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Who am I? & motivation of a heavy perspective

Researcher at Lund University, PhD 2017, MCnet student.

♠ Pythia (soft physics: strings, multiparton interactions, heavy
ion collisions, space–time structure of collisions).

♣ Rivet (heavy ion functionality, flow measurements).

Research interest: Where heavy ions meet proton–proton .

Why? Heavy ions are The Wild West compared to pp.

Order-of-magnitude effects vs. percent or per-mille
corrections.
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Proton collisions are the reference

• They are complex beasts by themselves!

MPIMPI

dσ̂0

·
·

·
·

··
Meson
Baryon

Antibaryon

· Heavy Flavour

Hard Interaction

Resonance Decays

MECs, Matching & Merging

FSR

ISR*

QED

Weak Showers

Hard Onium

Multiparton Interactions

Beam Remnants*

Strings

Ministrings / Clusters

Colour Reconnections

String Interactions

Bose-Einstein & Fermi-Dirac

Primary Hadrons

Secondary Hadrons

Hadronic Reinteractions

(*: incoming lines are crossed)

• But we think we have a general purpose prescription.
• Jet universality a cornerstone.

3



Standard model of heavy ion physics

• Heavy ions traditionally viewed very differently.

• Experimentally focused on properties of the QGP, viscosity,
temperature, mean-free-path. 4



Flow: the collective behaviour of heavy ions

• Staple measurement: often modeled with hydrodynamics.
• Several MCEG treatments exist.

(ALICE: 1602.01119)

Fourier series decomposition of ϕ distribution:

dN

dϕ
∝ 1 + 2

∞

∑
n=1

vn cos [n(ϕ −Ψn)]
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Hadron abundances: a QGP thermometer

• The temperature when QGP ends: statistical hadronization.
• Describes total yields well with few parameters.

(Figure: D. Chinellato)

(Andronic et al: 1710.09425)

• No first principles dynamics. Must be included “by hand” in
an MCEG.
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Jet quenching (arXiv:1702.01060)

• Jet evolution affected by presence of QGP.
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• Boson as calibrated reference.

• Fixed anti-k⊥ R, jet
broadens/softens.

• “Underlying event” difficult.

• Not found in small systems,
intensive search.

• Will not be covered in this
lecture.
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Not so clear division!

• Heavy-ion like effects in pp collisions: Most surprising
discovery of LHC .

• Transition is smooth!

• Fully general purpose
MCEG (e

+
e
−
→ AA)

more active than ever.

(ALICE: Nat. Phys.13 (2017))
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This lecture

The initial state

♠ The Glauber model.
♣ Effective theory: The color glass condensate (CGC).

Total multiplicities

♠ HIJING/AMPT.
♣ The Pythia/Angantyr treatment.
♥ Color glass + HERWIG & PYTHIA.

Collective effects

♠ Parton shower modifications.
♣ Some soft collective effects.
♥ Hadronic rescattering.

Not a complete overview, but my curated selection.

Focus on concepts, details in bonus material + references.
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The Glauber model

Nucleon size: rp =

√
σNN

inel
/4π
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Participants and subcollisions

Basic geometric quantities readily available.

Not directly measurable, don’t believe what they tell you!

(arXiv:0701025)

Source of
“centrality”
binning.
Works fine in
AA, ambiguous
in pA.
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Scaling behaviours

• Multiplicity scaling, observation (1970s, since formalized):

♠ low p⊥: scaling with Npart.
♣ high p⊥: scaling with Ncoll.

• Formation time argument: In pL = 0 frame τ0 ≥ 1/m⊥.

τlab = γτ0 =
E

m2
⊥

=
cosh y
m⊥

• Minimal resolution scale λ ≥ vτlab =
sinh y
m⊥

.

• Only fast particles can resolve individual partons in
sub-collisions.

• Total multiplicity scales with number of wounded sources
(Npart).
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Nuclear modification factor

• Simple, scaled observables – no effect in pPb, what about pp?

(ALICE: JHEP11(2018)013)

• Percentages
are centrality
intervals

RAA =
dN

AA/dp⊥
⟨ Ncoll ⟩dNpp/dp⊥

,

RAA > 1 ∶ enhancement

RAA = 1 ∶ no effect

RAA < 1 ∶ suppression
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Cross section fluctuations (arXiv:1907.12871, arXiv:1607.04434)

Because protons are not just static balls.

Substructure event by event → modified Glauber calculation
(details in bonus material).
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Cross section fluctuations (arXiv:1907.12871, arXiv:1607.04434)

Because protons are not just static balls.

Substructure event by event → modified Glauber calculation
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The color glass condensate (CGC)

• Treat incoming nuclei as classical colour fields.
• Evolved using “B-JIMWLK” (ask...), includes gluon saturation
(gg → g).

• DGLAP: gluon density increases with decreasing x , no limit.
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(arXiv:2012.08493)

• But what to do with the fields or wounded nuclei? Stay tuned! 15



Particle production: HIJING and AMPT

Both relies heavily on Pythia for nucleon-nucleon interactions.

HIJING: No explicity (soft, hot) QGP effects:

♠ Glauber initial state, no cross section fluctuations, nuclear
PDFs.

♣ NN cross section suppressed with geometrical shadowing factor
.

♥ Stack Pythia events, optional models for jet quenching.

AMPT = HIJING + extras = Pythia + extra extras.

♠ Let strings melt, recover “partons” (fuzzy concept here).
♣ Parton rescattering in final state.

Pythia + corrections: representative of many HI MC
generators.

Corrections may be very large!
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Particle production: The Angantyr model (arXiv:1806.10820)

• Emission F (η) per wounded nucleon
→ dN

dη
= ntF (η) + npF (−η).

• F (η) modelled with even gaps in rapidity, as diffraction.

• Tuned to reproduce pp in the nt = np = 1 case.

• No tunable parameters for AA – though some freedom in
choices along the way.

Projectile Target η

dN
dη

target wounded nucleonprojectile wounded nucleon
pp collision

pA collision
AA collision
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Angantyr results

• Reduces to normal Pythia in pp. In pA and AA:
♠ Centrality measures & multiplicities.
♣ Fluctuations more important in pA.
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Particle production with CGC (arXiv:2012.08493, arXiv:1607.02496)

• A long way from classical fields to hadrons.
♠ Standard path: decay to plasma → hydrodynamic expandision

→ hadronic freezeout.
♣ Interesting development: Sample gluons (Weizsäcker-Williams)

→ hadronize with HERWIG or PYTHIA.
♥ Retains correlations from initial state.
♦ Colour connections (& energy density) are points of tension.
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→ hadronize with HERWIG or PYTHIA.
♥ Retains correlations from initial state.
♦ Colour connections (& energy density) are points of tension.

10-5
10-4
10-3
10-2
10-1
100

 0  1  2  3  4  5  6

P(
N

ch
 /〈

N
ch
〉)

Nch / 〈Nch〉

CMS data
Gluons

Hadrons

CGC + Lund
p+p 7 TeV

19



Particle production with CGC (arXiv:2012.08493, arXiv:1607.02496)

• A long way from classical fields to hadrons.
♠ Standard path: decay to plasma → hydrodynamic expandision

→ hadronic freezeout.
♣ Interesting development: Sample gluons (Weizsäcker-Williams)
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Collective effects

• Here: Umbrella term covering all effects arising from final
state interactions, influenced by event geometry .

• Other people may have other definitions. Beware.

• Today:

♠ Hydrodynamic expansion.
♣ String interactions.
♥ Hadronic rescattering.
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Hydrodynamic expansion

• Thermalization → perfect fluid. Enegy-momentum tensor:

T
µν

= (ε + P)uµuν − Pg
µν

P is pressure, ε energy density, u
µ

4-velocity of fluid element.

• EOMs from cons. laws: ∂µT
µν

= 0 + Equation of state.

• Equation of state good for intuition:

• State–of–the art: 3+1D incl
viscous terms. EOS with
lattice input.

• MCEG: IP-Glasma +
MUSIC + URQMD.

• Freeze-out when energy density is low enough.

21



Pythia: No QGP, just interacting strings

• Contrast to PYTHIA: Let us see how far just strings can take
us.

• Microscopic dynamics , no thermalization, no QGP.
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Fragmentation of a single string (Lund strings: Phys.Rept. 97 (1983) 31-145)

• Non-perturbative fragmentation, Lund strings, κ ≈ 1 GeV/fm.

Flavour by tunnelling

P ∝ exp (−πm
2
⊥

κ
), where m is the quark mass → parameter.

But many strings overlap in pp collisions!
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But many strings overlap in pp collisions!
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Shoving: The cartoon picture (arXiv:1710.09725, arXiv:2010.07595)

• Strings push each other in transverse space.
• Colour-electric fields → classical force.

 Transverse-space geometry.
 Particle production mechanism.
?? String radius and shoving force
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MIT bag model, dual superconductor or lattice?

• Easier analytic approaches, eg. bag model:
κ = πR

2[(Φ/πR2)2/2 + B]
• Bad R 1.7 and dual sc. 0.95 respectively, shape of field is
input.

• Lattice can provide shape, but uncertain R.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x  [fm]

0.00

0.05

0.10

0.15

0.20

0.25

E z
 [G
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2 ]
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Gaussian profile
Lattice calculation

• Solution: Keep shape fixed, but R ballpark-free.
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The shoving force

• Energy in field, in condensate and in magnetic flux.

• Let g determine fraction in field, and normalization N is given:

E = N exp(−ρ2/2R2)

• Interaction energy calculated for transverse separation d⊥,
giving a force:

f (d⊥) =
gκd⊥

R2
exp(− d

2
⊥

4R2
)

• Distance calculated in “shoving frame”, resolved as two-string
interactions.
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Rope Hadronization (arXiv:1412.6259 – explored heavily in 80’s and 90’s!)

• Overlapping strings combine into multiplet with effective
string tension κ̃.

Effective string tension from the lattice

κ∝ C2 ⇒
κ̃
κ0

=
C2(multiplet)
C2(singlet)

.

Strangeness enhanced by:

ρLEP = exp(−π(m
2
s −m

2
u)

κ ) → ρ̃ = ρ
κ0/κ
LEP

• QCD + geometry extrapolation from LEP.

• Can never do better than LEP initial conditions!
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EPOS: The core-corona model (arXiv:0704.1270, https://klaus.pages.in2p3.fr/epos4/)

• In the same event:
♠ Single-string treatment at low densities.
♣ Full QGP treatment at high densities.

(Figure credit: Klaus Werner)

• Geometric interpolation between two extremes.

• Ambitious MCEG, closest to general purpose on market.
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Hadronic Rescattering (arXiv:2103.09665, arXiv:2005.05658, arXiv:1808.04619)

• Several implementations, (URQMD is standard reference) –
here Pythia.

• Rescattering requires hadron space–time vertices.
• Key difference to existing approaches: Earlier hadronization
τ ≈ 2 fm.

• Momentum-space to space-time breakup vertices through

string EOM: vi =
x̂
+
i p

++x̂−i p
−

κ

• Hadron located between vertices: v
h
i =

vi+vi+1
2

(+−
ph
2κ
)

• Formalism also handles
complex topologies.

• Hadron cross sections
from Regge theory or
data.
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Hydrodynamics does very well for flow (arXiv:2211.04384)

• Special purpose “generators”, different hydro
implementations.
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String shoving competetive in small systems (arXiv:2211.04384)

• Probably cannot distinguish models with such inclusive
observables.

• In Pythia, download and play around.
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Add a hard probe? (arXiv:2101.03110)

• Changes to the UE, must be modelled correctly.
• Cannot be done by special purpose EGs.
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Add a hard probe? (arXiv:2101.03110)

• Changes to the UE, must be modelled correctly.
• Cannot be done by special purpose EGs.
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String shoving in large systems (arXiv:2010.07595)

• We are getting there, but slowly.
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• Goal: A full microscopic description, across all systems.

• These results without hadronic rescattering.
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Hadronic rescattering (arXiv:2002.10236, arXiv:2103.09665)

• Crucial for large systems, very sensitive to system lifetime.
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• Not trivial to combine effects!
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Hadronic rescattering and flavour (arXiv:2306.10277, arXiv:2103.09665)
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• Crucial for large systems, very
sensitive to system lifetime.

• EPOS left, uses URQMD.

• Pythia below, heavy flavour.
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Rope hadronization from small to large (arXiv:2003.02394, arXiv:1807.05271)
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• Rope production works in
pp, download Pythia and
play.

• Extension to pA and AA
is still work in progress.
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How to continue from here? (arXiv:2003.10997)

• Many different models on the market, each with their niche.

• Messy models, difficult to place limits and get on with your
life.

• Rivet + global χ
2
= profit?

♠ model uncertainties not under control.
♣ most are special purpose calculations.
♥ attempts (Bayesian) exist, and might eventually be succesful.

• Another route: Qualitative differences.
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Summary

• There is no single general purpose MC for heavy ions. (Yet.
EPOS comes quite close).

• Myriad of models to describe same effects: event generators
allow for honest comparisons .

• Border between small and large systems is vanishing quickly.

• Several major and minor areas left (almost) untouched

♣ jet quenching, HBT, thermal charm, flow correlations, critical
point searches, thermal photons, statistical hadronization,
kinetic theory, nuclear PDFs, etc...

• Best student resources on conference “student days” or
dedicated summer schools. Ask if interested.

• Thank you for your attention!

• Thank you for nice nightcap discussions!

38



Summary

• There is no single general purpose MC for heavy ions. (Yet.
EPOS comes quite close).

• Myriad of models to describe same effects: event generators
allow for honest comparisons .

• Border between small and large systems is vanishing quickly.

• Several major and minor areas left (almost) untouched

♣ jet quenching, HBT, thermal charm, flow correlations, critical
point searches, thermal photons, statistical hadronization,
kinetic theory, nuclear PDFs, etc...

• Best student resources on conference “student days” or
dedicated summer schools. Ask if interested.

• Thank you for your attention!

• Thank you for nice nightcap discussions!

38



Summary

• There is no single general purpose MC for heavy ions. (Yet.
EPOS comes quite close).

• Myriad of models to describe same effects: event generators
allow for honest comparisons .

• Border between small and large systems is vanishing quickly.

• Several major and minor areas left (almost) untouched

♣ jet quenching, HBT, thermal charm, flow correlations, critical
point searches, thermal photons, statistical hadronization,
kinetic theory, nuclear PDFs, etc...

• Best student resources on conference “student days” or
dedicated summer schools. Ask if interested.

• Thank you for your attention!

• Thank you for nice nightcap discussions!

38



Bonus material

1. B-JIMWLK from dipoles.

2. Glauber model with fluctuating cross sections and frozen
projectiles.

3. Strings with very soft gluon kinks.
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BFKL, B-JIMWLK and all that...

• Start with Mueller dipole branching probability:

dP
dy

= d
2
r⃗3

Ncαs

2π2
r
2
12

r213r
2
23

≡ d
2
r⃗3 κ3.

• Evolve any observable O(y) → O(y + dy) in rapidity:

Ō(y+dy) = dy ∫ d
2
r⃗3 κ3 [O(r13)⊗ O(r23)]+O(r12) [1 − dy ∫ d

2
r⃗3 κ3]

→
∂Ō

∂y
= ∫ d

2
r⃗3 κ3 [O(r13)⊗ O(r23) − O(r12)] . 40



A powerful formalism!

• Example: S-matrix (eikonal approximation, b-space):

O(r13)⊗ O(r23) → S(r13)S(r23)

• Change to T ≡ 1 − S :

∂⟨T ⟩
∂y

= ∫ d
2
r⃗3 κ3 [⟨T13⟩ + ⟨T23⟩ − ⟨T12⟩ − ⟨T13T23⟩] .

• B-JIMWLK equation, but could be written with other
observables.

• Example: Average dipole coordinate (⟨z⟩):

∂⟨z⟩
∂y

= ∫ d
2
r⃗3κ3 (

1

3
z3 −

1

6
(z1 + z2)) .
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Good–Walker & cross sections

• Cross sections from T (b⃗) with normalizable particle wave
functions:

σtot = 2∫ d
2
b⃗Γ(b⃗) = 2∫ d

2
b⃗ ⟨T (b⃗)⟩p,t

σel = ∫ d
2
b⃗∣Γ(b⃗)∣2 = ∫ d

2
b⃗ ⟨T (b⃗)⟩2p,t

Bel =
∂

∂t
log (dσel

dt
) »»»»»»t=0 =

∫ d
2
b⃗ b

2/2 ⟨T (b⃗)⟩p,t
∫ d2b⃗ ⟨T (b⃗)⟩p,t

• Or with photon wave function:

σ
γ
∗
p(s) = ∫

1

0
dz ∫

rmax

0
rdr ∫

2π

0
dϕ (∣ψL(z , r)∣2 + ∣ψT (z , r)∣2)σtot(z , r⃗)
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Cross section colour fluctuations

• Cross section fluctuates event by event: important for pA,
γ
∗
A and less AA.

• Projectile remains frozen through the passage of the nucleus.

• Consider fixed state (k) projectile scattered on single target
nucleon:

Γk(b⃗) = ⟨ψS ∣ψI ⟩ = ⟨ψk , ψt∣T̂ (b⃗)∣ψk , ψt⟩ =

(ck)2∑
t

∣ct∣2Ttk(b⃗)⟨ψk , ψt∣ψk , ψt⟩ =

(ck)2∑
t

∣ct∣2Ttk(b⃗) ≡ ⟨Ttk(b⃗)⟩t

• And the relevant amplitude becomes ⟨T (nNi )
ti ,k

(b⃗ni)⟩t
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Fluctuating nucleon-nucleon cross sections

• Let nucleons collide with total cross section 2⟨T ⟩p,t
• Inserting frozen projectile recovers total cross section.

• Consider instead inelastic collisions only (color exchange,
particle production):

dσinel

d2b⃗
= 2⟨T (b⃗)⟩p,t − ⟨T (b⃗)⟩2p,t .

• Frozen projectile will not recover original expression, but
requre target average first.

dσw

d2b⃗
= 2⟨Tk(b⃗)⟩p − ⟨T 2

k (b⃗)⟩p = 2⟨T (b⃗)⟩t,p − ⟨⟨T (b⃗)⟩2t ⟩p

• Increases fluctuations! But pp can be parametrized.
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Strings with very soft gluon kinks

• String geometries can get quite complicated!

O

A

B

C
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E

F H

g

qq

J
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