
Sapienta ex machina?

MCnet School 2023 — Durham

Ramon Winterhalder — UC Louvain

Machine Learning
for Event Generation

Plan of attack

1. Machine learning for particle physics?

2. Normalizing flows

4. Summary and discussion

3. MadNIS

Machine learning for particle physics?
Part I

Why care about ML in particle physics?

Why do we care about ML?

simulation and modeling, lead to new discoveries,
and foster cross-disciplinary collaboration
“ We care about machine learning because it

can improve data analysis,

ChatGPT

How machine learning often feels like

Aim of this lecture:

Giving you the ideas to use it right!

How machine learning often feels like

Aim of this lecture:

Giving you the ideas to use it right!

Be aware!

The core of machine learning is to find
structure in data - no more no less!

LHC analysis (oversimplified)

Fundamental Theory

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

New Physics?

LHC analysis + ML

Fundamental Theory

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Fast
simulation

Experimental
design

Online
processing/
triggering

Data
curation

New Physics?

calibration
clustering
tracking

particle identification
…

Optimal
observables

Parameter
estimation/
unfolding

Signal vs.
Background

VAE

Simplifying Polylogs
[2206.04115]

Model Building
[2103.04759]

Analytic continuation
[2112.13011]

Jet Clustering
[2008.06064]

3D Pixel Clustering 
[2007.03083]

CaloGAN 
[1712.10321]

How to GAN 
[1907.03764]

EPiC-GAN 
[2301.08128]

MADNIS 
[2212.06172]

Precision Generation 
[2110.13632]

Jet Simulation 
[2203.00520]

OTUS 
[2101.08944]

AnomalyCLR 
[2301.04660]

Normalized AE 
[2206.14225]

LaCATHODE 
[2210.14924]

NNPDF 
[2109.02653]

Symbolic regression 
[2109.10414]

Matrix Elements 
[2206.14831]

Bayesian Regression 
[2003.11099]

Bayesian Tagger 
[1904.10004]

ParticleNet 
[1902.08570]

Point Clouds 
[2102.05073]

Energy Flow Networks 
[1810.05165]

Unsupervised
Learning

Clustering

Anomaly
Detection

Machine
Learning

Regression

Supervised
Learning

CaloFlow I-IV 
[2106.05285,…]

PC-JeDi 
[2303.05376] FPCD 

[2304.01266]
Generative 

Models

MEM 
[2210.00019]

Reinforcement
Learning

String vacua & landscape
[1903.11616, 2111.11466]

Flavor structure
[2304.14176]

PELICAN 
[2211.00454]

Classification

JetGPT 
[2305.10475]

Transformer

GAN

Diffusion 
Models

DDPM & CFM 
[2305.10475]

NF
ELSA 

[2305.07696]

VAE

Simplifying Polylogs
[2206.04115]

Model Building
[2103.04759]

Analytic continuation
[2112.13011]

Jet Clustering
[2008.06064]

3D Pixel Clustering 
[2007.03083]

CaloGAN 
[1712.10321]

How to GAN 
[1907.03764]

EPiC-GAN 
[2301.08128]

MADNIS 
[2212.06172]

Precision Generation 
[2110.13632]

Jet Simulation 
[2203.00520]

OTUS 
[2101.08944]

AnomalyCLR 
[2301.04660]

Normalized AE 
[2206.14225]

LaCATHODE 
[2210.14924]

NNPDF 
[2109.02653]

Symbolic regression 
[2109.10414]

Matrix Elements 
[2206.14831]

Bayesian Regression 
[2003.11099]

Bayesian Tagger 
[1904.10004]

ParticleNet 
[1902.08570]

Point Clouds 
[2102.05073]

Energy Flow Networks 
[1810.05165]

Unsupervised
Learning

Clustering

Anomaly
Detection

Machine
Learning

Regression

Supervised
Learning

CaloFlow I-IV 
[2106.05285,…]

PC-JeDi 
[2303.05376] FPCD 

[2304.01266]
Generative 

Models

MEM 
[2210.00019]

Reinforcement
Learning

String vacua & landscape
[1903.11616, 2111.11466]

Flavor structure
[2304.14176]

PELICAN 
[2211.00454]

Classification

JetGPT 
[2305.10475]

Transformer

GAN

Diffusion 
Models

DDPM & CFM 
[2305.10475]

NF
ELSA 

[2305.07696]

VAE

Simplifying Polylogs
[2206.04115]

Model Building
[2103.04759]

Analytic continuation
[2112.13011]

Jet Clustering
[2008.06064]

3D Pixel Clustering 
[2007.03083]

CaloGAN 
[1712.10321]

How to GAN 
[1907.03764]

EPiC-GAN 
[2301.08128]

MADNIS 
[2212.06172]

Precision Generation 
[2110.13632]

Jet Simulation 
[2203.00520]

OTUS 
[2101.08944]

AnomalyCLR 
[2301.04660]

Normalized AE 
[2206.14225]

LaCATHODE 
[2210.14924]

NNPDF 
[2109.02653]

Symbolic regression 
[2109.10414]

Matrix Elements 
[2206.14831]

Bayesian Regression 
[2003.11099]

Bayesian Tagger 
[1904.10004]

ParticleNet 
[1902.08570]

Point Clouds 
[2102.05073]

Energy Flow Networks 
[1810.05165]

Unsupervised
Learning

Clustering

Anomaly
Detection

Machine
Learning

Regression

Supervised
Learning

CaloFlow I-IV 
[2106.05285,…]

PC-JeDi 
[2303.05376] FPCD 

[2304.01266]
Generative 

Models

MEM 
[2210.00019]

Reinforcement
Learning

String vacua & landscape
[1903.11616, 2111.11466]

Flavor structure
[2304.14176]

PELICAN 
[2211.00454]

Classification

JetGPT 
[2305.10475]

Transformer

GAN

Diffusion 
Models

DDPM & CFM 
[2305.10475]

NF

ℒ
Theory Shower EventsHard process Hadronization Detectors

?

ELSA 
[2305.07696]

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

Phase-space generation

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections
Phase-space generation

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

Phase-space generation

I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Monte Carlo integration

I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Monte Carlo integration

I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Monte Carlo integration

Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

Fit bins with equal probability

and varying width

Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap

⊖ High-dim and rich peaking functions 
→ slow convergence

⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width

How can we do better?

Normalizing Flows
Part II

Normalizing flow — Basics

x z

forward G

Inverse G−1 ≡ G

pz(z)p(x)

Normalizing flow — Basics

x z

forward G

Inverse G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability: with z = G(z) x = G(x)

Normalizing flow — Basics

x z

forward G

Inverse G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

pθ(x) = pz(z = Gθ(x)) ⋅
∂Gθ(x)

∂x

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Normalizing flow — Basics

x z

forward G

Inverse G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

Normalizing flow — Basics

x z

forward G

inverse G−1 ≡ G

pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

generation/sampling

density estimation

How to train it?

Normalizing flow — Training

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

Normalizing flow — Training

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)

Match with pθ(x) pdata(x)

Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
pθ(x)

= − ∫ dx pdata(x) log pθ(x) + ∫ dx pdata(x) pdata(x)

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Match with pθ(x) pdata(x)

Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
pθ(x)

= − ∫ dx pdata(x) log pθ(x) + ∫ dx pdata(x) pdata(x)

No dependeneθ

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Match with pθ(x) pdata(x)

Normalizing flow — Training

Kullback-Leibler divergence:

Normalizing flow — Basics

log pθ(x) = log pz(z = Gθ(x)) + log ∂Gθ(x)
∂x

x z

forward G

Inverse G−1 ≡ G
pz(z)p(x)

p(x) dx = pz(z) dzConservation of probability:

Change-of-variables formula:

with z = G(z) x = G(x)
KL(pdata(x) |pθ(x)) = ∫ dx pdata(x) log

pdata(x)
pθ(x)

= − ∫ dx pdata(x) log pθ(x) + ∫ dx pdata(x) pdata(x)

Negative log-likelihood loss: LNLL = − ∫ dx pdata(x) log pθ(x) ≈ ⟨−log pθ(x)⟩x∼pdata

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Match with pθ(x) pdata(x)

No dependeneθ

Tractable Jacobian?

Requires tractable Jacobian!log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹

Requires tractable Jacobian!

Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹

Solution: Autoregressive transformations z =
z1
⋮
zd

x =
x1
⋮
xd

Requires tractable Jacobian!

Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹

Solution: Autoregressive transformations z =
z1
⋮
zd

x =
x1
⋮
xd

z1 ≡ z1(x1)
z2 ≡ z2(x1, x2)
⋮
zd ≡ zd(x1, x2, …, xd)

Requires tractable Jacobian!

Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹

Solution: Autoregressive transformations z =
z1
⋮
zd

x =
x1
⋮
xd

z1 ≡ z1(x1)
z2 ≡ z2(x1, x2)
⋮
zd ≡ zd(x1, x2, …, xd)

Jij(x) =

∂z1

∂x1

∂z2

∂x1
…

∂zd

∂x1

0 ∂z2

∂x2
…

∂zd

∂x1

⋮ ⋱ ⋮

0 … 0
∂zd

∂xd

Requires tractable Jacobian!

Tractable Jacobian?

In general:

log pθ(x) = log pz(z = Gθ(x)) + log
∂Gθ(x)

∂x

 is matrixg(x) =
∂Gθ(x)

∂x
d × d Scales with 𝒪(d3) ☹

Solution: Autoregressive transformations z =
z1
⋮
zd

x =
x1
⋮
xd

z1 ≡ z1(x1)
z2 ≡ z2(x1, x2)
⋮
zd ≡ zd(x1, x2, …, xd)

Jij(x) =

∂z1

∂x1

∂z2

∂x1
…

∂zd

∂x1

0 ∂z2

∂x2
…

∂zd

∂x1

⋮ ⋱ ⋮

0 … 0
∂zd

∂xd

det J = ∏
i

Jii ∼ 𝒪(d) ☺

Requires tractable Jacobian!

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

xA

xB zB

zA

zx

C

fθ

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

xA

xB zB

zA

zx

C

fθ

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

What is the function ?C
Jij(x) =

∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine
[1605.08803]

CA = αθ(xB) ⋅ xA + μθ(xB)

parametrized by NN

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine

Quadratic

Rational
quadratic

[1605.08803]

[1808.03856]

[1906.04032]

CA = αθ(xB) ⋅ xA + μθ(xB)

C = a x2 + b x + c

C =
a x2 + b x + c
d x2 + e x + f

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im

Coupling block

zA = C(xA; fθ(xB))
zB = xB

Forward pass:

Inverse pass: xA = C−1(zA; fθ(zB))
xB = zB

xA

xB zB

zA

zx

C

fθ

Affine

Quadratic

Rational
quadratic

[1605.08803]

[1808.03856]

[1906.04032]

CA = αθ(xB) ⋅ xA + μθ(xB)

C = a x2 + b x + c

C =
a x2 + b x + c
d x2 + e x + f

Jij(x) =
∂C
∂xA

∂C
∂fθ

∂fθ
∂xB

0 Im

[2212.06172]

Neural Importance Sampling
Part III — MadNIS

 [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145]

https://arxiv.org/abs/2212.06172

MadNIS — Basic functionality

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Latent space z

Channel i

⟨αi(x)
f(x)
gi(x) ⟩

Normalizing
Flow i

Analytic Channel
mapping i

 Φ ⊆ ℝN
Phase space Learned channel

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Basic functionality

Latent space z Conditional Splitting

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel
mapping 1

Analytic channel
mapping 2

Analytic channel
mapping k

⟨α2(x′)
f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′)
f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

Combination of
 channelsk

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

MadNIS — Basic functionality

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Stratified
Sampling/
Training

Overflow
Channels

Conditional
flows

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Overflow
Channels

Conditional
flows

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

VEGAS initialization

Overflow
Channels

Conditional
flows

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization

y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

VEGAS grid

Bin reduction

Initialization

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization

Bin reduction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

64 VEGAS bins

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

rqs
vegas

10 RQS bins

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

64 VEGAS bins

Bin reduction

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Buffered training

Overflow
Channels

Conditional
flows

Online Training

Sample
z

Integrand
f(x)

LossG−1(z |φ)
L(f(x), g(x |φ))

PS point
x

Flow

g(x |φ)
Density

G(x |φ)

Buffered samples

x, q(x | φ̂), f(x)
Weighted Loss

L(f(x), g(x |φ) |w(x |φ))
Density

w(x |φ) =
g(x |φ)
q(x | φ̂)

g(x |φ)

G(x |φ)

g(x |φ) φ→φ̂ q(x | φ̂)

Buffered Training

Flow

1 2 3 4 5 6
reduction in training statistics R@

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

ch
an

ge
in

tr
ai

ni
ng

tim
e

t@ = 40µs
tbuff = 30µs

fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm

generate new samples, train on them,

save samples

↓

train on saved samples times

↓

repeat

n

Reduction in training statistics by

R@ = n + 1

Buffered training

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

LHC examples

Overflow
Channels

Conditional
flows

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

pp → γ/Z/Z′ → e+e−

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth

Peaks mapped out 
by different channels

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth

Peaks mapped out 
by different channels

Channel weights 
learned by network

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth

Peaks mapped out 
by different channels

Channel weights 
learned by network

Use samples multiple 
times to make  
training faster

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

(p
re

lim
in

ar
y)

LHC example II — VBS

V
EG

A
S

MADNIS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

(p
re

lim
in

ar
y)

LHC example II — VBS

V
EG

A
S

MADNIS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

Big improvement from

VEGAS initialization

(p
re

lim
in

ar
y)

LHC example II — VBS

V
EG

A
S

MADNIS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

Big improvement from

VEGAS initialization

Significant improvement

from trained channel weights

(p
re

lim
in

ar
y)

LHC example II — VBS

V
EG

A
S

MADNIS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

Big improvement from

VEGAS initialization

Significant improvement

from trained channel weights

Buffered training: small effect on

performance, much faster training

(p
re

lim
in

ar
y)

LHC example II — VBS

V
EG

A
S

MADNIS

LHC example III — W + 2 jets

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

0.4

0.6

0.8

1.0

1.2

1.4

re
la

ti
ve

st
d

d
ev

æ
/I

gg ! W+dū

5

10

15

20

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.40

0.45

æ
/I

gg ! W+dū

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

15

20

¥
[%

]

Process has small interference terms

→ no significant improvement from trained channel weights

Otherwise similar to results for VBS

(p
re

lim
in

ar
y)

V
EG

A
S

MADNIS

Take-home message

Summary and Outlook

• Fast and precise predictions with 
ML-based simulations

Future exercises

• Account for uncertainties with 
Bayesian neural networks

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

ℒ
Theory Shower EventsHard process Hadronization Detectors

• Make everything run on the GPU and
differentiable (MadJax - Heinrich et al. [2203.00057])

5@

• Normalizing flows provide statistically 
well-defined likelihoods for inference

https://arxiv.org/abs/2203.00057

Summary and Outlook

• Flows (+ Transformers) provide statistically 
well-defined likelihoods for inference

Summary

• DGMs provide fast and precise simulations

• Account for uncertainties with 
Bayesian neural networks

ℒ
Theory Shower EventsHard process Hadronization Detectors

• More details in our Snowmass report

5@
• Full integration of ML-based simulations into 

standard tools → MadGraph,….

• Make everything run on the GPU and
differentiable (MadJax - Heinrich et al. [2203.00057])

Future exercises

https://arxiv.org/abs/2203.00057

Summary and Outlook

• Flows (+ Transformers) provide statistically 
well-defined likelihoods for inference

Summary

• DGMs provide fast and precise simulations

• Account for uncertainties with 
Bayesian neural networks

ℒ
Theory Shower EventsHard process Hadronization Detectors

5@
• Full integration of ML-based simulations into 

standard tools → MadGraph,….

• Make everything run on the GPU and
differentiable (MadJax - Heinrich et al. [2203.00057])

Future exercises

• Stay tuned for many other ML4HEP applications

• More details in our Snowmass report

https://arxiv.org/abs/2203.00057

