

Machine Learning for Event Generation

Sapienta ex machina?

MCnet School 2023 — Durham Ramon Winterhalder – UC Louvain

1. Machine learning for particle physics?

2. Normalizing flows

3. MadNIS

4. Summary and discussion

Machine learning for particle physics?

Why care about ML in particle physics?

Why do we care about ML?

We care about machine learning because it can improve data analysis can improve data analysis, simulation and modeling, lead to new discoveries, and foster cross-disciplinary collaboration

ChatGPT

How machine learning often feels like

Aim of this lecture:

Giving you the ideas to use it right!

How machine learning often feels like

Aim of this lecture:

Giving you the ideas to use it right!

Be aware!

The core of machine learning is to find structure in data - no more no less!

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.

LHC analysis (oversimplified)

LHC analysis + ML

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...] NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...] NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...] NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]

Monte Carlo integration

 $I = \int \mathrm{d}x f(x)$

Monte Carlo integration

$$= \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$

Monte Carlo integration

$$g$$
 close to f

$$= \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$

one map for each channel

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Importance sampling – VEGAS

Importance sampling – VEGAS

Computationally cheap

 Θ High-dim and rich peaking functions \rightarrow slow convergence

⊖ Peaks not aligned with grid axes
→ phantom peaks

How can we do better?

Normalizing Flows

Part II

Conservation of probability:

$$p(x) \, \mathrm{d}x = p_z(z) \, \mathrm{d}z$$

with
$$z = G(z)$$
 $x = \overline{G}(x)$

Conservation of probability:

$$p(x) \, \mathrm{d}x = p_z(z) \, \mathrm{d}z$$

Change-of-variables formula:

$$p_{\theta}(x) = p_z(z = G_{\theta}(x)) \cdot \left| \frac{\partial G_{\theta}(x)}{\partial x} \right|$$

with
$$z = G(z)$$
 $x = \overline{G}(x)$

Conservation of probability:

$$p(x) \, \mathrm{d}x = p_z(z) \, \mathrm{d}z$$

Change-of-variables formula:

$$p(x) dx = p_z(z) dz \quad \text{with} \quad z = G(z) \quad x = \overline{G}(x)$$
$$\log p_\theta(x) = \log p_z(z = G_\theta(x)) + \log \left| \frac{\partial G_\theta(x)}{\partial x} \right|$$

Conservation of probability:

$$p(x) \, \mathrm{d}x = p_z(z) \, \mathrm{d}z$$

Change-of-variables formula:

$$\log p_{\theta}(x) = \log p_z(z =$$

 $\log p_{\theta}(x) = \log p_z(z = G_{\theta}(x)) + \log \theta_z(z)$

Kullback-Leibler divergence:

$$\int dx p_{data}(x) \log \frac{p_{data}(x)}{p_{\theta}(x)}$$
$$- \int dx p_{data}(x) \log p_{\theta}(x) + \int dx p_{data}(x) p_{data}(x)$$

Kullback-Leibler divergence:

$$\int dx p_{data}(x) \log \frac{p_{data}(x)}{p_{\theta}(x)}$$
 No θ dependence of the dependence

$$\int dx p_{data}(x) \log \frac{p_{data}(x)}{p_{\theta}(x)}$$
 No θ dependence of $\int dx p_{data}(x) \log p_{\theta}(x) + \int dx p_{data}(x) p_{data}(x)$

Tractable Jacobian?

Requires tractable Jacobian!

Tractable Jacobian?

$$\log p_{\theta}(x) = \log p_{z}(z = G_{\theta}(x)) + \log \left| \frac{\partial G_{\theta}(x)}{\partial x} \right|$$

or general:
$$g(x) = \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| \text{ is } d \times d \text{ matrix} \quad \longrightarrow$$

 ∂X

Requires tractable Jacobian!

Scales with $\mathcal{O}(d^3)$ (3)
$$\log p_{\theta}(x) = \log p_{z}(z = G_{\theta}(x)) + \log \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| - \frac{\partial G_{\theta}(x)}{\partial x}$$

In general:

$$g(x) = \left| \frac{\partial G_{\theta}(x)}{\partial x} \right|$$
 is $d \times d$ matrix

Solution: Autoregressive transformations z =

Requires tractable Jacobian!

Scales with $\mathcal{O}(d^3)$

$$\begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$

 \rightarrow

$$\log p_{\theta}(x) = \log p_z(z = G_{\theta}(x)) + \log \left| \frac{\partial G_{\theta}(x)}{\partial x} \right|$$

In general:

$$g(x) = \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| \text{ is } d \times d \text{ matrix}$$

Solution: Autoregressive transformations z =

$$z_1 \equiv z_1(x_1)$$

$$z_2 \equiv z_2(x_1, x_2)$$

$$\vdots$$

$$z_d \equiv z_d(x_1, x_2, \dots, x_d)$$

Requires tractable Jacobian!

Scales with $\mathcal{O}(d^3)$

$$\begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$

$$\log p_{\theta}(x) = \log p_{z}(z = G_{\theta}(x)) + \log \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| \longrightarrow$$

$$n \text{ general:} \quad g(x) = \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| \text{ is } d \times d \text{ matrix} \longrightarrow$$

Solution: Autoregressive transformations z =

 $O\lambda$

$$z_1 \equiv z_1(x_1)$$

$$z_2 \equiv z_2(x_1, x_2)$$

$$\vdots$$

$$z_d \equiv z_d(x_1, x_2, \dots, x_d)$$

$$J_{ij}(x) = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Requires tractable Jacobian!

Scales with $\mathcal{O}(d^3)$ (3)

$$\begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$

$$\frac{\partial z_2}{\partial x_1} \cdots \frac{\partial z_d}{\partial x_1}$$

$$\frac{\partial z_2}{\partial x_2} \cdots \frac{\partial z_d}{\partial x_1}$$

$$\vdots$$

$$\frac{\partial z_d}{\partial x_1}$$

$$\frac{\partial z_d}{\partial x_d}$$

$$\log p_{\theta}(x) = \log p_{z}(z = G_{\theta}(x)) + \log \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| \longrightarrow$$

$$n \text{ general:} \quad g(x) = \left| \frac{\partial G_{\theta}(x)}{\partial x} \right| \text{ is } d \times d \text{ matrix} \longrightarrow$$

Solution: Autoregressive transformations z =

 $O\lambda$

$$\begin{bmatrix} z_1 \equiv z_1(x_1) \\ z_2 \equiv z_2(x_1, x_2) \\ \vdots \\ z_d \equiv z_d(x_1, x_2, \dots, x_d) \end{bmatrix} \longrightarrow \begin{bmatrix} d_{z_1} & d_{z_2} & \dots & d_{z_d} \\ 0 & d_{z_2} & \dots & d_{z_d} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & d_{z_d} \\ 0 & \dots & 0 & d_{z_d} \end{bmatrix} \longrightarrow \det J = \prod_i J_{ii} \sim \mathcal{O}(d) @$$

Requires tractable Jacobian!

Scales with $\mathcal{O}(d^3)$ (3)

$$\begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

$$= \begin{pmatrix} \frac{\partial C}{\partial x^{A}} & \frac{\partial C}{\partial f_{\theta}} & \frac{\partial f_{\theta}}{\partial x^{B}} \\ 0 & I_{m} \end{pmatrix}$$

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

Inverse pass:

$$x^{A} = C^{-1}(z^{A}; f_{\theta}(z^{B}))$$
$$x^{B} = z^{B}$$

$$J_{ij}(x) = \begin{pmatrix} \frac{\partial C}{\partial x^A} & \frac{\partial C}{\partial f_\theta} & \frac{\partial f_\theta}{\partial x^B} \\ 0 & I_m \end{pmatrix}$$

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

Inverse pass:

$$x^{A} = C^{-1}(z^{A}; f_{\theta}(z^{B}))$$
$$x^{B} = z^{B}$$

$$J_{ij}(x)$$
 =

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

Inverse pass:

$$x^{A} = C^{-1}(z^{A}; f_{\theta}(z^{B}))$$
$$x^{B} = z^{B}$$

$$J_{ij}(x)$$
 =

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

Inverse pass:

$$x^{A} = C^{-1}(z^{A}; f_{\theta}(z^{B}))$$
$$x^{B} = z^{B}$$

$$J_{ij}(x)$$
 =

Coupling block

 $\frac{\partial C}{\partial f_{\theta}} \frac{\partial f_{\theta}}{\partial x^{B}}$ $\frac{\partial C}{\partial x^A}$ 0 I_m

Affine [1605.08803]

Quadratic [1808.03856]

Rational quadratic [1906.04032]

$$C^A = \alpha_\theta(x^B) \cdot x^A + \mu_\theta(x^B)$$

$$C = a x^2 + b x + c$$

$$C = \frac{a x^2 + b x + c}{d x^2 + e x + f}$$

$$z^{A} = C(x^{A}; f_{\theta}(x^{B}))$$
$$z^{B} = x^{B}$$

Inverse pass:

$$x^{A} = C^{-1}(z^{A}; f_{\theta}(z^{B}))$$
$$x^{B} = z^{B}$$

$$J_{ij}(x) = \begin{pmatrix} \frac{\partial C}{\partial x^A} & \frac{\partial C}{\partial f_\theta} & \frac{\partial f_\theta}{\partial x^B} \\ 0 & I_m \end{pmatrix}$$

Coupling block

Rational quadratic [1906.04032]

 $a x^2 + b x + c$ $C = \frac{dx^2}{dx^2 + ex + f}$

Part III -Noural Impo

[2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145]

Part II -- MadNIS

Neural Importance Sampling

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

Use physics knowledge to construct channel and mappings

$$\left. \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Use physics knowledge to construct channel and mappings

Normalizing flow to refine channel mappings

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

Fully connected network to refine channel weights

$$\left. \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Use physics knowledge to construct channel and mappings

Fully connected network to refine channel weights

Update simultanously with variance as loss function

Single channel *i*

VEGAS initialization

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

VEGAS initialization

VEGAS initialization

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

Bin reduction

64 VEGAS bins

Bin reduction

64 VEGAS bins

10 RQS bins

Buffered training

VEGAS Initialization

Buffered training

LHC examples

LHC example I — Drell-Yan

LHC example | - Drell-Yan

LHC example | -- Drell-Yan

Peaks mapped out by different channels

LHC example | - Drell-Yan

LHC example | -- Drell-Yan

LHC example II -- VBS

unweighting efficiency η [%]

LHC example II -- VBS

Unweighting efficiency improved up to factor ~9 compared to VEGAS

unweighting efficiency η [%]

LHC example II – VBS

Unweighting efficiency improved up to factor ~9 compared to VEGAS

Big improvement from VEGAS initialization

LHC example II - VBS

Unweighting efficiency improved up to factor ~9 compared to VEGAS

Significant improvement from trained channel weights

Big improvement from VEGAS initialization

LHC example II - VBS

Buffered training: small effect on performance, much faster training

Unweighting efficiency improved up to factor ~9 compared to VEGAS

Significant improvement from trained channel weights

Big improvement from VEGAS initialization

LHC example III – W + 2 jets

Process has small interference terms \rightarrow no significant improvement from trained channel weights

Otherwise similar to results for VBS

Take-home message

- Fast and precise predictions with **ML-based simulations**
- Normalizing flows provide statistically ulletwell-defined likelihoods for inference
- Account for **uncertainties** with **Bayesian neural networks**

Summary and Outlook

Future exercises

- **Full integration** of ML-based simulations into ulletstandard tools \rightarrow MadGraph,....
- Make everything run on the GPU and \bullet differentiable (MadJax - Heinrich et al. [2203.00057])

Sci Post

SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter^{1,2}, Tilman Plehn¹, Steffen Schumann³, Simon Badger⁴, Sascha Caron^{5,6} Kyle Cranmer^{7,8}, Francesco Armando Di Bello⁹, Etienne Dreyer¹⁰, Stefano Forte¹¹, Sanmay Ganguly¹², Dorival Gonçalves¹³, Eilam Gross¹⁰, Theo Heimel¹, Gudrun Heinrich¹⁴, Lukas Heinrich¹⁵, Alexander Held¹⁶, Stefan Höche¹⁷, Jessica N. Howard¹⁸, Philip Ilten¹⁹, Joshua Isaacson¹⁷, Timo Janßen³, Stephen Jones²⁰, Marumi Kado^{9,21}, Michael Kagan²², Gregor Kasieczka²³, Felix Kling²⁴, Sabine Kraml²⁵, Claudius Krause²⁶, Frank Krauss²⁰, Kevin Kröninger²⁷, Rahool Kumar Barman¹³, Michel Luchmann¹, Vitaly Magerya¹⁴, Daniel Maitre²⁰, Bogdan Malaescu², Fabio Maltoni^{28,29}, Till Martini³⁰, Olivier Mattelaer²⁸, Benjamin Nachman^{31,32}, Sebastian Pitz¹, Juan Rojo^{6,33}, Matthew Schwartz³⁴, David Shih²⁵, Frank Siegert³⁵, Roy Stegeman¹¹, Bob Stienen⁵, Jesse Thaler³⁶, Rob Verheyen³⁷, Daniel Whiteson¹⁸, Ramon Winterhalder²⁸, and Jure Zupan¹⁹

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

collision data, and enhance inference as an inverse simulation problem. will improve the speed and precision of forward simulations, handle the complexity of

Summary and Outlook

Future exercises

- Full integration of ML-based simulations into standard tools \rightarrow MadGraph,....
- Make everything run on the GPU and differentiable (MadJax - Heinrich et al. [2203.00057])
- More details in our **Snowmass report**

Summary and Outlook

Future exercises

- **Full integration** of ML-based simulations into • standard tools \rightarrow MadGraph,....
- Make everything run on the GPU and differentiable (MadJax - Heinrich et al. [2203.00057])
- More details in our **Snowmass report**
- Stay tuned for many other **ML4HEP** applications

