIUCLouvain
MCnet School 2023 - Durham
Ramon Winterhalder - UC Louvain

Plan of attack

1. Machine learning for particle physics?
2. Normalizing flows
3. MadNIS
4. Summary and discussion

PartI

Machine learning for particle physics?

Why care about ML in particle physics?

Why do we care about ML?

4
We care about machine learning because it can improve data analysis, simulation and modeling, lead to new discoveries, and foster cross-disciplinary collaboration

ChatGPT

How machine learning often feels like

Aim of this lecture:

Giving you the ideas to use it right!

How machine learning often feels like

Aim of this lecture:

Giving you the ideas to use it right!

Be aware!

The core of machine learning is to find structure in data - no more no less!

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.

LHC analysis (oversimplified)

Fundamental Theory

Simulation

LHC analysis + ML

ML improved simulations

ML improved simulations

ML improved simulations

ML improved simulations

Monte Carlo integration

Monte Carlo integration

Monte Carlo integration

Importance sampling - VEGAS

Factorize probability

$$
p(x)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)
$$

Fit bins with equal probability and varying width

Importance sampling - VEGAS

Factorize probability

$$
p(x)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)
$$

\downarrow
Fit bins with equal probability and varying width

$\rightarrow \oplus$ Computationally cheap
\ominus High-dim and rich peaking functions
\rightarrow slow convergence
\ominus Peaks not aligned with grid axes
\rightarrow phantom peaks

How can we do better?

Part II

Normalizing Flows

Normalizing flow - Basics

Normalizing flow - Basics

Conservation of probability: $p(x) \mathrm{d} x=p_{z}(z) \mathrm{d} z \quad$ with $\quad z=G(z) \quad x=\bar{G}(x)$

Normalizing flow - Basics

Conservation of probability: $\quad p(x) \mathrm{d} x=p_{z}(z) \mathrm{d} z \quad$ with $\quad z=G(z) \quad x=\bar{G}(x)$
Change-of-variables formula: $p_{\theta}(x)=p_{z}\left(z=G_{\theta}(x)\right) \cdot\left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$

Normalizing flow - Basics

Conservation of probability: $p(x) \mathrm{d} x=p_{z}(z) \mathrm{d} z \quad$ with $\quad z=G(z) \quad x=\bar{G}(x)$
Change-of-variables formula: $\quad \log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$

Normalizing flow - Basics

Conservation of probability:

$$
p(x) \mathrm{d} x=p_{z}(z) \mathrm{d} z \quad \text { with } \quad z=G(z) \quad x=\bar{G}(x)
$$

Change-of-variables formula: $\quad \log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$

How to train it?

Normalizing flow — Training

forward G

$$
\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|
$$

Normalizing flow — Training

forward G

$$
\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|
$$

\longrightarrow Match $p_{\theta}(x)$ with $p_{\text {data }}(x)$

Normalizing flow — Training

forward G

$$
\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|
$$

Kullback-Leibler divergence:

$$
\begin{aligned}
\operatorname{KL}\left(p_{\text {data }}(x) \mid p_{\theta}(x)\right) & =\int \mathrm{d} x p_{\text {data }}(x) \log \frac{p_{\text {data }}(x)}{p_{\theta}(x)} \\
& =-\int \mathrm{d} x p_{\text {data }}(x) \log p_{\theta}(x)+\int \mathrm{d} x p_{\text {data }}(x) p_{\text {data }}(x)
\end{aligned}
$$

Normalizing flow — Training

forward G

$$
\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|
$$

Kullback-Leibler divergence:

$$
\begin{aligned}
\operatorname{KL}\left(p_{\text {data }}(x) \mid p_{\theta}(x)\right) & =\int \mathrm{d} x p_{\text {data }}(x) \log \frac{p_{\text {data }}(x)}{p_{\theta}(x)} \\
& =-\int \mathrm{d} x p_{\text {data }}(x) \log p_{\theta}(x)+\int \mathrm{d} x p_{\text {data }}(x) p_{\text {data }}(x)
\end{aligned}
$$

Normalizing flow — Training

forward G

$$
\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right|
$$

Kullback-Leibler divergence:

$$
\begin{aligned}
\operatorname{KL}\left(p_{\text {data }}(x) \mid p_{\theta}(x)\right) & =\int \mathrm{d} x p_{\text {data }}(x) \log \frac{p_{\text {data }}(x)}{p_{\theta}(x)} \\
& =-\int \mathrm{d} x p_{\text {data }}(x) \log p_{\theta}(x)+\int \mathrm{d} x p_{\text {data }}(x) p_{\text {data }}(x)
\end{aligned}
$$

Negative log-likelihood loss:

$$
L_{\mathrm{NLL}}=-\int \mathrm{d} x p_{\mathrm{data}}(x) \log p_{\theta}(x) \approx\left\langle-\log p_{\theta}(x)\right\rangle_{x \sim p_{\text {data }}}
$$

Tractable Jacobian?

$\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right| \rightarrow$ Requires tractable Jacobian!

Tractable Jacobian?

$\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right| \rightarrow$ Requires tractable Jacobian!
In general: $g(x)=\left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$ is $d \times d$ matrix \rightarrow Scales with $\mathcal{O}\left(d^{3}\right):$

Tractable Jacobian?

$\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right| \rightarrow$ Requires tractable Jacobian!
In general: $g(x)=\left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$ is $d \times d$ matrix \rightarrow Scales with $\mathcal{O}\left(d^{3}\right):$
Solution: Autoregressive transformations $\quad z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{d}\end{array}\right) \quad x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right)$

Tractable Jacobian?

$\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right| \rightarrow$ Requires tractable Jacobian!
In general: $g(x)=\left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$ is $d \times d$ matrix \rightarrow Scales with $\mathcal{O}\left(d^{3}\right)$ ©
Solution: Autoregressive transformations $\quad z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{d}\end{array}\right) \quad x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right)$

$$
\begin{aligned}
& z_{1} \equiv z_{1}\left(x_{1}\right) \\
& z_{2} \equiv z_{2}\left(x_{1}, x_{2}\right) \\
& \vdots \\
& z_{d} \equiv z_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)
\end{aligned}
$$

Tractable Jacobian?

$\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right| \rightarrow$ Requires tractable Jacobian!
In general: $g(x)=\left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$ is $d \times d$ matrix \rightarrow Scales with $\mathcal{O}\left(d^{3}\right)$ ©
Solution: Autoregressive transformations $\quad z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{d}\end{array}\right) \quad x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right)$

$$
\begin{aligned}
& z_{1} \equiv z_{1}\left(x_{1}\right) \\
& z_{2} \equiv z_{2}\left(x_{1}, x_{2}\right) \\
& \vdots \\
& z_{d} \equiv z_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)
\end{aligned}
$$

$$
\longrightarrow J_{i j}(x)=\left(\begin{array}{cccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{1}} & \cdots & \frac{\partial z_{z_{i}}}{\partial x_{1}} \\
0 & \frac{\partial z_{2}}{\partial x_{2}} & \cdots & \frac{\partial z_{d}}{\partial x_{1}} \\
\vdots & \ddots & & \vdots \\
0 & \ldots & 0 & \frac{\partial z_{d}}{\partial x_{d}}
\end{array}\right)
$$

Tractable Jacobian?

$\log p_{\theta}(x)=\log p_{z}\left(z=G_{\theta}(x)\right)+\log \left|\frac{\partial G_{\theta}(x)}{\partial x}\right| \rightarrow$ Requires tractable Jacobian!
In general: $g(x)=\left|\frac{\partial G_{\theta}(x)}{\partial x}\right|$ is $d \times d$ matrix \rightarrow Scales with $\mathcal{O}\left(d^{3}\right)$ ©
Solution: Autoregressive transformations $\quad z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{d}\end{array}\right) \quad x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right)$

$$
\begin{aligned}
& z_{1} \equiv z_{1}\left(x_{1}\right) \\
& z_{2} \equiv z_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\longrightarrow\left(\begin{array}{cccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{1}} & \cdots & \frac{\partial z_{z_{d}}}{\partial x_{1}} \\
0 & \frac{\partial z_{2}}{\partial x_{2}} & \cdots & \frac{\partial z_{d_{2}}}{\partial x_{1}} \\
\vdots & \ddots & & \vdots \\
0 & \ldots & 0 & \frac{\partial z_{d}}{\partial x_{d}}
\end{array}\right) \longrightarrow \operatorname{det} J=\prod_{i} J_{i i} \sim \mathcal{O}(d)
$$

Coupling block

Forward pass: $\begin{aligned} & z^{A}=C\left(x^{A} ; f_{\theta}\left(x^{B}\right)\right) \\ & z^{B}=x^{B}\end{aligned}$

Coupling block

Forward pass: $\begin{aligned} & z^{A}=C\left(x^{A} ; f_{\theta}\left(x^{B}\right)\right) \\ & z^{B}=x^{B}\end{aligned}$

$$
J_{i j}(x)=\left(\begin{array}{cc}
\frac{\partial C}{\partial x^{A}} & \frac{\partial C}{\partial f_{\theta}} \frac{\partial f_{\theta}}{\partial x^{B}} \\
0 & I_{m}
\end{array}\right)
$$

Coupling block

Forward pass: $\begin{aligned} & z^{A}=C\left(x^{A} ; f_{\theta}\left(x^{B}\right)\right) \\ & z^{B}=x^{B}\end{aligned}$
Inverse pass: $\begin{aligned} & x^{A}=C^{-1}\left(z^{A} ; f_{\theta}\left(z^{B}\right)\right) \\ & x^{B}=z^{B}\end{aligned}$

Coupling block

Coupling block

$$
\begin{aligned}
& \text { Forward pass: } \begin{array}{l}
z^{A}=C\left(x^{A} ; f_{\theta}\left(x^{B}\right)\right) \\
z^{B}=x^{B}
\end{array} \\
& \text { Inverse pass: } \begin{array}{l}
x^{A}=C^{-1}\left(z^{A} ; f_{\theta}\left(z^{B}\right)\right) \\
x^{B}=z^{B}
\end{array}
\end{aligned}
$$

$$
J_{i j}(x)=\left(\begin{array}{cc}
\frac{\partial C}{\partial x^{A}} & \frac{\partial C}{\partial f_{\theta}} \frac{\partial f_{\theta}}{\partial x^{B}} \\
0 & I_{m}
\end{array}\right)
$$

Affine $\quad C^{A}=\alpha_{\theta}\left(x^{B}\right) \cdot x^{A}+\mu_{\theta}\left(x^{B}\right)$ [1605.08803]

Coupling block

$$
J_{i j}(x)=\left(\begin{array}{cc}
\frac{\partial C}{\partial x^{A}} & \frac{\partial C}{\partial f_{\theta}} \frac{\partial f_{\theta}}{\partial x^{B}} \\
0 & I_{m}
\end{array}\right)
$$

$\begin{aligned} \text { Affine } & C^{A}=\alpha_{\theta}\left(x^{B}\right) \cdot x^{A}+\mu_{\theta}\left(x^{B}\right)\end{aligned}$

Quadratic

$$
C=a x^{2}+b x+c
$$

Rational
quadratic
[1906.04032]

$$
C=\frac{a x^{2}+b x+c}{d x^{2}+e x+f}
$$

Coupling block

$$
\begin{aligned}
\text { Forward pass: } & \begin{array}{l}
z^{A}=C\left(x^{A} ; f_{\theta}\left(x^{B}\right)\right) \\
z^{B}=x^{B}
\end{array} \\
\text { Inverse pass: } & \begin{array}{l}
x^{A}=C^{-1}\left(z^{A} ; f_{\theta}\left(z^{B}\right)\right) \\
x^{B}=z^{B}
\end{array}
\end{aligned}
$$

$$
J_{i j}(x)=\left(\begin{array}{cc}
\frac{\partial C}{\partial x^{A}} & \frac{\partial C}{\partial f_{\theta}} \frac{\partial f_{\theta}}{\partial x^{B}} \\
0 & I_{m}
\end{array}\right)
$$

$$
\begin{array}{|rl|}
\hline \text { Affine } & C^{A}=\alpha_{\theta}\left(x^{B}\right) \cdot x^{A}+\mu_{\theta}\left(x^{B}\right) \\
\text { Quadratic } & C=a x^{2}+b x+c \\
\text { [1600.088865] }
\end{array}
$$

Rational
quadratic
[1906.04032]

$$
C=\frac{a x^{2}+b x+c}{d x^{2}+e x+f}
$$

Part III — MadNIS

Neural Importance Sampling

MadNIS - Basic functionality

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

MadNIS - Basic functionality

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

[^0]
MadNIS - Basic functionality

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

Use physics knowledge to construct channel and mappings

MadNIS - Basic functionality

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

Use physics knowledge to construct channel and mappings

MadNIS - Basic functionality

Phase space
$\Phi \subseteq \mathbb{R}^{N}$

Unit hypercube $U=[0,1]^{N}$

Single channel i

MadNIS - Basic functionality

Phase space

MadNIS - Overview

Basic functionality

MadNIS - Overview

Basic functionality

VEGAS initialization

Basic functionality

VEGAS initialization

$\sqrt{7}$

Combine advantages:
Pre-trained VEGAS grid as starting point for flow training

VEGAS initialization

Bin reduction

64 VEGAS bins

Bin reduction

64 VegAs bins

10 RQS bins

Buffered training

Basic functionality

Online Training

Buffered training

Training algorithm

generate new samples, train on them, save samples
\downarrow
train on saved samples n times
\downarrow
repeat

Reduction in training statistics by

$$
R_{@}=n+1
$$

LHC examples

Basic functionality

LHC example I — Drell-Yan

LHC example I — Drell-Yan

LHC example I - Drell-Yan

LHC example I — Drell-Yan

LHC example I - Drell-Yan

LHC example II — VBS

LHC example II — VBS

Unweighting efficiency improved up to factor ~9 compared to VEGAS

LHC example II — VBS

Unweighting efficiency improved up to factor ~ 9 compared to VEGAS

Big improvement from VEGAS initialization

LHC example II — VBS

Significant improvement from trained channel weights

Unweighting efficiency improved up to factor ~ 9 compared to VEGAS

Big improvement from VEGAS initialization

LHC example II — VBS

Buffered training: small effect on performance, much faster training

Unweighting efficiency improved up to factor ~ 9 compared to VEGAS

Significant improvement from trained channel weights

Big improvement from
VEGAS initialization

LHC example III - W + 2 jets

Process has small interference terms
\rightarrow no significant improvement from trained channel weights

Otherwise similar to results for VBS

Summary and Outlook

Take-home message

- Fast and precise predictions with ML-based simulations
- Normalizing flows provide statistically well-defined likelihoods for inference
- Account for uncertainties with Bayesian neural networks

Future exercises

- Full integration of ML-based simulations into standard tools \rightarrow MadGraph,....
- Make everything run on the GPU and differentiable (MadJax - Heinrich et al. [2203.00057])

Summary and Outlook

Machine learning and LHC event generation
Anja Butter ${ }^{1,2}$, Tilman Plehn ${ }^{1}$, Steffen Schumann ${ }^{3}$, Simon Badger ${ }^{4}$, Sascha Caron ${ }^{5,6}$ Kyle Cranmer ${ }^{7,8}$, Francesco Armando Di Bello ${ }^{9}$, Etienne Dreyer ${ }^{10}$, Stefano Forte ${ }^{11}$, Sanmay Ganguly ${ }^{12}$, Dorival Gonçalves ${ }^{13}$, Eilam Gross ${ }^{10}$, Theo Heimel ${ }^{1}$, Gudrun Heinrich ${ }^{14}$, Lukas Heinrich 15, Alexander Held ${ }^{16}$, Stefan Höche ${ }^{17}$ Jessica N. Howard ${ }^{18}$, Philip IIten 19, Joshua Isaacson ${ }^{17}$, Timo Janßen ${ }^{3}$, Stephen Jones ${ }^{20}$, Marumi Kado ${ }^{2,21}$, Michael Kagan ${ }^{22}$, Gregor Kasieczka ${ }^{23}$, Felix Kling ${ }^{24}$, Sabine Kram ${ }^{25}$, Claudius Krause ${ }^{26}$, Frank Kraus 20, Kevin Kröninger ${ }^{27}$, Rahool Kumar Barman ${ }^{13}$,
 Fabio Maltoni ${ }^{28,29}$, Till $^{\text {Martini }}{ }^{30}$, Olivier Mattelaer ${ }^{28}$, Benjamin Nachman ${ }^{31,32}$ Sebastian Pitz ${ }^{1}$, Juan Roio ${ }^{6,33}$, Matthew Schwartz ${ }^{34}$, David Shih ${ }^{25}$, Frank Siegert ${ }^{35}$ Roy Stegeman ${ }^{11}$, Bob Stienen ${ }^{5}$, Jesse Thaler ${ }^{36}$, Rob Verheyen ${ }^{37}$, Daniel Whiteson ${ }^{18}$, Ramon Winterhalder ${ }^{28}$, and Jure Zupan ${ }^{19}$

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental the ory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, includ ing conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of will improve the speed and precision of forward simulaions, hande the complexity of collision data, and enhance inference as an inverse simulation problem.

Summary and Outlook

Future exercises

－Full integration of ML－based simulations into standard tools \rightarrow MadGraph，．．．．
－Make everything run on the GPU and differentiable（MadJax－Heinrich et al．［2203．000577）
－More details in our Snowmass report
－Stay tuned for many other ML4HEP applications

Modern machine learning technizues，including deep learning，is rapidly being apolied，adapted，and developed for higio energy
physics．The goal of this document s to provide a nearly comprehensive list of citations for those developing and appliving these physics．The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying thes possible to incorporate the latest developments．A list of proper（unchanging）revieris can be found within．Papers are grouped into a small set of topics to be as usceful as possibic．Suggestions are mast welcome．

Expand all sections Collapse all sections
Reviews
－Modern roviews
I Specialized reviews
I．Classical papers
Furction Approximation
Symbolic Regressia

[^0]: Use physics knowledge to construct channel and mappings

