Collider Phenomenology (1)

Eleni Vryonidou

STFC school, Oxford
11-15/9/23

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Basics of collider physics

Goals of collider physics:
Test theoretical predictions: Standard Model and New Physics
\& Hopefully find the unexpected!

Collider physics

Theory

Experiment

Need good control of every step

Historical perspective

Why bother? Because it works!

Collider	When	What particle	Energy	Main Impact
SPS-CERN	$1981-1984$	pp	600 GeV	W/Z bosons
Tevatron	$1983-2011$	ppbar	2 TeV	Top quark
LEP-CERN	$1989-2000$	e+e-	210 GeV	Precision EW
HERA-DESY	$1992-2007$	ep	320 GeV	QCD/PDFs
BELLE	$1999-2010$	$\mathrm{e}+\mathrm{e}-$	10 GeV	Flavour physics
LHC	$2009-T o d a y$	pp	$7 / 8 / 13 \mathrm{TeV}$	Higgs...

Future of collider physics?

Collider reach

How heavy a particle can be produced?

$$
A+B \rightarrow X \quad M_{X}^{2}=\left(p_{1}+p_{2}\right)^{2}
$$

Fixed target experiment: $\quad p_{1} \simeq(E, 0,0, E)$

$$
p_{2}=(m, 0,0,0)
$$

before

Collider experiment: $\quad p_{1} \simeq(E, 0,0, E)$

$$
p_{2} \simeq(E, 0,0,-E)
$$

$$
M_{X} \simeq \sqrt{2 m E}
$$

$$
M_{X} \simeq 2 E
$$

Better energy scaling for collider experiment
Note: fixed target can benefit from dense target

Collider aspects

Luminosity: rate of particles in colliding bunches

$$
\text { Integrated Luminosity: } L=\int \mathscr{L} d t
$$

Number of events for process with cross-section $\sigma: L \sigma$ LHC luminosity Run II $L=300 \mathrm{fb}^{-1}$

Circular vs linear: circular colliders are compact, but suffer from synchrotron radiation

Lepton vs Hadron: Lepton colliders, all energy available in the collision
Hadron colliders, energy available determined by PDFs but can generally reach higher energies

LHC: a hadron collider

LHC status

Rediscovering the SM

Standard Model Total Production Cross Section Measurements Status: March 2021

Searching for the unknown

Good agreement with the SM

LHC physics

What's next?

No sign of new physics! Searches for deviations continue
New Physics can be:
Weakly coupled: Small rates means that more Luminosity can help
Exotic: Need new ways to search for it, going beyond standard searches or even beyond high-energy colliders

Heavy: Not enough energy to produce it Need indirect searches: SMEFT

What is next for LHC physics

- New Physics is hiding well!
- Need to probe small deviations from the Standard Model using very precise predictions.
- Precise predictions are needed for both the SM and BSM.

In this course we will study the ingredients which enter in theoretical predictions and interpretations of LHC data!

How to compute cross-sections for the LHC?

$\sum_{a, b} \int_{\text {Phase-space integral }} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)$

Master formula for LHC physics

$$
\begin{array}{lll}
\sum_{a, b} \int_{\text {Phase-space integral }} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right) \\
\text { Parton density functions } & \text { Parton-level cross section } \\
\text { Important } & \text { Universal: } & \text { Subject of huge efforts in } \\
\text { aspect of a } & \sim \text { Probabilities of finding } & \text { the LHC theory community } \\
\text { Monte Carlo } & \text { given parton with given } & \text { to systematically improve } \\
\text { generator } & \text { momentum in proton } & \text { this } \\
& \text { Extracted from data } &
\end{array}
$$

We will study in detail this formula this week!

From the hard scattering to events

An LHC event

QCD...

LHC is a proton-proton collider:

- colliding particles are proton constituents which are coloured particles QCD plays a crucial role in what we eventually observe in the detectors

Why is QCD "special"? Let's compare it to what we know best: QED

From QED to QCD

Example 1: R-ratio

VS

Let's compute the matrix element for:
Summing and averaging:

$\bar{\sum}|M|^{2}=\frac{2 e^{4}}{s^{2}}\left[t^{2}+u^{2}\right] \quad$ Try this out!
Mandelstam variables: $s=\left(p_{e+}+p_{e-}\right)^{2} \quad t=\left(p_{e+}-p_{\mu+}\right)^{2}=-\frac{s}{2}(1-\cos \theta)$
Why? $s+t+u=0$

$$
u=\left(p_{e+}-p_{\mu_{-}}\right)^{2}=-\frac{\bar{s}}{2}(1+\cos \theta)
$$

From QED to QCD

Example 1: R-ratio

$$
\bar{\sum}|M|^{2}=\frac{2 e^{4}}{s^{2}}\left[t^{2}+u^{2}\right] \quad \bar{\sum}|M|^{2} \propto\left(1+\cos ^{2} \theta\right)
$$

Cross-section:

$$
\begin{array}{rr}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \bar{\sum}|M|^{2} & d \Omega=d \phi d \mathrm{c} \\
& \sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}=\frac{4 \pi \alpha^{2}}{3 S}
\end{array}
$$

From QED to QCD

Example 1: R-ratio

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=\frac{4 \pi \alpha^{2}}{3 s}
$$

$$
\begin{aligned}
R & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \sim N_{c} \sum_{q} e_{q}^{2} \\
& =2\left(N_{c} / 3\right) \quad q=u, d, s \\
& =3.7\left(N_{c} / 3\right) \quad q=u, d, s, c, b
\end{aligned}
$$

Quark—anti-pair can be one of $r \bar{r}, g \bar{g}, b \bar{b}$
Experimental evidence for colour!

From QED to QCD

Example 1: R-ratio

R-ratio computation

Expected

Measured

Quarkonium states: very small width, very long lived states

A few words about the Z-resonance

Breit -Wigner

Z contribution becomes relevant when $\sqrt{s} \sim M_{Z}$
We then need both diagrams and their interference

Z-resonance

Breit-Wigner and Narrow Width Approximation

Z is an unstable particle, we can't simply use $\frac{1}{s-M_{Z}^{2}}$
Breit-Wigner propagator: $\frac{1}{s-M_{Z}^{2}+i \Gamma M}$
Narrow width approximation:
$\frac{1}{\left(\hat{s}-M_{Z}^{2}\right)^{2}+M_{Z}^{2} \Gamma_{Z}^{2}} \approx \frac{\pi}{M_{Z} \Gamma_{Z}} \delta\left(\hat{s}-M_{Z}^{2}\right) \quad$ if $\Gamma_{Z} / M_{Z} \ll 1$
$\sigma_{e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}} \simeq \sigma_{e^{+} e^{-} \rightarrow Z} \times B r\left(Z \rightarrow \mu^{+} \mu^{-}\right)$with $\operatorname{Br}\left(Z \rightarrow \mu^{+} \mu^{-}\right)=\Gamma_{Z \rightarrow \mu^{+} \mu^{-}} / \Gamma_{Z}$
Simplifies computations for particles with narrow width (e.g. Higgs)

From QED to QCD

Example 2: QCD and gauge invariance

Let's compute the amplitude for $q \bar{q} \rightarrow \gamma \gamma$

$$
i \mathcal{M}=\mathcal{M}_{\mu \nu} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}=D_{1}+D_{2}=e^{2}\left(\bar{v}(\bar{q}) \not \phi_{2} \frac{1}{\underline{q-\not \ell_{1}}} \phi_{1} u(q)+\bar{v}(\bar{q}) \not_{1} \frac{1}{d-\not \ell_{2}} \phi_{2} u(q)\right)
$$

Gauge invariance requires: $\epsilon_{1}^{* \mu} k_{2}^{\nu} \mathcal{M}_{\mu \nu}=\epsilon_{2}^{* \nu} k_{1}^{\mu} \mathcal{M}_{\mu \nu}=0$

$$
\begin{aligned}
\mathcal{M}_{\mu \nu} k_{1}^{* \mu} \epsilon_{2}^{* \nu}=D_{1}+D_{2} & \left.=e^{2}\left(\bar{v}(\bar{q}) \not \phi_{2} \frac{1}{q-\not k_{1}}\left(\not k_{1}-\not q\right) u(q)+\bar{v}(\bar{q})\left(\not k_{1}-\not\right)^{\prime}\right) \frac{1}{\not \not k_{1}-\not q^{2}} \phi_{2} u(q)\right) \\
& =-\bar{v}(\bar{q}) \not \phi_{2} u(q)+\bar{v}(\bar{q}) \not \phi_{2} u(q)=0
\end{aligned}
$$

Works fine!

From QED to QCD

Example 2: QCD and gauge invariance

$$
i \mathcal{M}=\mathcal{M}_{\mu \nu} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}=D_{1}+D_{2}=e^{2}\left(\bar{v}(\bar{q}) \phi_{2} \frac{1}{\underline{q-\not \ell_{1}}} \phi_{1} u(q)+\bar{v}(\bar{q}) \phi_{1} \frac{1}{q-\not \ell_{2}} \phi_{2} u(q)\right)
$$

Let's do the same for $q \bar{q} \rightarrow g g$

$$
\begin{aligned}
\frac{i}{g_{s}^{2}} M_{g} & \equiv\left(t^{b} t^{a}\right)_{i j} D_{1}+\left(t^{a} t^{b}\right)_{i j} D_{2} \\
M_{g} & =\left(t^{a} t^{b}\right)_{i j} M_{\gamma}-g^{2} f^{a b c} t_{i j}^{c} D_{1}
\end{aligned} \quad\left[t^{a}, t^{b}\right]=i f^{a b c} t^{c}
$$

Is this gauge invariant? $\quad k_{1 \mu} M_{g}^{\mu}=-g_{s}^{2} f^{a b c} t_{i j}^{c} \bar{v}_{i}(\bar{q}) \epsilon_{2} u_{i}(q)$
We don't get zero anymore!

$$
k_{1 \mu} M_{g}^{\mu}=i\left(-g_{s} f^{a b c} \epsilon_{2}^{\mu}\right)\left(-i g_{s} t_{i j}^{c} \bar{v}_{i}(\bar{q}) \gamma_{\mu} u_{i}(q)\right)
$$

From QED to QCD

Example 2: QCD and gauge invariance

What are we missing?

$$
-i g_{s}^{2} D_{3}=\left(-i g_{s} t_{i j}^{a} \bar{v}_{i}(\bar{q}) \gamma^{\mu} u_{j}(q)\right) \times\left(\frac{-i}{p^{2}}\right) \times\left(-g f^{a b c} V_{\mu \nu \rho}\left(-p, k_{1}, k_{2}\right) \epsilon_{1}^{\nu}\left(k_{1}\right) \epsilon_{2}^{p}\left(k_{2}\right)\right)
$$

- Lorentz invariant
$V_{\mu_{1} \mu_{2} \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)=V_{0}\left[\left(p_{1}-p_{2}\right)_{\mu_{3}} g_{\mu_{1} \mu_{2}}+\left(p_{2}-p_{3}\right)_{\mu_{1}} g_{\mu_{2} \mu_{3}}+\left(p_{3}-p_{1}\right)_{\mu_{2}} g_{\mu_{3} \mu_{1}}\right]$ • Anti-symmetry
$k_{1} \cdot D_{3}=g^{2} f^{\left.a b c^{c} t^{c} V_{0}\left[\bar{v}(\bar{q}) \xi_{2} u(q)-\frac{k_{2} \cdot \epsilon_{2}}{2 k_{1} \cdot k_{2}}\right)(\bar{q}) k_{1} u(q)\right]}$
- Dimensional analysis

Gauge invariant IFF the other gluon is physical!
An empirical way to write down the triple gluon vertex!

QCD Lagrangian

Colour algebra

$$
\begin{aligned}
& \operatorname{Tr}\left(t^{a}\right)=0 \\
& \cdots=0 \\
& \operatorname{Tr}\left(t^{a} t^{b}\right)=T_{R} \delta^{a b} \\
& \cdots \bigcirc 100:=T_{R} * \infty \\
& {\left[t^{a}, t^{b}\right]=i f^{a b c} c^{c}} \\
& {\left[F^{a}, F^{b}\right]=i f^{a b c} F^{c}} \\
& \begin{array}{r}
a \\
\text { a } \\
\text { } \\
\text { q } \\
\text { q } \\
\ldots \\
\ldots
\end{array} \\
& \text { | -loop vertices } \\
& \left(t^{a} t^{a}\right)_{i j}=C_{F} \delta_{i j} \\
& =\mathrm{C}_{\mathrm{F}} \text { * } \\
& { }_{i f}{ }^{a b c}\left(t^{b} t^{c}\right)_{i j}=\frac{C_{A}}{2} t_{i j}^{a} \\
& \begin{array}{l}
2 \\
200 \\
9
\end{array} \\
& =C_{A} / 2 * \\
& \infty \\
& \sum_{c d} f^{f a c d} f^{b c d} \\
& =\left(F^{c} F^{c}\right)_{a b}=C_{A} \delta_{a b} \\
& =C_{A}{ }^{*} \infty \infty \\
& \left(t^{b} t^{a} t^{b}\right)_{i j}=\left(C_{F}-\frac{C_{A}}{2}\right) t_{i j}^{a} \text { 身風 }
\end{aligned}
$$

Can be a bottleneck for higher order computations！People always on the lookout for simplifications！Quite a few computations are done in the large N_{c} limit．

Properties of QCD

UV: Asymptotic freedom

- Perturbative computations
- Parton model

IR: Universality

- Collinear Factorisation
- Parton showers

The parton model of QCD

Deep Inelastic Scattering

$s=(P+k)^{2}$	CoM energy
$Q^{2}=-\left(k-k^{\prime}\right)^{2}$	momentum transfer^2
$x=Q^{2} / 2(P \cdot q)$	scaling variable
$\nu=(P \cdot q) / M=E-E^{\prime}$	energy loss
$y=(P \cdot q) /(P \cdot k)=1-E^{\prime} / E$	relative energy loss
$W^{2}=(P+q)^{2}=M^{2}+\frac{1-x}{x} Q^{2}$	recoil mass

$$
\begin{gathered}
\frac{d \sigma_{\text {elastic }}}{d q^{2}}=\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {elastic }}^{2}\left(q^{2}\right) \delta(1-x) d x \\
\frac{d \sigma_{\text {inelastic }}}{d q^{2}}=\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {inelastic }}^{2}\left(q^{2}, x\right) d x
\end{gathered}
$$

Can we guess what F looks like?

Deep Inelastic scattering

What can $F^{2}\left(q^{2}\right)$ look like?

1. Proton charge is smoothly distributed (probe penetrates proton like a knife through butter)
$F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \ll 1$
2. Proton consists of tightly bound charges (quarks hit as single particles, but cannot fly away because tightly bound)
$F_{\text {elastic }}^{2}\left(q^{2}\right) \sim 1 \quad F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \ll 1$
!!!3. $F_{\text {elastic }}^{2}\left(q^{2}\right) \ll 1 \quad F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \sim 1$
Quarks are free particles which fly away without caring about confinement!

Parton Model

DIS cross-section

$$
\begin{aligned}
& d \Phi=\frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} d \Phi_{X}=\frac{M E}{8 \pi^{2}} y d y d x d \Phi_{X} \\
& \frac{1}{4} \sum|\mathcal{M}|^{2}=\frac{e^{4}}{Q^{4}} L^{\mu \nu} h_{X \mu \nu} \\
& L^{\mu \nu}=\frac{1}{4} \operatorname{tr}\left[\not k \gamma^{\mu} \not k^{\prime} \gamma^{\nu}\right]=k^{\mu} k^{\prime \nu}+k^{\prime \mu} k^{\nu}-g^{\mu \nu} k \cdot k^{\prime}
\end{aligned}
$$

Based on Lorentz and gauge invariance

$$
\begin{aligned}
& W^{\mu \nu}=\sum_{X} \int d \Phi_{X} h_{X \mu \nu} \\
& W_{\mu \nu}(p, q)=\left(-g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(p_{\mu}-q_{\mu} \frac{p \cdot q}{q^{2}}\right)\left(p_{\nu}-q_{\nu} \frac{p \cdot q}{q^{2}}\right) \frac{1}{p \cdot q} F_{2}\left(x, Q^{2}\right)
\end{aligned}
$$

Parton Model

$$
\sigma^{e p \rightarrow e X}=\sum_{X} \frac{1}{4 M E} \int d \Phi \frac{1}{4} \sum_{\text {spin }}|\mathcal{M}|^{2}
$$

After a bit of maths (good exercise!), we get:

$$
\left.\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left\{\left[1+(1-y)^{2}\right] F_{1}\left(x, Q^{2}\right)+\frac{1-y}{x} F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right)\right)\right\}
$$

Transverse photon
Longitudinal photon

Parton Model

Breit frame

The proton moves fast and the photon has zero energy

Breit frame: Proton extent: $\quad \Delta x^{+} \sim \frac{Q}{m^{2}}, \quad \Delta x^{-} \sim \frac{1}{Q}$

$$
\text { Photon extent: } \quad \Delta x^{+} \sim 1 / Q,
$$

$$
\left(\Delta x^{+}\right)_{\text {photonn }} \ll\left(\Delta x^{+}\right)_{\text {protonn }}
$$

The time scale of a typical parton-parton interaction is much larger than the hard interaction time.

Parton Model

Breit frame

The proton moves fast and the photon has zero energy

- The time scale of a typical parton-parton interaction is much larger than the hard interaction time.
- Schematically: in the Breit frame the proton moves very fast towards the photon, and is therefore Lorentz contracted to a kind of pancake.
- The photon interaction then takes place on the very short time scale when the photon passes that pancake.
- During the short interaction time, the struck quark thus does not interact with the spectator quarks and can be regarded as a free parton.

