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Machine learning for particle physics?
Part I



Why care about ML in particle physics?



Why do we care about ML?

simulation and modeling, lead to new discoveries, 
and foster cross-disciplinary collaboration
“ We care about machine learning because it 

can improve data analysis,

ChatGPT
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Aim of this lecture: 

Giving you the ideas to use it right!



How machine learning often feels like 

Aim of this lecture: 

Giving you the ideas to use it right!

Be aware! 

The core of machine learning is to find 
structure in data - no more no less!
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LHC analysis + ML
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ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

Phase-space generation



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Monte Carlo integration



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f
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x∼g(x)

Monte Carlo integration



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Monte Carlo integration



Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

Fit bins with equal probability

and varying width



Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width



How can we do better?



Normalizing Flows
Part II



Normalizing flow — Basics

x z

forward G

Inverse  G−1 ≡ G

pz(z)p(x)
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Normalizing flow — Basics

x z

forward G

Inverse  G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

pθ(x) = pz(z = Gθ(x)) ⋅
∂Gθ(x)

∂x



log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x
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Normalizing flow — Basics

x z

forward G

inverse  G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

generation/sampling

density estimation



How to train it?



Normalizing flow — Training

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Normalizing flow — Basics
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x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)
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Normalizing flow — Training

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

Match  with pθ(x) pdata(x)



Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
pθ(x)

= − ∫ dx pdata(x) log pθ(x) + ∫ dx pdata(x) pdata(x)

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Match  with pθ(x) pdata(x)



Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
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Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse  G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
pθ(x)

= − ∫ dx pdata(x) log pθ(x) + ∫ dx pdata(x) pdata(x)

Negative log-likelihood loss: LNLL = − ∫ dx pdata(x) log pθ(x) ≈ ⟨−log pθ(x)⟩x∼pdata

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Match  with pθ(x) pdata(x)

No  dependeneθ
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Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is  matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹︎

Solution: Autoregressive transformations z =
z1
⋮
zd

x =
x1
⋮
xd

z1 ≡ z1(x1)
z2 ≡ z2(x1, x2)
⋮
zd ≡ zd(x1, x2, …, xd)

Jij(x) =

∂z1

∂x1

∂z2

∂x1
…

∂zd

∂x1

0 ∂z2

∂x2
…

∂zd

∂x1

⋮ ⋱ ⋮

0 … 0
∂zd

∂xd

det J = ∏
i

Jii ∼ 𝒪(d) ☺︎

Requires tractable Jacobian!
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Coupling block
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zB = xB

Forward pass:
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Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

What is the function ?C
Jij(x) =

∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine
[1605.08803]

CA = αθ(xB) ⋅ xA + μθ(xB)

parametrized by NN

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine

Quadratic

Rational 
quadratic

[1605.08803]

[1808.03856]

[1906.04032]

CA = αθ(xB) ⋅ xA + μθ(xB)

C = a x2 + b x + c

C =
a x2 + b x + c
d x2 + e x + f

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affi

Quadratic

Rational 
quadratic

[1605.08803]

[1808.03856]

[1906.04032]

CA = αθ(xB) ⋅ xA + μθ(xB)

C = a x2 + b x + c

C =
a x2 + b x + c
d x2 + e x + f

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im



[2212.06172]

Neural Importance Sampling
Part III — MadNIS

 [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145]

https://arxiv.org/abs/2212.06172


MadNIS — Basic functionality

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)



I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Latent space z

Channel i

⟨αi(x)
f(x)
gi(x) ⟩

Normalizing 
Flow i

Analytic Channel 
mapping i

 Φ ⊆ ℝN
Phase space Learned channel 

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Basic functionality



Latent space z Conditional Splitting

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel 
mapping 1

Analytic channel 
mapping 2

Analytic channel 
mapping k

⟨α2(x′￼)
f(x′￼)
g2(x′￼) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′￼′￼)
f(x′￼′￼)
gk(x′￼′￼) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2

Normalizing 
Flow k

Combination of 
 channelsk

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

MadNIS — Basic functionality



MadNIS — Overview
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Weights

Buffered 
Training
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VEGAS 
Initialization

Normalizing 
Flow

Trainable 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MadGraph

matrix
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MadEvent

channel


mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Stratified 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Training

Overflow 
Channels

Conditional

flows
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Neural

Channel 
Weights

Buffered 
Training

Stratified 
 


Symmetries

between 
channels

VEGAS 
Initialization

Normalizing 


Trainable 


MadGraph

matrix


elements

MadEvent

channel


mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

VEGAS initialization

Overflow 


Conditional

flows



VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization



y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

VEGAS grid

Bin reduction

Initialization

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization



Bin reduction

0.0 0.2 0.4 0.6 0.8 1.0
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1.0

64 VEGAS bins



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

rqs
vegas

10 RQS bins

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

64 VEGAS bins

Bin reduction



Neural

Channel 
Weights

Buffered 
Training

Stratified 
 


Symmetries

between 
channels

VEGAS 
Initialization

Normalizing 


Trainable 


MadGraph

matrix


elements

MadEvent

channel


mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Buffered training

Overflow 


Conditional

flows
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LHC example I — Drell-Yan
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LHC example III — W + 2 jets
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Take-home message

Summary and Outlook

• Fast and precise predictions with 
ML-based simulations

Future exercises

• Account for uncertainties with 
Bayesian neural networks

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

ℒ
Theory Shower EventsHard process Hadronization Detectors

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

5@

• Normalizing flows provide statistically 
well-defined likelihoods for inference

https://arxiv.org/abs/2203.00057
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