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Plan for the lectures

• Basics of collider physics

• Basics of QCD

• DIS and the Parton Model

• Higher order corrections 

• Asymptotic freedom

• QCD improved parton model


• State-of-the-art computations for the LHC

• Monte Carlo generators

• Higgs phenomenology

• Top phenomenology

• Searching for New Physics: EFT
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Basics of collider physics

Goals of collider physics: 

Test theoretical predictions: Standard Model and New 
Physics

Hopefully find the unexpected!
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Collider physics

4

Theory

Experiment

Interpretation

Need good control of every step
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Historical perspective
Why bother? Because it works! 
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Collider When What 
particle Energy Main Impact

SPS-CERN 1981-1984 pp 600 GeV W/Z bosons

Tevatron 1983-2011 ppbar 2 TeV Top quark

LEP-CERN 1989-2000 e+e- 210 GeV Precision EW

HERA-DESY 1992-2007 ep 320 GeV QCD/PDFs

BELLE 1999-2010 e+e- 10 GeV Flavour physics

LHC 2009-Today pp 7/8/13 TeV Higgs…
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Future of collider physics?
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Collider reach
How heavy a particle can be produced?

Fixed target experiment: 

Collider experiment: 
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A + B → X M2
X = (p1 + p2)2

p1 ≃ (E,0,0,E)
p2 = (m,0,0,0)

MX ≃ 2mE

p2 ≃ (E,0,0, − E)
MX ≃ 2E

p1 ≃ (E,0,0,E)
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THE REACH OF COLLIDER FACILITIES

- linear    law: no energy loss  
- less dense bunches: small collision rates
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production in 2-particle collisions:
fixed target: before after

root increase in M

- root    law: large energy loss in  
- dense target: large collision rate / luminosity
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collider target: before after
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collider target: before after

Better energy scaling for collider experiment


Note: fixed target can benefit from dense target
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Collider aspects

Luminosity: rate of particles in colliding bunches


Circular vs linear: circular colliders are compact, but suffer from synchrotron radiation


Lepton vs Hadron: Lepton colliders, all energy available in the collision

Hadron colliders, energy available determined by PDFs but can generally reach higher energies

8

ℒ =
N1N2 f

A

L = 300 fb−1

Ni

A
f

number of particles in bunches

bunch collision rate

transverse bunch area

Number of events for process with cross-section : σ Lσ LHC luminosity Run II

Integrated Luminosity: L = ∫ ℒdt
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LHC: a hadron collider

9

Now
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LHC status

10

Rediscovering the SM Searching for the unknown

Good agreement with the SM
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LHC physics
What’s next?

No sign of new physics! Searches for deviations continue


New Physics can be: 

Weakly coupled: Small rates means that more Luminosity can help


Exotic: Need new ways to search for it, going beyond standard 
searches or even beyond high-energy colliders


Heavy: Not enough energy to produce it

Need indirect searches: SMEFT

11
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What is next for LHC physics 

• New Physics is hiding well! 

• Need to probe small deviations from the Standard Model using very 

precise predictions. 

• Precise predictions are needed for both the SM and BSM.

12

In this course we will study the ingredients which enter in 
theoretical predictions and interpretations of LHC data! 
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How to compute cross-sections for the LHC?

13

pp

µFµF
x1E x2E

`+ `�

long distance

long distance

Phase-space integral Parton density functions Parton-level cross section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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Phase-space integral Parton density functions Parton-level cross section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b

Universal:

~Probabilities of finding 
given parton with given 
momentum in proton

Extracted from data

Important 
aspect of a 
Monte Carlo 
generator

Subject of huge efforts in 
the LHC theory community 
to systematically improve 
this

Master formula for LHC physics

We will study in detail this formula this week! Spoiler 
Alert 
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From the hard scattering to events

15

p

Fabio MaltoniFabio MaltoniFabio MaltoniInvisibles School 2015 - Miraflores (Madrid) Fabio Maltoni14

pp

µFµF
x1E x2E

`+ `�

long distance

long distance

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b

Master formula for the LHC

p

Ideally Artist’s impression of reality Reality
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An LHC event

16

Fabio MaltoniFabio MaltoniInvisibles School 2015 - Miraflores (Madrid) Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist

53

We will discuss all of these!
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QCD…

LHC is a proton-proton collider: 

• colliding particles are proton constituents which are coloured particles


QCD plays a crucial role in what we eventually observe in the detectors


Why is QCD “special”? Let’s compare it to what we know best: QED

17
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From QED to QCD
Example 1: R-ratio

18

2 e+e− Annihilation

While electron-positron colliders are less relevat for current phenomenology than they
were before, they are a good starting oint to discuss many concepts one also finds at
hadron colliders.

If we consider what happens when electrons and positrons collide, then the most likely
thing is that some hadrons are produced. However, none of the Lagrangians or Feynman
rules you’ve learnt involve hadrons. This is the key issue in most collider physics, we can
calculate things for quarks and gluons but we observe hadrons.

2.1 Leading Order

We will start by studying one of the simplest possible processes, e+e− annihilation via the
exchange of a photon or Z0 boson, as shown in Fig. 1. This process can produce either

e+

e−

!+, ν̄

!−, ν

γ/Z0 e+

e−

q

q̄

γ/Z0

Figure 1: Feynman diagrams for e+e− annihilation into leptons and quarks.

quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

vs

¯
∑ |M |2 =

2e4

s2
[t2 + u2]

Let’s compute the matrix element for: 
Summing and averaging: 

Try this out!

s = (pe+ + pe−)2 t = (pe+ − pμ+)2 = −
s
2

(1 − cosθ)

u = (pe+ − pμ−)2 = −
s
2

(1 + cosθ)

Mandelstam variables:

s + t + u = 0
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γ

Prof. M.A. Thomson Michaelmas 2009 494

! And the Matrix elements become 

! In the limit where initial and final state particle mass can be neglected:   

etc.

(page 31)
! Giving:  

-1 +1cos!

! Because                                                        , the 
differential cross section is asymmetric, i.e. parity
violation (although not maximal as was the case
for the W boson).

"–

e+
e–

"#

Cross section with unpolarized beams

Prof. M.A. Thomson Michaelmas 2009 495

!To calculate the total cross section need to sum over all matrix elements and
average over the initial spin states.  Here, assuming unpolarized beams (i.e. both
e+ and both e- spin states equally likely) there a four combinations of 
initial electron/positron spins, so

!The part of the expression  {…} can be rearranged:

(1)

andand using 

Why?
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σe+e−→μ+μ− =
4πα2

3s

¯
∑ |M |2 =

2e4

s2
[t2 + u2]

dΩ = dϕ dcosθ

2-body phase-space+Momentum conservation
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total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)

γ

dσ
dΩ

=
1

64π2s
¯

∑ |M |2

¯
∑ |M |2 ∝ (1 + cos2θ)

Cross-section: 

Try this out!
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Fabio MaltoniFabio MaltoniGGI Florence - 2017

How many colors?

Γ ∼ N2

c

[

Q2

u − Q2

d

]2 m3
π

f2
π

�EXP = 7.7± 0.6 eV

�TH =

✓
Nc

3

◆2

7.6 eV

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
∼ Nc

X

q

e2q

= 2(Nc/3) q = u, d, s

= 3.7(Nc/3) q = u, d, s, c, b

32
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Difference due to colour!!! 


Quark—anti-pair can be one of 
rr̄, gḡ, bb̄

Experimental evidence for colour!

eq

Why did we pick ?μ+μ−
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How many colors?

Γ ∼ N2

c

[

Q2

u − Q2

d

]2 m3
π

f2
π

�EXP = 7.7± 0.6 eV

�TH =

✓
Nc

3

◆2

7.6 eV

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
∼ Nc

X

q

e2q

= 2(Nc/3) q = u, d, s

= 3.7(Nc/3) q = u, d, s, c, b

32

Figure 2: Expected shape for the R ratio.

where s is the centre-of-mass energy of the collision squared. The cross section for the
production of quarks is

σ(e+e− → hadrons) =
4πα2

3s

∑

q

e2qNc, (3)

where eq is the charge of the quark in units of the positron charge and the sum runs over
all quarks for which the centre-of-mass energy

√
s > 2mq, where mq is the mass of the

quark. Remember we must sum over all the quantum numbers of the quarks so the cross
section is multiplied by number of colours, Nc. Therefore for centre-of-mass energies much
less than the mass of the Z0 boson,

√
s # Mz,

R =
∑

q

e2qNc = Nc

(
4

9
+

1

9
+

1

9
︸ ︷︷ ︸

u,d,s

+
4

9

︸ ︷︷ ︸

u,d,s,c

+
1

9

)

︸ ︷︷ ︸

u,d,s,c,b

. (4)

The expected picture is shown in figure 2. The experimental measurement of this ratio
is shown in Fig. 3 as a function of energy showing the thresholds for the production
of the charm and bottom quarks. Below the charm threshold there are three active
quarks down (ed = −1

3), up (eu = 2
3) and strange (es = −1

3) giving R = 2. Above the
charm (ec =

2
3) threshold R = 10

3 while above the bottom (eb = −1
3) threshold R = 11

3 .

2.1.1 The Z resonance

For energies
√
s ∼ mZ we will need to include the effects of the second diagram in Fig. 1.

The cross-section will then have three different contributions, the photon background, the

Expected Measured

Quarkonium states: very small width, very long lived states
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See exercise!
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Z

s ∼ MZZ contribution becomes relevant when 

We then need both diagrams and their interference



Eleni Vryonidou STFC HEP school 2023

Z-resonance
Breit-Wigner and Narrow Width Approximation

23

where |p1| is the magnitude of the three-momenta of either of the outgoing particles and
θ and φ are the polar and azimuthal scattering angles, respectively. The cross section

dσ =
1

16πs

|p1|√
s
d cos θ|M|2. (117)

In is conventional to describe the scattering process in terms of the Mandelstam variables

s = (pa + pb)
2, t = (pa − p1)

2, u = (pa − p2)
2. (118)

There are only two independent Mandelstam variables

s+ t + u = m2
1 +m2

2 +m2
a +m2

b
massless−→ 0. (119)

In terms of these variables

dσ =
1

16πs2
dt|M|2. (120)

A.3 Cross Sections in Hadron Collisions

In hadron collisions there is an additional complication as the partons inside the hadrons
interact. The hadron–hadron cross section is

dσAB =
∑

ab

∫ 1

0

dx1dx2fa/A(x1, µ
2
F )fb/B(x2, µ

2
F )σ̂ab(ŝ, µ

2
F , µ

2
R), (121)

where x1,2 are momentum fractions of the interacting partons with respect to the incoming
hadrons, ŝ = x1x2s, σ̂ab(ŝ, µ2

F , µ
2
R) is the parton-level cross section for the partons a and b

to produce the relevant final state, fa/A(x, µ2
F ) is the parton distribution function (PDF)

giving the probability of finding the parton a in the hadronA, and similarly for fb/B(x, µ2
F ).

The factorization and renormalisation scales are µF and µR, respectively.
In hadron collisions we usually denote the variables for partonic process with ˆ, e.g.

ŝ, t̂ and û for the Mandelstam variables.

A.3.1 Resonance production (2 → 1 processes)

The simplest example of a hadronic cross section is the production of an s-channel res-
onance, for example the Z0 or Higgs bosons. We assume that the incoming partons are
massless so that the 4-momenta of the incoming partons are:

pa,b = x1,2(E, 0, 0, ±E), (122)

where E is beam energy in the hadron–hadron centre-of-mass system of collider such that
s = 4E2. The Breit-Wigner cross section, e.g. for Z production, is

σ̂qq̄→Z0→µ+µ− =
1

N2
C

12πŝ

M2
Z

Γqq̄Γµ+µ−

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

. (123)

In the limit that the width is a lot less than the mass

1

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

≈
π

MZΓZ
δ(ŝ−M2

Z), (124)

σe+e−→Z→μ+μ− ≃ σe+e−→Z × Br(Z → μ+μ−)

Z is an unstable particle, we can’t simply  use 1
s − M2

Z

Breit-Wigner propagator: 
1

s − M2
Z + iΓM

if ΓZ /MZ ≪ 1

Narrow width approximation: 

with Br(Z → μ+μ−) = ΓZ→μ+μ−/ΓZ

Simplifies computations for particles with narrow width (e.g. Higgs)
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We want to focus on how gauge invariance is realized in practice. 
Let’s start with the computation of a simple process e+e- →γγ.  There are two diagrams:

q

k1,μ

k2,ν

q

-

From QED to QCD

Gauge invariance requires that:

iM = Mµ⌫✏
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
/✏1u(q) + v̄(q̄)/✏1

1

/q � /k2
/✏2u(q)

◆

✏⇤µ1 k⌫2Mµ⌫ = ✏⇤⌫2 kµ1Mµ⌫ = 0
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Gauge invariance requires:
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So now let’s calculate qq → gg and we obtain

i

g2
s

Mg ≡ (tbta)ijD1 + (tatb)ijD2

Mg = (tatb)ijMγ − g2fabctcijD1

Let’s try now to generalize what we have done for SU(3). In this case we take the 
(anti-)quarks to be in the (anti-)fundamental representation of SU(3), 3 and 3*.  Then the 
current is in a 3 ⊗ 3* = 1 ⊕ 8. The singlet is like a photon, so we identify the gluon with 
the octet and generalize the QED vertex to : 

−igst
a
ijγ

µ
[ta, tb] = ifabctcwith

j

i

a

From QED to QCD

= �v̄(q̄)/✏2u(q) + v̄(q̄)/✏2u(q) = 0

Mµ⌫k
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
(/k1 � /q)u(q) + v̄(q̄)(/k1 � /̄q)

1

/k1 � /q
/✏2u(q)

◆

Only the sum of the two diagrams is gauge invariant. For the amplitude to be gauge 
invariant it is enough that one of the polarizations is longitudinal. The state of the other 
gauge boson is irrelevant. 

28

Works fine! 

Let’s compute the amplitude for qq̄ → γγ
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But in this case one piece is left out

k1µMµ
g = i(−gsf

abcεµ
2
)(−igst

c
ij v̄i(q̄)γµui(q))

k1µMµ
g = −g2

sfabctcij v̄i(q̄)"ε2ui(q)

To satisfy gauge invariance we still need: 

k
µ

1
ε2

ν
M

µ,ν

g = k
ν

2 ε
µ

1
M

µ,ν

g = 0.

−gsf
abcVµ1µ2µ3

(p1, p2, p3)

We indeed see that we interpret as the normal vertex 
times a new 3 gluon vertex:

From QED to QCD
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We don’t get zero anymore!

Let’s do the same for qq̄ → gg

Is this gauge invariant?
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1-loop vertices 

[ta, tb] = ifabctc

- =

a b b a a b

= CA/2 *ifabc(tbtc)ij =
CA

2
taij

= -1/2/Nc *(tbtat
b)ij = (CF −

CA

2
)taij

[F a, F b] = ifabcF c

The color algebra

37
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How do we write down the Lorentz part for this new interaction? We can impose 
1. Lorentz invariance : only structure of the type gµν pρ are allowed 
2. fully anti-symmetry : only structure of the type remain gµ1µ2  (k1)µ3 are allowed... 
3. dimensional analysis : only one power of the momentum. 
that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ε
ν
1(k1)ε

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)!ε2u(q) −
k2 · ε2
2k1 · k2

v̄(q̄)!k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!

One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD
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Gauge invariant IFF the other gluon is physical!

From QED to QCD

• Lorentz invariant


• Anti-symmetry


• Dimensional analysis

An empirical way to write down the triple gluon vertex!

What are we missing?
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Example 2: QCD and gauge invariance
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QCD Lagrangian
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InteractionGauge 
Fields 

Matter

The QCD Lagrangian

Very similar to the QED Lagrangian.. we’ll see in a moment where the 
differences come from!

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i"∂ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ij "Aa)ψ(f)

j

[ta, tb] = ifabctc

tr(tat
b) =

1

2
δ

ab

→Algebra of SU(N)

→Normalization 

15
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The QCD Lagrangian

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i"∂ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ij "Aa)ψ(f)

j

F a
µν = ∂µAa

ν − ∂νAa
µ−gfabcAb

µAc
ν

By direct inspection and by using the form non-abelian covariant derivation, we can check that 
indeed non-abelian gauge symmetry implies self-interactions. This is not surprising since the gluon 
itself is charged (In QED the photon is not!)

31 See QCD-QED course!
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Tr(tat
b) = TRδ

ab = TR * 

Tr(ta) = 0 = 0

(tat
a)ij = CF δij = CF * 

= (F c
F

c)ab = CAδab

∑

cd

facdf bcd

= CA* 

The color algebra

36
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1-loop vertices 

[ta, tb] = ifabctc

- =

a b b a a b

= CA/2 *ifabc(tbtc)ij =
CA

2
taij

= -1/2/Nc *(tbtat
b)ij = (CF −

CA

2
)taij

[F a, F b] = ifabcF c

The color algebra

37Can be a bottleneck for higher order computations! People always on the lookout 
for simplifications! Quite a few computations are done in the large  limit. Nc
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Properties of QCD

UV: Asymptotic freedom 

• Perturbative computations

• Parton model


IR: Universality 

• Collinear Factorisation

• Parton showers

29

The two faces of QCD

 16

Confinement 
(large distance)

asymptotic freedom 
(short distance)

NB: no proof of confinement. We simply never observed quarks as free particles 

Fabio MaltoniBUSSTEPP - Glasgow, Aug 2019             Fabio Maltoni

• z is the “energy variable”: it is defined to be the energy fraction taken by 
parton b from parton a. It represents the energy sharing between b and c and 
tends to 1 in the soft limit (parton c going soft) 

• Φ is the azimuthal angle. It can be chosen to be the angle between the 
polarization of a and the plane of the branching. 

• Pa→bc are the Altarelli-Parisi                                                                                
splitting functions

'22

2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a

2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

•  The process factorizes in the collinear limit. This procedure it universal!  
 

Pg!qq(z) = TR

⇥
z2 + (1� z)2

⇤
, Pg!gg(z) = CA


z(1� z) +

z

1� z
+

1� z

z

�
,

Pq!qg(z) = CF


1 + z2

1� z

�
, Pq!gq(z) = CF


1 + (1� z)2

z

�
.

QCD Concept #2 : Universality
0
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The parton model of QCD
Deep Inelastic Scattering
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Scaling

cms energy2 

momentum transfer2 

scaling variable 

energy loss 

rel. energy loss 

recoil mass

s = (P + k)2

Q2 = �(k � k0)2

x = Q2/2(P · q)
⌫ = (P · q)/M = E � E0

y = (P · q)/(P · k) = 1� E0/E

W 2 = (P + q)2 = M2 +
1� x

x
Q2

d�elastic

dq2
=

✓
d�

dq2

◆

point

· F 2
elastic(q

2) �(1� x) dx

d�inelastic

dq2
=

✓
d�

dq2

◆

point

· F 2
inelastic(q

2, x) dx

What should we expect for F(q2,x)?
11
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CoM energy

momentum transfer^2

scaling variable

energy loss

relative energy loss

recoil mass

Can we guess what F looks like?
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Deep Inelastic scattering

What can  look like?

1. Proton charge is smoothly distributed (probe penetrates proton like a knife through 
butter)




2. Proton consists of tightly bound charges (quarks hit as single particles, but cannot 
fly away because tightly bound) 





!!!3. 

Quarks are free particles which fly away without caring about confinement!

F2(q2)

F2
elastic(q

2) ∼ F2
inelastic(q

2, x) ≪ 1

F2
elastic(q

2) ∼ 1 F2
inelastic(q

2, x) ≪ 1
F2

elastic(q
2) ≪ 1 F2

inelastic(q
2, x) ∼ 1

31
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Parton Model
DIS cross-section
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* Divide phase-space factor into a leptonic and a hadronic part:

* Separate also the square of the Feynman amplitude, by defining:

* The leptonic tensor can be calculated explicitly:

* Combine the hadronic part of the amplitude and phase space into “hadronic tensor”  and 
use just Lorentz symmetry and gauge invariance to write

q q

pp

Wµν(p, q) =

(

−gµν −

qµqν

q2

)

F1(x, Q2)+

(

pµ − qµ

p · q

q2

) (

pν − qν

p · q

q2

)

1

p · q
F2(x, Q2)

d� =
d3k0

(2⇡)32E0 d�X =
ME

8⇡2
y dy dx d�X

1

4

X
|M|2 =

e4

Q4
Lµ⌫hXµ⌫

Lµ⌫ =
1

4
tr[k/�µk0/�⌫ ] = kµk0⌫ + k0µk⌫ � gµ⌫k · k0

Wµ⌫ =
X

X

Z
d�XhXµ⌫

DIS: The parton model
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“deep inelastic” : Q2 >> 1 GeV2

“scaling limit”: Q2 →∞, x fixed
The idea is that by measuring all the kinematics variables of the outgoing electron 
one can study the structure of the proton in terms of the probe characteristics, 
Q2,x,y... Very inclusive measurement from the QCD point of view.

cms energy2

momentum transfer2

scaling variable
energy loss
rel. energy loss

recoil mass

s = (P + k)2

Q2 = �(k � k0)2

x = Q2/2(P · q)
⌫ = (P · q)/M = E � E0

y = (P · q)/(P · k) = 1� E0/E

W 2 = (P + q)2 = M2 +
1� x

x
Q2

DIS: The parton model
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Based on Lorentz and gauge invariance 

Why 1/Q4?
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Parton Model
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2 
*  The first term represents the absorption of a transversely polarized photon,  
   the second of a longitudinal one. 
*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q. 

Comments:

�ep!eX =
X

X

1

4ME

Z
d�

1

4

X

spin

|M|2

DIS: The parton model

116

Transverse photon Longitudinal photon

After a bit of maths (good exercise!), we get:
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Parton Model
Breit frame

34
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4
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The Breit frame I

p = (E, 0, 0, �p)

p
0 = (E, 0, 0, p

0)

q = (0, 0, 0, �Q)

k

k
0

p̂ = (E, 0, 0, �p)

p̂
0 = (E, 0, 0, p

0)

• Because the virtual photon is space-like (q2 < 0) it follows that
we can boost the photon along its direction of propagation (which
points to the proton) such that q0 vanishes. This frame is called the
Breit frame or infinite momentum frame since the proton
then moves with very large momentum towards the virtual photon.

• In this frame the incoming quark moves with a 3-momentum ⇠pz
along the z axis, where ⇠ is the fraction of the proton 3-momentum
pz. The virtual photon moves with a 3-momentum Q along �z.

• We take the incoming quark to be point-like, so that the scattering
is necessarily elastic:52

p̂2 = (p̂ + q)2 ! p̂2 = p̂2 + 2p̂ · q � Q2 ! Q2 = 2p̂ · q

• If we denote the proton 4-momentum by p then, in the Breit frame,

p̂ · q = (E, 0, 0, ⇠pz) · (0, 0, 0,�Q) = ⇠pzQ

⇠p · q = ⇠(Ep, 0, 0, pz) · (0, 0, 0,�Q) = ⇠pzQ

Thus p̂ ·q = ⇠ p ·q but remember that this is only true in the Breit
frame where the virtual photon does not transfer energy.

52We indicate the unobservable partonic kinematic variables by a hat, like p̂ for a partonic 4-momentum.

8–12

Rest frame: Proton extent: 

The proton moves fast and the photon has zero energy

2.3. FRAMES IN DIS 11

2.3 Frames in DIS

In QCD, the interpretation of physical phenomena depends on the reference frame. This
is simply due to the fact that, under a Lorentz transformation, the fields are modified.
Therefore, depending on the effect we want to highlight, it is important to choose carefully
the reference frame in which we work. We shall briefly introduce the most important frames
used in DIS.

2.3.1 Björken frame

This frame has already been introduced to obtain Björken scaling. If we introduce the
light-cone variables

p± =
E ± px√

2
,

it is the frame where the proton moves very fast:

p+ " m, p− # m and !p⊥ = !0⊥.

The partons have a momentum ξp which means that they also move along the “+” direction.
If n is the 4-vector introduced above, the photon has a momentum

qµ = νnµ + qµ
⊥,

with Q2 = !q2
⊥.

As we have seen, this frame is perfectly suited to introduce Björken scaling. It is the
frame where we can properly define parton distributions, even if we take into account QCD
corrections4.

2.3.2 Breit frame

The Breit frame is the frame where the photon has a vanishing energy and the proton is
moving close to the light-cone. In this case,

p ≡
(√

Q2

4x2
+ m2,

Q

2x
,!0⊥

)

≈
(

Q

2x
+

xm2

Q
,

Q

2x
,!0⊥

)

q ≡
(
0,−Q,!0⊥

)
.

Since, in the rest frame, the proton has a space-time extension

∆x+ ∼ ∆x− ∼ 1

m
,

4We shall see in the next chapter that, in addition, we must work in the light-cone gauge, where QCD
corrections take the form of ladders.

2.3. FRAMES IN DIS 11

2.3 Frames in DIS

In QCD, the interpretation of physical phenomena depends on the reference frame. This
is simply due to the fact that, under a Lorentz transformation, the fields are modified.
Therefore, depending on the effect we want to highlight, it is important to choose carefully
the reference frame in which we work. We shall briefly introduce the most important frames
used in DIS.

2.3.1 Björken frame

This frame has already been introduced to obtain Björken scaling. If we introduce the
light-cone variables

p± =
E ± px√

2
,

it is the frame where the proton moves very fast:

p+ " m, p− # m and !p⊥ = !0⊥.

The partons have a momentum ξp which means that they also move along the “+” direction.
If n is the 4-vector introduced above, the photon has a momentum

qµ = νnµ + qµ
⊥,

with Q2 = !q2
⊥.

As we have seen, this frame is perfectly suited to introduce Björken scaling. It is the
frame where we can properly define parton distributions, even if we take into account QCD
corrections4.

2.3.2 Breit frame

The Breit frame is the frame where the photon has a vanishing energy and the proton is
moving close to the light-cone. In this case,

p ≡
(√

Q2

4x2
+ m2,

Q

2x
,!0⊥

)

≈
(

Q

2x
+

xm2

Q
,

Q

2x
,!0⊥

)

q ≡
(
0,−Q,!0⊥
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its extension in the moving frame is

∆x+ ∼ Q

m2
, ∆x− ∼ 1

Q
.

Since the photon has ∆x+ ∼ 1/Q, we have, for Q2 " m2,
(
∆x+

)
photon

#
(
∆x+

)
proton

.

This shows that the photon can resolve partons.

2.3.3 Dipole frame

The idea of the dipole frame is to have a picture of DIS where the photon splits into a qq̄
dipole and that dipole interacts with the proton. If the lifetime of the dipole is much larger
than the interaction time, we can factorise the γ∗p cross-section as follows

σγ∗p(x, Q2) =

∫
d2b d2r

∫ 1

0

dz
∣∣∣Ψ(Q2;#b,#r, z)

∣∣∣
2
σdipole(x;#b,#r, z),

where Ψ is the photon wavefunction. This picture can be represented in this way:

b

r

z

1 − z

Q2

In this frame, both the proton and the photon are near the light-cone and move along
the z axis in opposite directions :

p ≡
(

P +
M2

2P
, P,#0⊥

)
,

q ≡
(√

q2
0 − Q2,−q0,#0⊥

)
,

with q0 " Q. With these definitions, we must have ν = p.q ≈ 2Pq0. On the other hand, if
we want both the proton and the photon near the light-cone, we must have P and q0 " Q.
Thus ν " Q2 and x # 1. This means that the dipole frame is suited to study DIS at small
x, or in the double leading approximation (x # 1 and Q2 " m2

p). Due to the fact that we
have p+ very large and q+ very small, the photon lifetime is much bigger than the interaction
time.

Finally, note that, in this frame, the partonic structure of the proton is no longer valid
and the photon does not probe the proton structure. Instead of describing the γ∗p interaction
as a parton taken out of the proton following by the interaction between this parton and the
virtual photon, in the dipole frame, we shall have a dipole interacting with the gluonic field
inside the proton5. This interaction does not involve one single parton.

5This interaction can be expressed in terms of Wilson lines.
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Breit frame: Proton extent: 
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5This interaction can be expressed in terms of Wilson lines.

Photon extent: 
The time scale of a typical parton-parton interaction is much larger than the hard 
interaction time. 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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2 
*  The first term represents the absorption of a transversely polarized photon,  
   the second of a longitudinal one. 
*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q. 

Comments:
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X

X
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spin
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DIS: The parton model
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The Breit frame I

p = (E, 0, 0, �p)

p
0 = (E, 0, 0, p

0)

q = (0, 0, 0, �Q)

k

k
0

p̂ = (E, 0, 0, �p)

p̂
0 = (E, 0, 0, p

0)

• Because the virtual photon is space-like (q2 < 0) it follows that
we can boost the photon along its direction of propagation (which
points to the proton) such that q0 vanishes. This frame is called the
Breit frame or infinite momentum frame since the proton
then moves with very large momentum towards the virtual photon.

• In this frame the incoming quark moves with a 3-momentum ⇠pz
along the z axis, where ⇠ is the fraction of the proton 3-momentum
pz. The virtual photon moves with a 3-momentum Q along �z.

• We take the incoming quark to be point-like, so that the scattering
is necessarily elastic:52

p̂2 = (p̂ + q)2 ! p̂2 = p̂2 + 2p̂ · q � Q2 ! Q2 = 2p̂ · q

• If we denote the proton 4-momentum by p then, in the Breit frame,

p̂ · q = (E, 0, 0, ⇠pz) · (0, 0, 0,�Q) = ⇠pzQ

⇠p · q = ⇠(Ep, 0, 0, pz) · (0, 0, 0,�Q) = ⇠pzQ

Thus p̂ ·q = ⇠ p ·q but remember that this is only true in the Breit
frame where the virtual photon does not transfer energy.

52We indicate the unobservable partonic kinematic variables by a hat, like p̂ for a partonic 4-momentum.

8–12

The proton moves fast and the photon has zero energy
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,

with q0 " Q. With these definitions, we must have ν = p.q ≈ 2Pq0. On the other hand, if
we want both the proton and the photon near the light-cone, we must have P and q0 " Q.
Thus ν " Q2 and x # 1. This means that the dipole frame is suited to study DIS at small
x, or in the double leading approximation (x # 1 and Q2 " m2

p). Due to the fact that we
have p+ very large and q+ very small, the photon lifetime is much bigger than the interaction
time.

Finally, note that, in this frame, the partonic structure of the proton is no longer valid
and the photon does not probe the proton structure. Instead of describing the γ∗p interaction
as a parton taken out of the proton following by the interaction between this parton and the
virtual photon, in the dipole frame, we shall have a dipole interacting with the gluonic field
inside the proton5. This interaction does not involve one single parton.

5This interaction can be expressed in terms of Wilson lines.

• The time scale of a typical parton-parton interaction is much larger than the hard interaction time.

• Schematically: in the Breit frame the proton moves very fast towards the photon, and is therefore 

Lorentz contracted to a kind of pancake. 

• The photon interaction then takes place on the very short time scale when the photon passes 

that pancake. 

• During the short interaction time, the struck quark thus does not interact with the spectator 

quarks and can be regarded as a free parton.  


