Event generators for (high energy) Heavy Ion Collisions

Christian Bierlich, bierlich@hep.lu.se Department of Physics, Lund University Jul 13 2023, MCnet Summer School

Who am I? \& motivation of a heavy perspective

\odot Researcher at Lund University, PhD 2017, MCnet student.

- Pythia (soft physics: strings, multiparton interactions, heavy ion collisions, space-time structure of collisions).
\& Rivet (heavy ion functionality, flow measurements).
\odot Research interest: Where heavy ions meet proton-proton .

Who am I? \& motivation of a heavy perspective

\odot Researcher at Lund University, PhD 2017, MCnet student.

- Pythia (soft physics: strings, multiparton interactions, heavy ion collisions, space-time structure of collisions).
* Rivet (heavy ion functionality, flow measurements).
\odot Research interest: Where heavy ions meet proton-proton .
© Why? Heavy ions are The Wild West compared to pp.
: O Order-of-magnitude effects vs. percent or per-mille corrections.

Proton collisions are the reference

- They are complex beasts by themselves!

OHard Interaction

- Resonance Decays
- MECs, Matching \& Merging
- FSR
- ISR*
- QED
- Weak Showers
- Hard Onium

Multiparton Interactions
\square Beam Remnants*
© Strings
© Ministrings / Clusters
Colour Reconnections
String Interactions
Bose-Einstein \& Fermi-Dirac
\square Primary Hadrons

- Secondary Hadrons

Hadronic Reinteractions
(*: incoming lines are crossed)

- But we think we have a general purpose prescription.
- Jet universality a cornerstone.

Standard model of heavy ion physics

- Heavy ions traditionally viewed very differently.

- Experimentally focused on properties of the QGP, viscosity, temperature, mean-free-path.

Flow: the collective behaviour of heavy ions

- Staple measurement: often modeled with hydrodynamics.
- Several MCEG treatments exist.

(ALICE: 1602.01119)
Fourier series decomposition of ϕ distribution:

$$
\frac{d N}{d \phi} \propto 1+2 \sum_{n=1}^{\infty} \vee_{n} \cos \left[n\left(\phi-\Psi_{n}\right)\right]
$$

Hadron abundances: a QGP thermometer

- The temperature when QGP ends: statistical hadronization.
- Describes total yields well with few parameters.

- No first principles dynamics. Must be included "by hand" in an MCEG.

Jet quenching (arxivil702.01060)

- Jet evolution affected by presence of QGP.

- Boson as calibrated reference.
- Fixed anti- k_{\perp} R, jet broadens/softens.
- "Underlying event" difficult.
- Not found in small systems, intensive search.
- Will not be covered in this lecture.

Not so clear division!

- Heavy-ion like effects in pp collisions: Most surprising discovery of LHC .

This lecture

\odot The initial state

- The Glauber model.
* Effective theory: The color glass condensate (CGC).
- Total multiplicities
- HIJING/AMPT.
* The Pythia/Angantyr treatment.
- Color glass + HERWIG \& PYTHIA.
\odot Collective effects
- Parton shower modifications.
\& Some soft collective effects.
\checkmark Hadronic rescattering.
(:) Not a complete overview, but my curated selection.
© Focus on concepts, details in bonus material + references.

Nucleon size: $r_{p}=\sqrt{\sigma_{\text {(inel) }}^{N N} / 4 \pi}$

Participants and subcollisions

\%. Basic geometric quantities readily available.
Not directly measurable, don't believe what they tell you!

Scaling behaviours

- Multiplicity scaling, observation (1970s, since formalized):
- low p_{\perp} : scaling with $N_{\text {part }}$.
\& high p_{\perp} : scaling with $N_{\text {coll }}$.
- Formation time argument: In $p_{L}=0$ frame $\tau_{0} \geq 1 / m_{\perp}$.

$$
\tau_{\text {lab }}=\gamma \tau_{0}=\frac{E}{m_{\perp}^{2}}=\frac{\cosh y}{m_{\perp}}
$$

- Minimal resolution scale $\lambda \geq v \tau_{\text {lab }}=\frac{\sinh y}{m_{\perp}}$.
- Only fast particles can resolve individual partons in sub-collisions.
- Total multiplicity scales with number of wounded sources ($N_{\text {part }}$).

Nuclear modification factor

- Simple, scaled observables - no effect in pPb , what about pp ?

- Percentages are centrality intervals

$$
R_{A A}=\frac{\mathrm{d} N^{A A} / \mathrm{d} p_{\perp}}{\left\langle N_{\text {coll }}\right\rangle \lambda \mathrm{d} N^{p p} / \mathrm{d} p_{\perp}},
$$

$R_{\text {AA }}>1$: enhancement
$R_{A A}=1:$ no effect
$R_{A A}<1$: suppression
(ALICE: JHEP11(2018)013)

Cross section fluctuations

*

Because protons are not just static balls.
Substructure event by event \rightarrow modified Glauber calculation (details in bonus material).

Cross section fluctuations

Because protons are not just static balls.
Substructure event by event \rightarrow modified Glauber calculation (details in bonus material).

Cross section fluctuations

3
Because protons are not just static balls.
Substructure event by event \rightarrow modified Glauber calculation (details in bonus material).

Cross section fluctuations

t
Because protons are not just static balls.
Substructure event by event \rightarrow modified Glauber calculation (details in bonus material).

The color glass condensate (CGC)

- Treat incoming nuclei as classical colour fields.
- Evolved using "B-JIMWLK" (ask...), includes gluon saturation $(g g \rightarrow g)$.
- DGLAP: gluon density increases with decreasing x, no limit.

(arXiv:2012.08493)
- But what to do with the fields or wounded nuclei? Stay tuned!

Particle production: HIJING and AMPT

-

Both relies heavily on Pythia for nucleon-nucleon interactions.
\odot HIJING: No explicity (soft, hot) QGP effects:
© Glauber initial state, no cross section fluctuations, nuclear PDFs.
\& NN cross section suppressed with geometrical shadowing factor

- Stack Pythia events, optional models for jet quenching.

Particle production: HIJING and AMPT

t
Both relies heavily on Pythia for nucleon-nucleon interactions.
๑ HIJING: No explicity (soft, hot) QGP effects:
© Glauber initial state, no cross section fluctuations, nuclear PDFs.
\& NN cross section suppressed with geometrical shadowing factor

- Stack Pythia events, optional models for jet quenching.
\odot AMPT $=$ HIJING + extras $=$ Pythia + extra extras.
© Let strings melt, recover "partons" (fuzzy concept here).
\& Parton rescattering in final state.

Particle production: HIJING and AMPT

t
Both relies heavily on Pythia for nucleon-nucleon interactions.
\odot HIJING: No explicity (soft, hot) QGP effects:
© Glauber initial state, no cross section fluctuations, nuclear PDFs.
\& NN cross section suppressed with geometrical shadowing factor

- Stack Pythia events, optional models for jet quenching.
\odot AMPT $=$ HIJING + extras $=$ Pythia + extra extras.
© Let strings melt, recover "partons" (fuzzy concept here).
\& Parton rescattering in final state.
*. Pythia + corrections: representative of many HI MC generators.

Corrections may be very large!

Particle production: The Angantyr model

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Particle production: The Angantyr model

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Particle production: The Angantyr model

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Particle production: The Angantyr model

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Particle production: The Angantyr model (axivien00. 10320)

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Particle production: The Angantyr model (axivien00. 10320)

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Particle production: The Angantyr model (axivien00. 10320)

- Emission $F(\eta)$ per wounded nucleon

$$
\rightarrow \frac{\mathrm{d} N}{\mathrm{~d} \eta}=n_{t} F(\eta)+n_{p} F(-\eta) .
$$

- $F(\eta)$ modelled with even gaps in rapidity, as diffraction.
- Tuned to reproduce pp in the $n_{t}=n_{p}=1$ case.
- No tunable parameters for $A A$ - though some freedom in choices along the way.

Angantyr results

- Reduces to normal Pythia in pp. In pA and AA:
- Centrality measures \& multiplicities.
\& Fluctuations more important in pA.

Angantyr results

- Reduces to normal Pythia in pp. In pA and AA:
- Centrality measures \& multiplicities.
\& Fluctuations more important in pA.

Angantyr results

- Reduces to normal Pythia in pp. In pA and AA:
- Centrality measures \& multiplicities.
\& Fluctuations more important in pA.

Angantyr results

- Reduces to normal Pythia in pp. In pA and AA:
- Centrality measures \& multiplicities.
\& Fluctuations more important in pA.
(a) Centrality-dependent η distribution, $\mathrm{pPb}, \sqrt{S_{N N}}=5 \mathrm{TeV}$.

Angantyr results

- Reduces to normal Pythia in pp. In pA and AA:
- Centrality measures \& multiplicities.
\& Fluctuations more important in pA.
Number of wounded nucleons

Particle production with CGC

- A long way from classical fields to hadrons.
- Standard path: decay to plasma \rightarrow hydrodynamic expandision \rightarrow hadronic freezeout.
\& Interesting development: Sample gluons (Weizsäcker-Williams) \rightarrow hadronize with HERWIG or PYTHIA.
- Retains correlations from initial state.
- Colour connections (\& energy density) are points of tension.

Particle production with CGC

- A long way from classical fields to hadrons.
- Standard path: decay to plasma \rightarrow hydrodynamic expandision \rightarrow hadronic freezeout.
\& Interesting development: Sample gluons (Weizsäcker-Williams) \rightarrow hadronize with HERWIG or PYTHIA.
- Retains correlations from initial state.
- Colour connections (\& energy density) are points of tension.

Particle production with CGC

- A long way from classical fields to hadrons.
- Standard path: decay to plasma \rightarrow hydrodynamic expandision \rightarrow hadronic freezeout.
\& Interesting development: Sample gluons (Weizsäcker-Williams) \rightarrow hadronize with HERWIG or PYTHIA.
- Retains correlations from initial state.
- Colour connections (\& energy density) are points of tension.

Collective effects

- Here: Umbrella term covering all effects arising from final state interactions, influenced by event geometry .
- Other people may have other definitions. Beware.
- Today:
- Hydrodynamic expansion.
* String interactions.
- Hadronic rescattering.

Hydrodynamic expansion

- Thermalization \rightarrow perfect fluid. Enegy-momentum tensor: $T^{\mu \nu}=(\varepsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu} P$ is pressure, ε energy density, u^{μ} 4-velocity of fluid element.
- EOMs from cons. laws: $\partial_{\mu} T^{\mu \nu}=0+$ Equation of state.
- Equation of state good for intuition:

- State-of-the art: $3+1 \mathrm{D}$ incl viscous terms. EOS with lattice input.
- MCEG: IP-Glasma + MUSIC + URQMD.
- Freeze-out when energy density is low enough.

Pythia: No QGP, just interacting strings

- Contrast to PYTHIA: Let us see how far just strings can take us.
- Microscopic dynamics, no thermalization, no QGP.

Pythia: No QGP, just interacting strings

- Contrast to PYTHIA: Let us see how far just strings can take us.
- Microscopic dynamics, no thermalization, no QGP.
$\tau \approx 0 \mathrm{fm}$: Strings no transverse extension. No interactions, partons may propagate.
$\tau \approx 0.6 \mathrm{fm}$: Parton shower ends. Depending on "diluteness", strings may shove each other around.
$\tau \approx 1 \mathrm{fm}$: Strings at full transverse extension. Shoving effect maximal.
$\tau \approx 2 \mathrm{fm}$: Strings will hadronize. Possibly as a colour rope.
$\tau>2 \mathrm{fm}$: Possibility of hadronic rescatterings.

Pythia: No QGP, just interacting strings

- Contrast to PYTHIA: Let us see how far just strings can take us.
- Microscopic dynamics, no thermalization, no QGP.
$\tau \approx 0 \mathrm{fm}$: Strings no transverse extension. No interactions, partons may propagate.
$\tau \approx 0.6 \mathrm{fm}$: Parton shower ends. Depending on "diluteness", strings may shove each other around.
$\tau \approx 1 \mathrm{fm}$: Strings at full transverse extension. Shoving effect maximal.
$\tau \approx 2 \mathrm{fm}$: Strings will hadronize. Possibly as a colour rope.
$\tau>2 \mathrm{fm}$: Possibility of hadronic rescatterings.

Fragmentation of a single string

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

Fragmentation of a single string

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

Flavour by tunnelling

$\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$, where m is the quark mass \rightarrow parameter.

Fragmentation of a single string (Lumi strings: Piys Rept. o7 (1903) 31-45)

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

Flavour by tunnelling

$\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$, where m is the quark mass \rightarrow parameter.

But many strings overlap in pp collisions!

Shoving: The cartoon picture (arxiv:1710.09725, arxiv:2010.07595)

- Strings push each other in transverse space.
- Colour-electric fields \rightarrow classical force.

Transverse-space geometry.
(1) Particle production mechanism.
?? String radius and shoving force

MIT bag model, dual superconductor or lattice?

- Easier analytic approaches, eg. bag model: $\kappa=\pi R^{2}\left[\left(\Phi / \pi R^{2}\right)^{2} / 2+B\right]$
- Bad $R 1.7$ and dual sc. 0.95 respectively, shape of field is input.
- Lattice can provide shape, but uncertain R.

- Solution: Keep shape fixed, but R ballpark-free.

The shoving force

- Energy in field, in condensate and in magnetic flux.
- Let g determine fraction in field, and normalization N is given:

$$
E=N \exp \left(-\rho^{2} / 2 R^{2}\right)
$$

- Interaction energy calculated for transverse separation d_{\perp}, giving a force:

$$
f\left(d_{\perp}\right)=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}}{4 R^{2}}\right)
$$

- Distance calculated in "shoving frame", resolved as two-string interactions.

Rope Hadronization

- Overlapping strings combine into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Rope Hadronization
 (arXiv:1412.6259 - explored heavily in 80 's and 90 's!)

- Overlapping strings combine into multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Strangeness enhanced by:

$$
\rho_{L E P}=\exp \left(-\frac{\pi\left(m_{s}^{2}-m_{u}^{2}\right)}{\kappa}\right) \rightarrow \tilde{\rho}=\rho_{L E P}^{\kappa_{0} / \kappa}
$$

- QCD + geometry extrapolation from LEP.
- Can never do better than LEP initial conditions!

EPOS: The core-corona model (axivivo704.1270, https://klaus.pagss.in2p3.rir/epos4/)

- In the same event:
- Single-string treatment at low densities.
\& Full QGP treatment at high densities.

(Figure credit: Klaus Werner)
- Geometric interpolation between two extremes.
- Ambitious MCEG, closest to general purpose on market.

Hadronic Rescattering

- Several implementations, (URQMD is standard reference) here Pythia.
- Rescattering requires hadron space-time vertices.
- Key difference to existing approaches: Earlier hadronization $\tau \approx 2 \mathrm{fm}$.
- Momentum-space to space-time breakup vertices through string EOM: $v_{i}=\frac{\hat{x}_{i}^{+} p^{+}+\hat{x}_{i}^{-} p^{-}}{\kappa}$
- Hadron located between vertices: $v_{i}^{h}=\frac{v_{i}+v_{i+1}}{2}\left(\pm \frac{p_{h}}{2 \kappa}\right)$

- Formalism also handles complex topologies.
- Hadron cross sections from Regge theory or data.

Hydrodynamics does very well for flow (anxiv:2211.04384)

- Special purpose "generators", different hydro implementations.

String shoving competetive in small systems (axive2211.0.3394)

- Probably cannot distinguish models with such inclusive observables.

- In Pythia, download and play around.

Add a hard probe?

- Changes to the UE, must be modelled correctly.
- Cannot be done by special purpose EGs.

Add a hard probe?

- Changes to the UE, must be modelled correctly.
- Cannot be done by special purpose EGs.

Add a hard probe? (axive2010.0311)

- Changes to the UE, must be modelled correctly.
- Cannot be done by special purpose EGs.

String shoving in large systems (axivi2010.07595)

- We are getting there, but slowly.

Toy configuration, not real events.

- Goal: A full microscopic description, across all systems.
- These results without hadronic rescattering.

Hadronic rescattering
 (arXiv:2002.10236, arXiv:2103.09665)

- Crucial for large systems, very sensitive to system lifetime.

- Not trivial to combine effects!

Hadronic rescattering and flavour (axiver2300.10277, axxw.2.203.0965)

- Crucial for large systems, very sensitive to system lifetime.
- EPOS left, uses URQMD.
- Pythia below, heavy flavour.

Rope hadronization from small to large (axivi:2003.02394, arxivi1 8077.05271$)$

- Rope production works in pp, download Pythia and play.
- Extension to pA and AA is still work in progress.

How to continue from here?

- Many different models on the market, each with their niche.
- Messy models, difficult to place limits and get on with your life.
- Rivet + global $\chi^{2}=$ profit?
- model uncertainties not under control.
* most are special purpose calculations.
\checkmark attempts (Bayesian) exist, and might eventually be succesful.
- Another route: Qualitative differences.

How to continue from here?

- Many different models on the market, each with their niche.
- Messy models, difficult to place limits and get on with your life.
- Rivet + global $\chi^{2}=$ profit?
© model uncertainties not under control.
\& most are special purpose calculations.
- attempts (Bayesian) exist, and might eventually be succesful.
- Another route: Qualitative differences.

Summary

- There is no single general purpose MC for heavy ions. (Yet. EPOS comes quite close).
- Myriad of models to describe same effects: event generators allow for honest comparisons .
- Border between small and large systems is vanishing quickly.
- Several major and minor areas left (almost) untouched

Summary

- There is no single general purpose MC for heavy ions. (Yet. EPOS comes quite close).
- Myriad of models to describe same effects: event generators allow for honest comparisons .
- Border between small and large systems is vanishing quickly.
- Several major and minor areas left (almost) untouched
\& jet quenching, HBT, thermal charm, flow correlations, critical point searches, thermal photons, statistical hadronization, kinetic theory, nuclear PDFs, etc...

Summary

- There is no single general purpose MC for heavy ions. (Yet. EPOS comes quite close).
- Myriad of models to describe same effects: event generators allow for honest comparisons .
- Border between small and large systems is vanishing quickly.
- Several major and minor areas left (almost) untouched
\& jet quenching, HBT, thermal charm, flow correlations, critical point searches, thermal photons, statistical hadronization, kinetic theory, nuclear PDFs, etc...
- Best student resources on conference "student days" or dedicated summer schools. Ask if interested.
- Thank you for your attention!
- Thank you for nice nightcap discussions!

Bonus material

1. B-JIMWLK from dipoles.
2. Glauber model with fluctuating cross sections and frozen projectiles.
3. Strings with very soft gluon kinks.

BFKL, B-JIMWLK and all that...

- Start with Mueller dipole branching probability:

$$
\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} y}=\mathrm{d}^{2} \vec{r}_{3} \frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{r_{12}^{2}}{r_{13}^{2} r_{23}^{2}} \equiv \mathrm{~d}^{2} \vec{r}_{3} \kappa_{3} .
$$

- Evolve any observable $O(y) \rightarrow O(y+\mathrm{d} y)$ in rapidity:

$$
\begin{aligned}
\bar{O}(y+\mathrm{d} y) & =\mathrm{d} y \int \mathrm{~d}^{2} \vec{r}_{3} \kappa_{3}\left[O\left(r_{13}\right) \otimes O\left(r_{23}\right)\right]+O\left(r_{12}\right)\left[1-\mathrm{d} y \int \mathrm{~d}^{2} \vec{r}_{3} \kappa_{3}\right] \\
& \rightarrow \frac{\partial \bar{O}}{\partial y}=\int \mathrm{d}^{2} \vec{r}_{3} \kappa_{3}\left[O\left(r_{13}\right) \otimes O\left(r_{23}\right)-O\left(r_{12}\right)\right] .
\end{aligned}
$$

A powerful formalism!

- Example: S-matrix (eikonal approximation, b-space):

$$
O\left(r_{13}\right) \otimes O\left(r_{23}\right) \rightarrow S\left(r_{13}\right) S\left(r_{23}\right)
$$

- Change to $T \equiv 1-S$:

$$
\frac{\partial \overline{\langle\bar{T}\rangle}}{\partial y}=\int \mathrm{d}^{2} \vec{r}_{3} \kappa_{3}\left[\left\langle T_{13}\right\rangle+\left\langle T_{23}\right\rangle-\left\langle T_{12}\right\rangle-\left\langle T_{13} T_{23}\right\rangle\right] .
$$

- B-JIMWLK equation, but could be written with other observables.
- Example: Average dipole coordinate $(\langle z\rangle)$:

$$
\frac{\partial \overline{\langle z\rangle}}{\partial y}=\int \mathrm{d}^{2} \vec{r}_{3} \kappa_{3}\left(\frac{1}{3} z_{3}-\frac{1}{6}\left(z_{1}+z_{2}\right)\right) .
$$

Good-Walker \& cross sections

- Cross sections from $T(\vec{b})$ with normalizable particle wave functions:

$$
\begin{aligned}
& \sigma_{\text {tot }}=2 \int \mathrm{~d}^{2} \vec{b} \Gamma(\vec{b})=2 \int \mathrm{~d}^{2} \vec{b}\langle T(\vec{b})\rangle_{p, t} \\
& \sigma_{\text {el }}=\int \mathrm{d}^{2} \vec{b}|\Gamma(\vec{b})|^{2} \\
&=\int \mathrm{d}^{2} \vec{b}\langle T(\vec{b})\rangle_{p, t}^{2} \\
& B_{\mathrm{el}}=\left.\frac{\partial}{\partial t} \log \left(\frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right)\right|_{t=0}=\frac{\int \mathrm{d}^{2} \vec{b} b^{2} / 2\langle T(\vec{b})\rangle_{p, t}}{\int \mathrm{~d}^{2} \vec{b}\langle T(\vec{b})\rangle_{p, t}}
\end{aligned}
$$

- Or with photon wave function:

$$
\sigma^{\gamma^{*} \mathrm{p}}(s)=\int_{0}^{1} \mathrm{~d} z \int_{0}^{r_{\max }} r \mathrm{~d} r \int_{0}^{2 \pi} \mathrm{~d} \phi\left(\left|\psi_{L}(z, r)\right|^{2}+\left|\psi_{T}(z, r)\right|^{2}\right) \sigma_{\text {tot }}(z, \vec{r})
$$

Cross section colour fluctuations

- Cross section fluctuates event by event: important for $\mathrm{p} A$, $\gamma^{*} A$ and less $A A$.
- Projectile remains frozen through the passage of the nucleus.
- Consider fixed state (k) projectile scattered on single target nucleon:

$$
\begin{gathered}
\Gamma_{k}(\vec{b})=\left\langle\psi_{S} \mid \psi_{I}\right\rangle=\left\langle\psi_{k}, \psi_{t}\right| \hat{T}(\vec{b})\left|\psi_{k}, \psi_{t}\right\rangle= \\
\left(c_{k}\right)^{2} \sum_{t}\left|c_{t}\right|^{2} T_{t k}(\vec{b})\left\langle\psi_{k}, \psi_{t} \mid \psi_{k}, \psi_{t}\right\rangle= \\
\left(c_{k}\right)^{2} \sum_{t}\left|c_{t}\right|^{2} T_{t k}(\vec{b}) \equiv\left\langle T_{t k}(\vec{b})\right\rangle_{t}
\end{gathered}
$$

- And the relevant amplitude becomes $\left\langle T_{t_{i}, k}^{\left(n N_{i}\right)}\left(\vec{b}_{n i}\right)\right\rangle_{t}$

Fluctuating nucleon-nucleon cross sections

- Let nucleons collide with total cross section $2\langle T\rangle_{p, t}$
- Inserting frozen projectile recovers total cross section.
- Consider instead inelastic collisions only (color exchange, particle production):

$$
\frac{\mathrm{d} \sigma_{\mathrm{inel}}}{\mathrm{~d}^{2} \vec{b}}=2\langle T(\vec{b})\rangle_{p, t}-\langle T(\vec{b})\rangle_{p, t}^{2}
$$

- Frozen projectile will not recover original expression, but requre target average first.

$$
\frac{\mathrm{d} \sigma_{w}}{\mathrm{~d}^{2} \vec{b}}=2\left\langle T_{k}(\vec{b})\right\rangle_{p}-\left\langle T_{k}^{2}(\vec{b})\right\rangle_{p}=2\langle T(\vec{b})\rangle_{t, p}-\left\langle\langle T(\vec{b})\rangle_{t}^{2}\right\rangle_{p}
$$

- Increases fluctuations! But pp can be parametrized.

Strings with very soft gluon kinks

- String geometries can get quite complicated!

