Machine Learning
for Event Generation

v B , Ao
= h
= — e
. gl
s T ~—
: b S
N\ ‘\J‘\\ I ‘%{"/ —
‘N_ e e
; N_

MCnet School 2023 — Durham
Ramon Winterhalder — UC Louvain

i/

/™S

Plan of attack

1. Machine learning for particle physics?
2. Normalizing flows

3. MadNIS

4. Summary and discussion

Machine learning for particle physics?

Why care about ML in particle physics?

"~

Why do we care about ML?

We care about machine learning because it
can improve data analysis,

simulation and modeling, lead to new discoveries,
and foster cross-disciplinary collaboration

ChatGPT

How machine learning often feels like

THIS 1S YOUR MACHINE (EARNING SYSTETM?
YUP! YOU POUR THE DATA INTO THIS BIG

Aim of this lecture: PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.
Giving you the ideas to use it right! WHAT IF THE ANSLIERS ARE. WRONG?)

JUST STIR THE PILE DNTIL
THEY START (OOKING RIGHT.

How machine learning often feels like

THAT WAS SURPRISINGLY

EASY. HOW COME THE
ROBOTIC UPRISING USED d{;}’é’&éﬁ’f ép}i,
SPEARS AND ROCKS THE VAST MATORITY
\N&J 6‘\606?22 g\l%\b% OF BATTLE-WINNERS
_ _ AND LA . PRE -
Aim of this lecture: U%&)efgomgsew

Giving you the ideas to use it right!

The core of machine learning is to find
structure in data -

Thanks to machine-learning algorithms,

the robot apocalypse was short-lived.

LHC analysis (oversimplified)

Nature

|

Experiment

|

Detector-level
observables

Fundamental Theory

|
|

Detector-level | Pattern

observables recogniton

LHC analysis + VL

Fundamental Theory Nature

Experimental
design
Fast - - Parameter -
Simulation ostimation/ Experiment

unfolding Online
processing/

triggering

Detector-level Pattern Detector-level
observables recogniton observables

, . calibration
Signal vs. : OPflmql Data <4— clustering

Background observables curation tracking
particle identification

Precision Generation

[2110.13632] MEM
[2210.00019] Point Clouds
MADNIS [2102.05073] PELICAN
o 8ng89 4 [2212.06172] Y [2211.00454]
| [2106.05285,...]
Lot Simul ELSA Energy Flow Networks ParticleNet
et Simulation [1810.05165] [1902.08570]
[2305.07696] -
[2203.00520]
PC-JeDi Bayesian Tagger
[2303.05376] FPCD [1904.10004]
Generative [2304.01266]
EPIC-GAN Models SuperVISed Bayesian Regression
[2301.08128] L earnin g [2003.11099]
How to GAN DDPM & CFM NNPDF
[1907.03764] [2305.10475] [2109.02653]

Matrix Elements

[2206.14831] Symbolic regression

[2109.10414]

CaloGAN
[1712.10321]

JetGPT

[2305.10475] Flavor structure

[2304.14176]

Jet Clustering
[2008.06064]

Simplifying Polylogs
[2206.04115]

String vacua & landscape

[1903.11616, 2111.11466]
3D Pixel Clustering

[2007.03083]

LaCATHODE
[2210.14924]

Model Building
[2103.04759]

AnomalyCLR
[2301.04660]

Analytic continuation
[2112.13011]

Normalized AE
[2206.14225]

Precision Generation

[2110.13632] MEM
[2210.00019]
OTUS MADNIS
[2101.08944] [2212.06172] CaloFlow I-IV
[2106.05285,...]
ELSA

Jet Simulation

[2203.00520] [2305.07696]

PC-JeDi

[2303.05376] FPCD

: [2304.01266]
Generative

EPIC-GAN Models

[2301.08128]

How to GAN
[1907.03764]

DDPM & CFM
[2305.10475]

CaloGAN
[1712.10321]

JetGPT
[2305.10475]

Precision Generation

[2110.13632] MEM
[2210.00019]
OTUS MADNIS
[2101.08944] [2212.06172] CaloFlow I-IV
[2106.05285,...]
ELSA

Jet Simulation

[2203.00520] [2305.07696]

PC-JeDi

[2303.05376] FPCD

: [2304.01266]
Generative

EPIC-GAN Models

[2301.08128]

How to GAN
[1907.03764]

DDPM & CFM
[2305.10475]

CaloGAN
[1712.10321]

JetGPT
[2305.10475]

ML improved simulations

<

ML improved simulations

Phase-space generation

Hard process

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...]
NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]

ML improved simulations

_ Calculate (differential) cross sections
Phase-space generation
do ~ pdf X |M(x)|* x d®
Hard process

s

ML improved simulations

_ Calculate (differential) cross sections
Phase-space generation
do ~ pdf X |M(x)|* x d®

Hard process

s

Phase space integration

(0) = deﬂx) 0

Monte Carlo integration

[= def(x)

Flat sampling:
inefficient

Monte Carlo integration

[= def(x)
Flat sampling: Importance sampling:
inefficient find g close to f

[= (f(x)>xNunif = <%> (x)
x~g(x

Flat sampling:

inefficient

I'= <f (x)>x~unif

Monte Carlo integration

[= def(x)

Importance sampling:

find g close to f

-

fox)
g(x)

>XNg(X)

Multi-channel:
one map for each channel

Importance sampling — VEGAS

Factorize probability
p(x) = p(x;)--p(x,)

v

Fit bins with equal probabillity
and varying width

Importance sampling — VEGAS

Factorize probability
p(x) = p(x;)--p(x,)

—» | @ Computationally cheap

High-dim and rich peaking functions

v -

Fit bins with equal probabillity
and varying width

Peaks not aligned with grid axes

How can we do better?

Normalizing Flows

Normalizing flow — Basics

forward G

AN

p(x) p.(2)

Inverse G~ =G

Normalizing flow — Basics

forward G

LN AN

p(x) p.(2)

Inverse G~ =G

Conservation of probability: | p(x)dx = p.(z) dz with |z =G(@) x=Gkx)

Normalizing flow — Basics

forward G

AN

p(x) p.(2)

Inverse G~ =G

Conservation of probability: | p(x)dx = p.(z) dz with |z =G(@) x=Gkx)

0Gy(x)
ox

Change-of-variables formula: | py(x) = p,(z = Gy(x)) -

Normalizing flow — Basics

forward G

AN

p(x) p.(2)

Inverse G~ =G

Conservation of probability: | p(x)dx = p.(z) dz with |z =G(@) x=Gkx)

0Gy(x)
0x

Change-of-variables formula: | log pg(x) = logp.(z = G,(x)) + log

Normalizing flow — Basics

forward G

density estimation

AN

p(x) generation/sampling p.(2)

inverse G~ =G

Conservation of probability: | p(x)dx = p.(z) dz with |z =G(@) x=Gkx)

0Gy(x)
0x

Change-of-variables formula: | log pg(x) = logp.(z = G,(x)) + log

How to train it?

AN

p(x)

Normalizing flow — Training

forward G

Inverse G =G

4

p.(2)

0Gy(x)

ox

Normalizing flow — Training

forward G

0Gy(x)
m log py(x) = log p.(z = Gy) + log | —
Z

p(x)

p.(2) Match p,(x) with py,..(x)

Inverse G =G

Normalizing flow — Training

forward G

0Gy(x)
m BN I
Z

p(x)

p.(2) Match p,(x) with py,..(x)

Inverse G =G

P data(x)
Po(X)

Kullback-Leibler divergence: | KL(py..(x)|pyx)) = de PaaiaX) log

= — |dx pdata(x) 10g p@(x) + | dx pdata(x) P data(x)

Normalizing flow — Training

forward G
0Gy(x)
| log py(x) = log p.(z = Gy(x)) + log I
Z
p(x) pz(z) Match pe(X) with pdata('x)
Inverse G =G
. . Ddata(XX) No 6 dependene
Kullback-Leibler divergence: | KL(pg...(x) | pyx)) = | dx py,.(x) log) /
Po\X

= — | dX pgaia(X) 108 p(x) +H | dX Pyara(X) Paata(X)

Normalizing flow — Training

forward G

0Gy(x)
/\ log py(x) = log p.(z = Gy(x)) + log ™
<

p.(2) Match p,(x) with py,..(x)

p(x)

Inverse G =G

. . Ddata(XX) No 6 dependene
Kullback-Leibler divergence: | KL(p,,.,(x) | py(x)) = | dxpy...(x) log o /
N

= — | dX pgaia(X) 108 p(x) +H | dX Pyara(X) Paata(X)

0y

Negative log-likelihood loss: | Ly = — de Pdata(X) 10g pp(x) & (—log pg(x)>

X~Pdata

Tractable Jacobian?

0G,(x
log py(x) = log p.(z = Gy(x)) + log ae() Requires tractable Jacobian!
X

log py(x) = log p(z = Gy(x)) + log

In general.

g(x) =

0Gy(x)

ox

Tractable Jacobian?

0Gy(x)
ox

is d X d matrix

Requires tractable Jacobian!

Scales with O(d>)

Tractable Jacobian?

0G,(x
log py(x) = log p.(z = Gy(x)) + log ae() Requires tractable Jacobian!
X
0Gy(x)
In general: | g(x) = p is d X d matrix Scales with O(d>)
X

<] A1
Solution: Autoregressive transformations =z = [:] X = [:]

Tractable Jacobian?

0G,(x
log py(x) = log p.(z = Gy(x)) + log ae() Requires tractable Jacobian!
X
0Gy(x)
In general: | g(x) = p is d X d matrix Scales with O(d>)
X

<] A1
Solution: Autoregressive transformations =z = [:] X = [:]

Tractable Jacobian?

0G,(x
log py(x) = log p.(z = Gy(x)) + log ae() Requires tractable Jacobian!
X
0Gy(x)
In general: | g(x) = p is d X d matrix Scales with O(d>)
X

<] X1
Solution: Autoregressive transformations =z = [:] X = [:]

Tractable Jacobian?

0G,(x
log py(x) = log p.(z = Gy(x)) + log ae() Requires tractable Jacobian!
X
0Gy(x)
In general: | g(x) = p is d X d matrix Scales with O(d>)
X

<] X1
Solution: Autoregressive transformations =z = [:] X = [:]

¥ =x

Forward pass: |z = C(x?; f,(x?))

B

Coupling block

> >
A —
xB ® z°
_ D _)

Coupling block

~ ™) r)
A A
D
r)
X
- D
~
x5 ¢ z°
— D k y

7 B _ ¥ B oxA Odfy oxB

0

Forward pass: |z = C(x*; fg(xB)) oc aC Uy
‘]l:]('x) —

Forward pass:

Inverse pass:

74 = C(XA;fe(xB))

78 =x

B

Coupling block

J lj(x) — [

A= C7I(Eh)

X
XB:Z

B

oC

oxA

0

oC 9y

af(g oxB

Coupling block

(")
X
- ,
—
Forward pass: |z = C(x*; fg(xB)) oc aC Uy
/B — B Jox) = [ot oo’
0
Inverse pass: | x* = C~1(z4; £,(2P))
B = B

Forward pass:

Inverse pass:

74 = C(XA;fe(xB))

ZB

= X

B

Coupling block

M) r)
@
J
r A
<
. y
~
x5 — z°
— N y

Affine CA = a,(xP) - x* + py(x?)
oC 9C Yo

J(x) = oxA ofy oxB

0 I

m

xt = C7HZh, fy(2P))

XB

— Z

B

Forward pass:

Inverse pass:

78 = C(XA;fe(xB))

ZB

xt = C7HZh, fy(2P))

XB

= X

— Z

B

B

Coupling block

- h ()
xA @ z4
J _ D
-
> é
"
h ()
xB ® z°
_ J _ J

oC 9C 9
Ax) = | oxA 9fy oxB
]’J(x) ’ ° Quadratic
0 L,
Rational
quadratic

Affine CA = a,(xP) - x* + py(x?)

C=ax*+bx+c

axZ+bx+c
dx?+ex+f

Forward pass:

Inverse pass:

74 = C(XA;fe(xB))

<

xt = C7HZh, fy(2P))

B

B

X

= X

— Z

B

B

Coupling block

~ R r N
x4 @ z4
i,
(A
> 2
. y,
-
x5 — z°
\— W, - J
oC 9C 9
— A B
]lj('x) — | ox ofy Ox
0 L,
. 2
Rational ax"+bx+c
quadratic dx2+ex+f

Part Il — MadNIS

Neural Importance Sampling

[2212.06172]

=] A o]
-

[MadNIS =

-
L

I O
[2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145] h ke

https://arxiv.org/abs/2212.06172

MadNIS — Basic functionality

MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

' '
Normalizing flow to

Fully connected network
refine channel mappings to refine channel weights

MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

Normalizing flow to Fully connected network
refine channel mappings to refine channel weights

Update simultanously with variance as loss function

MadNIS — Basic functionality

Phase space | Learned channel
d C RN - weight a;(x)

Analytic Channel

o Single channel ;

Normalizing
Flow i

Unit hypercube
U =10,11"

MadNIS — Basic functionality

Phase space 7 — X Learned channel
d Cc RY . weights @’(x)

~
..

- ~

Normalizing Normalizing Normalizing Combination of
Flow 1 Flow 2 Flow k k channels

Conditional Splitting

~ .
--

Unit hypercube
|

U=1[0,11"

MadNIS — Overview

Basic functionality Improved multi-channeling
CI\Pl]eurall Normalizing Conditional Overflow
an?‘e Flow - flows Channels

eights

MadGraph MadEvent Symmetries Stratified
matrix channel ﬁetween Sampling/
elements mappings ‘ channels Training

Improved training

VEGAS Buffered Trainable LHC Examples

Initialization Training Rotations

MadNIS — Overview

'

Improved training

_ VEGAS Butterea LHC Examples
Initialization Training

VEGAS Inttialization

'

Improved training

_ VEGAS Butterea LHC Examples
Initialization Training

VEGAS Inttialization

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training

VEGAS Inttialization

VEGAS grid

l o
inioion —

Initialization

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training

Bin reduction

1.0 = -II-

0.8

0.6

-IIlIlVAII-

O°4 it e e e e e e e e rEriEyr
- A e errereereerer et ereererrerierierieIl

A

A A

Zj I%I\\““W\\““W\\““W\\““W\\““W““N“““““I

Bin reduction

1.0 = -II- 104t)l i . 1

0.8

0.6

0.4 =IIIIE'iII=

A e
BN ARRRRRRRRRRRRRRRRRRRRARARRRRRRRRRRRRRARRRRRRRRRRRRRRRRRI

A A

. LT

-II-
0.2 : 0.6 0.8

10 RQS bins

Buffered training

'

Improved training

VEGAS Buffered
Initialization Training

LHC Examples

ll
2 L 4
* 00

Online Training

Sample G™'(z] p) PS point Integrand Loss
Z z J() L(f(x), g(x|)

Flow

G(x|p)

g(x] @) 2 g(x| §)

Buffered Training

Weighted Loss
L(f(x), (x| @) | w(x|¢))

X, q(x| @), f(x)

Flow

Buffered samples G(x| @)

- .
. .
--

Buffered training

Training algorithm

s
-

| fixed number of weight updates
generate new samples, train on them,

save samples

! 0.8
train on saved samples n times
{ 0.6
repeat

\

Reduction in training statistics by

relative change in training time

reduction in training statistics Rg

LHC examples

'

Improved training

VEGAS Buffered

LHC example | — Drell-Yan

pp — y/Z/7' — eTe”

chan y
8 10_3 chan Z
E chan 7’
‘g ------ Truth
10 S -
o
—9
101_ _R@:]_ — R@:?) R@:S
3
O _
8 — 1.25 T =
o | T = S]
.g @ 1‘00 T s ..
= R 0.75-
200 400 600
M +a— [GGV]

LHC example | — Drell-Yan

Ny/Z/Z/ — ete”
Learned distribution o s ol chan y
matches truth O 1071 54 chan Z
i chan Z’
F§ -------- Truth
5 107° =S
Z.
—9
101_ _R@:l —— R@:3 R@:S
3
O _
O — 1.25)
H e = . = .t noog ooo
9 ”]_OO T ,-=:'L"_':l____i;:.---!_-i 1_1_1_1:-_%__.,.____'“-“ I_;"E LA
S o
0.75 -
200 21010, 600

LHC example | — Drell-Yan

/\pp—;}// 717 — ete” /_\
Learned distribution oS s ol - chan y Peaks mapped out
matches truth 0 1071 B chan Z by different channels
B ey - ELWA
fg ------- Truth
SETORE
4
-9
101_ _R@: - R@=3 R@IS
3
O_
O i 125] |
o |l | N 1 M, ol B RS BN
£ o 1.00 R e TR B
e
0.75
200 400 600

LHC example | — Drell-Yan

— y/Z/7' — e*e”

Peaks mapped out
by different channels

Channel weights
learned by network

Learned distribution o .ol -
matches truth D 10 = B 5 chan Z
M = 1 chan Z’
Fé B S - Truth
— —6 e = _I____
= 10
4
—9
101_ _R@: — o= R@:3 R@:
3
O_
g— L2
o |l] e e o :
.g S 1.00 — A =
o R —
0.75
200 400 600
Me+e— [GGV]

LHC example | — Drell-Yan

/\pp—;y/ Z/7 — eve”
Learned distribution o ol el - any
matches truth D 10721 et 0 5 chan Z
M = 1 chan Z’
g . B e Truth
g 10_6 T ™ = P Wk B
o
—9
N e e S e -
S
O_
Use samples multiple @ S — 1.25- o
times to make o |l | i e S oo
=z O 1.00 s el Tt
training faster = Q:C@ - - "1
W _
200 1010 600
Me+e— [GeV]

Peaks mapped out
by different channels

Channel weights
learned by network

LHC example Il — VBS

uc — WTWtds uc — WTW™ds

B
-

MADNIS

~
\
e
>
>
=
< 1.5
w0
O
2
+
=
O
—

—_
-

VEGAS Flow Flow VFlow VFlow VFlow VFlow Flow Flow VFlow VFlow VFlow VFlow
fixed o trained a fixed @ trained « trained « trained « fixed « trained « fixed a trained @ trained o trained «
Ra =29 Ra=5.0 Ra =29 Ra=25.0

LHC example Il — VBS

uc — WTWtds

uc — WTW™ds

B
-

MADNIS

~
\
e
>
>
=
< 1.5
w0
O
2
+
=
O
—

—_
-

VEGAS Flow Flow VFlow VFlow VFlow VFlow
fixed a trained o fixed ¢ trained « trained « trained o
Ra =29 Ra = 5.0

Flow Flow VFlow VFlow VFlow VFlow
fixed « trained « fixed a trained o trained a trained «
Ra=29 Ra=2>5.0

Unweighting efficiency improved
up to factor ~9 compared to VEGAS

LHC example Il — VBS

B
-

MADNIS

~
\
e
>
>
=
< 1.5
w0
O
2
+
=
O
—

—_
-

VEGAS Flow Flow VFlow VFlow VFlow VFlow Flow Flow VFlow VFlow VFlow VFlow
fixed o trained a fixed @ trained « trained « trained « fixed « trained « fixed a rained « trained ¢ trained «

Ra =2.9 Ra = 5.0 Ra =29 Raq=5>5.0

Unweighting efficiency improved Big improvement from
up to factor ~9 compared to VEGAS VEGAS Initialization

LHC example Il — VBS

Significant improvement
from trained channel weights

B
-

MADNIS

~
\
e
>
>
=
< 1.5
w0
O
2
+
=
O
—

—_
-

VEGAS Flow Flow VFlow VFlow VFlow VFlow Flow Flow VFlow VFlow VFlow VFlow
fixed o trained a fixed @ trained « trained « trained « fixed « trained « fixed a rained « trained ¢ trained «

Ra =2.9 Ra = 5.0 Ra =29 Raq=5>5.0

Unweighting efficiency improved Big improvement from
up to factor ~9 compared to VEGAS VEGAS Initialization

LHC example Il — VBS

Buffered training: small effect on Significant improvement
performance, much faster training from trained channel weights

uc — WTWtds

1o
-

MADNIS

~
\
e
>
>
=
< 1.5
w0
O
2
+
=
O
—

—_
-

VEGAS Flow Flow VFlow VFlow VFlow VFlow Flow Flow VFlow VFlow VFlow VFlow
fixed o trained a fixed @ trained « trained « trained « fixed « trained « fixed a rained « trained ¢ trained «

Ra =2.9 Ra = 5.0 Ra =29 Raq=5>5.0

Unweighting efficiency improved Big improvement from
up to factor ~9 compared to VEGAS VEGAS Initialization

LHC example lll — W + 2 jets

Process has small interference terms
— no significant improvement from trained channel weights

—
I

—_
DO

MADNIS

~
~—
©
>
»)
o)
e,
+~
n
¥
2
+
=
)
—

VEGAS Flow Flow VFlow VFlow VFlow VFlow Flow Flow VFlow VFlow VFlow VFlow
fixed a trained o fixed o trained « trained « trained a fixed @« trained o fixed « trained o trained o trained «

Ra =2.9 Ra = 5.0 Ra =29 Ra=>5.0

Otherwise similar to results for VBS

Summary and Outlook

Take-home message Future exercises

 Fast and precise predictions with * Full integration of ML-based simulations into
ML-based simulations standard tools & MadGraph,....

 Normalizing flows provide statistically * Make everything run on the GPU and
well-defined likelihoods for inference differentiable (MadJax - Heinrich et al. [2203.00057))

 Account for uncertainties with
Bayesian neural networks

Hadronization Detectors

https://arxiv.org/abs/2203.00057

Summary and Outlook

m- SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Future exercises

Anja Butter’2, Tilman Plehn’, Steffen Schumann®, Simon Badger?, Sascha Caron®:°
Kyle Cranmer”-8, Francesco Armando Di Bello?, Etienne Dreyer!?, Stefano Forte!!,

Sanmay Ganguly'?, Dorival Goncalves'?, Eilam Gross'?, Theo Heimel’, - - . . .

Gudrun Heinrich'4, Lukas Heinrich!®, Alexander Held'®, Stefan Hoche!?, ¢ FLI I I Integ ratl on Of M L_ baSGd Simu Iat IONS | ntO

Jessica N. Howard'8, Philip Ilten'?, Joshua Isaacson!”, Timo JanRen®, Stephen Jones??,

Marumi Kado®2!, Michael Kagan??, Gregor Kasieczka?3, Felix Kling?4, Sabine Kraml?®, Stan d d rd tOO I S — M ad G ra p h LLLL

Claudius Krause?®, Frank Krauss2?, Kevin Kroninger?’, Rahool Kumar Barman!3,

Michel Luchmann!, Vitaly Magerya!4, Daniel Maitre2°, Bogdan Malaescu?,

Fabio Maltoni®®2?, Till Martini®°, Olivier Mattelaer?®, Benjamin Nachman3!32, ® M ake eve ryt h | N g run on th e G P U an d

Sebastian Pitz!, Juan Rojo®*3, Matthew Schwartz**, David Shih?®, Frank Siegert™,

Roy Stegeman!!, Bob Stienen®, Jesse Thaler’®, Rob Verheyen®’, d iffe re nti S | b I e

Daniel Whiteson!®, Ramon Winterhalder?®, and Jure Zupan!?

Ab * More details in our Snowmass report
stract

First-principle simulations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review illustrates a wide range of applications
of modern machine learning to event generation and simulation-based inference, includ-
ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning
will improve the speed and precision of forward simulations, handle the complexity of
collision data, and enhance inference as an inverse simulation problem.

https://arxiv.org/abs/2203.00057

Summary and Outlook

N HEP ML Living Review ® Q Search

Hame Qecent Ahout Cantribute Resourses Cite L3

A Living Review of Machine Learning for Particle Physics

Modern machine iearnuing technigues, including deep leaming, is raoidly being applied, adapted, and developed for high erergy
physics. The gnal of this document i= te provide a nearly camprehensive list of citations for thase developing ana applying these
approaches to excerimental, phenomenoloqical, or theoretical analyses. As & living document, it will be upasted as often as

possible to incorporate the latest developments. A list of preper (unchanging) revieves can be found within, BPapers are grouged

into a small set of tapics to be as useiul as possibic. Suggestions are mast welcome.

download review m

Expand all sections ‘ Collapse all sections

Reviews

‘ ¥ Mcdemn reviews

’ i Specialized reviews
’. § Classical papers

‘ 4 Datasets

GitHub
wain Yis

lable of contents
Reviews
Modan reviews
Spec zized reviews
Classical papers
Natasets
Classiticatian
Pzramelerized classifiers
Reoresentatiors
fargets
earning strategies
Fast inference [deployment
Regression
Pleup

Calibegin

Matdx elements
Paramater estimatian

Pzrlon Distribution Funclicns
[and related)

attice Gauge Theory
FLret on Approximatian
Symoolic Ragression

Eguvariant nelworks

Future exercises

* Full integration of ML-based simulations into

standard tools =+ MadGraph,....

 Make everything run on the GPU and

differentiable

* More details in our Snowmass report

e Stay tuned for many other ML4AHEP applications

https://arxiv.org/abs/2203.00057

