Collider Phenomenology (2) Eleni Vryonidou

STFC school, Oxford 11-15/9/23

Plan for the lectures

- Basics of collider physics
- Basics of QCD
 - DIS and the Parton Model
 - Higher order corrections
 - Asymptotic freedom
 - QCD improved parton model lacksquare
- State-of-the-art computations for the LHC
- Monte Carlo generators lacksquare
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

where axd

is the pr in an hty atqitind a parton i in hadron Carrying momentum faction ξ cone momentum $\xi p+$

onstoreparton-photon for ction 109 electron-parton scattering

Fabio Maltoni Fabio Maltoni

STFC HEP school 2023

Fabio Maltoni

DIS cross-section

Comparing our inclusive cross-section:

 $\frac{d^{2}\sigma^{2}\sigma}{dx^{2}\sigma^{2}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ \left\{ 1 + \left(1 - y \right)^{2} \right\} F_{1}(x,Q^{2}) + \frac{1}{Q^{4}Q^{4}} \right\} \right\} \\ \frac{d^{2}\sigma^{2}\sigma}{dx^{2}\sigma^{2}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ \left\{ 1 + \left(1 - y \right)^{2} \right\} F_{1}(x,Q^{2}) + \frac{1}{Q^{4}Q^{4}} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} F_{1}(x,Q^{2}) + \frac{1}{Q^{4}Q^{4}} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} F_{1}(x,Q^{2}) + \frac{1}{Q^{4}Q^{4}} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} = \frac{4\pi \alpha^{2}}{Q^{4}} \left\{ 1 + \left(1 - y \right)^{2} \right\} \\ \frac{d^{2}\sigma}{Q^{4}} =$ $\frac{d^{2}\sigma d^{2}\sigma}{dx\overline{dQ}\overline{dQ}^{2}} \oint_{0}^{1} \int_{\delta}^{d\xi} \underbrace{\underbrace{\underbrace{\xi}}_{i} \underbrace{\underbrace{\lambda}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i} \underbrace{\underbrace{\lambda}}_{i} \underbrace{\underbrace{\xi}}_{i} \underbrace{\underbrace{\lambda}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i} \underbrace{\underbrace{\lambda}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i} \underbrace{\underbrace{\lambda}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\xi}}_{\frac{d^{2}}{\delta}i} \underbrace{\xi}}_{\frac{d^{2}}{\delta}i}} \underbrace{\xi}}_{\frac{d^{2}}{\delta}i}}$ We can express the structure functions as: $F_2(\overline{x}) 2 \overline{x} \overline{y}$ $F_2(x) = 2xF_1 = \sum_{i=-1}^{1} \int_0^1 d\xi f_i(\xi) \, x e_q^2 \delta(x-\xi) = \sum_{i=-q,\bar{q}} e_q^2 \, x f_i(x)$ i=q,qi=q,q

UCL Université catholique de Louvain

$$\left[\frac{1-y}{F_{2}} \left[F_{2}(x,Q^{2}) - 2xF_{1}(x,Q^{2}) \right] \right\}$$

$$\left[F_{2}(x,Q^{2}) - 2xF_{1}(x,Q^{2}) \right]$$

$$\left[F_{2}(x,Q^{2}) - 2xF_{1}(x,Q^{2}) \right]$$

$$\frac{d^2\hat{\sigma}}{Q^2dx} = \frac{4\pi\alpha^2}{Q^4\hat{\sigma}}\frac{1}{2}\left[1+(1-y)^2\right]e_q^2\,\delta(x-\xi);-\xi)$$
$$\frac{d^2\hat{\sigma}}{dQ^2dx} = \frac{4\pi\alpha^2}{Q^4}\frac{1}{2}\left[1+(1-y)^2\right]e_q^2\,\delta(x-\xi)$$

We can express the structure functions as:

$$F_2(x) = 2xF_1 = \sum_{i=q,\bar{q}} \int_0^1 d\xi f$$

Quarks and anti-quarks enter together. How can we separate them?

No dependence on Q: Scaling

 $f_i(x)$ are the parton distribution functions which describe the probabilities of finding specific partons in the proton carrying momentum fraction x

 $\frac{d^2\hat{\sigma}}{dO^2dx} = \frac{4\pi\alpha^2}{O^4}\frac{1}{2}\left[1 + (1-y)^2\right]e_q^2\,\delta(x-\xi)$

 $f_i(\xi) x e_q^2 \delta(x - \xi) = \sum e_q^2 x f_i(x)$ $i=q,\bar{q}$

Fabio Maltoni

STFC HEP school 2023

Quarks are spin-1/2 particles!

Probed at scale Q, sea contains all quarks flavours with mq less than Q. For Q ~1 we expect Parton distribution functions

 $s(x) = \bar{s}(x)$ $u(x) = u_V(x) + \bar{u}(x)$ $d(x) = d_V(x) + \bar{d}(x)$ $s(x) = \bar{s}(x)$ The sea is NOT SU(3) flavor symmetric. The $\sum_{nd} \int_{0}^{1} dx x$ and

Note that there are uncertainty

Quarks carry 10 nby 50% potethe proton momentumy gluons. Although not directly measured in DIS, gluons participate in other hard scattering processes such as large-pt and prompt photon production. EVIDENCE FOR GIUONS!

$$u(x) = u_V(x)$$
 Project at scale Q, sea contains all quarks flavours with inq less than Q.
For Q ~1 we expect $\int_0^1 dx \ u_V(x) = 2$, $\int_0^1 dx \ d_V(x) = 1$.

$$\int_{0}^{1} dx \ u_{V}(x) = 2 \ , \ \ \int_{0}^{1} dx \ d_{V}(x) = 1$$

$$\sum_{q} \int_{0}^{1} dx \, x[q(x) + \bar{q}(x)] \simeq 0.5 \; .$$

Parton model summary

point like, spin-1/2 quarks

One can factorise the short- and long-distance physics entering this process. Long-distance physics absorbed in PDFs. Short distance physics described by the hard scattering of the parton with the virtual

photon. $\sum \int dx_1 dx_2 d\Phi_{PS} f_a(x_1) f_b(x) \hat{\sigma}(\hat{s})$

Phase-space integral

DIS experiments show that virtual photon scatters off massless, free,

Parton density functions

Parton-level cross section

R-ratio@NLO

 $\sigma_{NLO} = \sigma_{LO} + \int_{R} |M_{real}|^2 d\Phi_3 + \int_{V} 2\operatorname{Re}(M_0 M_{vir}^{*d}) d\Phi_2$ $\sigma^{NLO} = \int_{R} |M_{real}|^2 d\Phi_3 + \int_{STFC \ \text{HEP school 2023}} 2\operatorname{Re}(M_0 M_{virt}^{*}) d\Phi_2 = \text{finite!}$

Eleni Vryonidou

Real

Virtual

$$\frac{-i}{p \not j + \not k} \Gamma^{\mu} v(\bar{p}) t^{a} + \bar{u}(p) \Gamma^{\mu} \frac{i}{\vec{p} + \not k} (-ig_{s}) \not e v(\bar{p}) t^{a}$$

$$\frac{p}{p \not e (\not p + \not k) \Gamma^{\mu} v(\bar{p})}{2p \cdot k} - \frac{\bar{u}(p) \Gamma^{\mu} (\vec{p} + \not k) \not e v(\bar{p})}{2\bar{p} \cdot k} \right] t^{a}$$

$$f = \overline{rsoft} (kg + \delta) = \left(\frac{p \cdot \epsilon}{p \cdot k} - \frac{\overline{p} \cdot \epsilon}{\overline{p} \cdot k} \right) A_{Born} \qquad A_{Born} = \overline{u}(p)$$

$$\pi(k_0^{\overline{u}(p)} \xrightarrow{\Gamma^{\mu} v(\overline{p})} 0)$$
 or collinear ($\theta \to 0$) to the quark

Fabio Maltoni

$$\overline{\mathbf{R}}_{i} = \overline{\mathbf{n}}_{i} =$$

$$A_{soft} = -g_s t^a \left(\frac{p \cdot \epsilon}{p \cdot k} - \frac{\bar{p} \cdot \epsilon}{\bar{p} \cdot k}\right) A_{Born}$$

 $(\theta \rightarrow 0)$ to the quark? property of QCD of long-wavelength

from the short- $\begin{array}{l} \text{distance (hard) scattering!} \\ A_{Born} = \bar{u}(p)\Gamma^{\mu}v(p) \\ \end{array}$

Soft emission factor is universal!

STFC HEP school 2023 Fabio Maltoni

$$\begin{array}{c} p,i \\ \hline p,i \\ \hline p,i \\ \hline \hline u(p) \\ \hline \textbf{OCD} in^{i} \\ \textbf{the} (\textbf{final state}^{i} \\ \hline p+k \\ (-ig_{s}) \\ \hline p+k \\ \hline p+k \\ (-ig_{s}) \\ \hline p+k \\ \hline p+k \\ (-ig_{s}) \\ \hline p+k \\ \hline p+k \\ \hline p+k \\ (-ig_{s}) \\ \hline p+k \\$$

Eleni Vryonidou

Two collinear divergences and a soft one. Very often you find the integration over phase space

QCD in the final state **R-ratio@NLO**

By squaring the amplitude we obtain: p, jREAL By squaring the amplitude we obtain of WWW REAL $q q g \bar{q} \bar{q} \bar{q} g$ Two collinear divergences and a soft one. Very Efter to the integration over phase space expressed in terms of x and x is the fraction of en $- \cos \theta_{13}$ \mathbf{x}_1 $x_1 + \frac{1}{29}$ we can now predict the divergent part of the virtual So we needed we predict the divergent part of the virtual $0 \leq \operatorname{ontrictulation} is necessary for the + finite part in explicit$ $calculation is necessary <math>C_F \frac{\alpha_S}{q\bar{q}} \int dcate flation is necessary (k_0) [\delta(1 - \cos \theta') + \delta(1 + \cos \theta')] + \delta(1 + \cos \theta')] + \delta(1 + \cos \theta') = \delta($ Eleni Varonidou

$$= \mathcal{C}_{F} \frac{\alpha S}{2\pi \pi} \mathcal{C}_{q\bar{q}\bar{q}} \mathcal{C}_{q\bar{q}} \mathcal{C}_{q\bar{q}}} \mathcal{C}_{q\bar{q}}$$

What happens now?

14

IR singularities

IR singularities arise when a parton is too soft or if two partons are collinear

- the creation of the quark/antiquark pair.
- When distances become comparable to the hadron size of ~1 Fermi, non-perturbatively.

How do we proceed with our calculation?

Infrared divergences arise from interactions that happen a long time after

quasi-free partons of the perturbative calculation are confined/hadronized

STFC HEP school 2023

Cancellation of divergences Summary:

$\sigma^{\text{REAL}} + \sigma^{\text{VIRT}} = \infty$ In practice: regularisé potrotiate divergences, by gi Solution: regularize $d=4-2\varepsilon$ dimensions. Also divergent! Also $\int_{C} \int_{C} \int_{C} \int_{C} \int_{C} \int_{C} \frac{\alpha_{S}}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{\epsilon^{2}}{\epsilon} + \frac{\epsilon^{2}}{\epsilon} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{2} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \pi^{2} \right) \frac{2\pi}{\alpha_{S}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} - \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} + \frac{19}{\epsilon^{2}} \right) \frac{2\pi}{\epsilon^{2}} \left(\frac{2}{\epsilon^{2}} + \frac{19}{\epsilon^{2}$ $\lim_{\epsilon \to 0} (\sigma^{\text{REAL}} + \sigma^{\text{VIRT}}) = C_F \frac{3}{4} \frac{\alpha_S}{\pi} \sigma^{\text{Born}} \quad \Re \quad R_1 = R_0 \left(1 + \frac{\alpha_S}{\pi} \right) \Im \text{Finite!}$ $R_1 = R_0 \left(\begin{array}{c} \epsilon \rightarrow 0 \\ 1 + \end{array} \right)$ STFC HEP school 2023 α_{S}

KLN Theorem Why does this work?

Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless theory cancel out after summing over degenerate (initial and final) states

Physically a hard parton can not be distinguished from a hard parton plus a soft gluon or from two collinear partons with the same energy. They are degenerate states. A final state with a soft gluon is nearly degenerate with a final state with no gluon at all (virtual) Hence, one needs to add all degenerate states to get a physically sound observable

2 collinear partons

Infrared safety How can we make sure IR divergences cancel?

We need to pick observables which are insensitive to soft and collinear radiation. These observables are determined by hard, short-distance physics, with long distance effects suppressed by an inverse power of a large momentum scale.

Schematically for an $\P R$ safe observable:

 $\mathcal{O}_{n+1}(k_1, k_2, \ldots, k_i, k_j, \ldots, k_n)$

whenever one of the k_i/k_i becomes soft or k_i and k_i are collinear

$$(k_n) \rightarrow \mathcal{O}_n(k_1, k_2, \dots, k_i + k_j, \dots, k_n)$$

Which observables are infrared safe?

- energy of the hardest particle in the event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- jet cross-sections

NO NO YES DEPENDS

STFC HEP school 2023

Event shapes

to soft and collinear branching

- widely used to
- measure colo
- test QCD
- learn about no physics

Event shapes: describe the shape of the event, but are largely insensitive

pencil-like

spherical

Thrust **Event-shape example**

What happens in an $e^+e^- \rightarrow q\bar{q}g$ event?

- Sum over all final state particles
- Find axis *n* which maximises this projection
- T = 1 T = 1 T = 1/2 T = 1/2Noteby: if one of the partons emits a soft or collinear gluon the value of thrust is not changing. IRC safe

Eleni Vryonidou

$$s_{1}^{(n)} = a_{1}^{(n)} b_{1}^{(n)} c_{2}^{(n)} c_$$

Asymptotic freedom

$$\alpha_S(\mu) = \alpha_S + b_0 \log \frac{M^2}{\mu^2} \alpha_S^2 \qquad b_0 = \frac{11N_c}{1}$$

$$\mu^{2} \frac{d\alpha}{d\mu^{2}} = \beta(\alpha) \partial \overline{\alpha}_{S} - (b_{0}\alpha^{2} + b_{1}\alpha^{3} + b_{2}\alpha^{4}_{S}(\mu) \stackrel{\cdot}{=} \frac{1}{b_{0}} \int \frac{d\mu^{2}}{d\mu^{2}} = -b_{0}\alpha^{2}_{S} + b_{0}\alpha^{2}_{S} = -b_{0}\alpha^{2}_{S} + b_{0}\alpha^{2}_{S} + b_{0}\alpha^{2}_$$

Running of α_{s}

Many measurements at different scales all leading to very consistent results once evolved to the same reference scale, M_{z} .

Eleni Vryonidou

 $\sum_{a,b} \int dx_1 dx_2 d\Phi_{PS} f_a(x_1) f_b(x) \,\hat{\sigma}(\hat{s})$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{PS} f_a(x_1) f_b(x) \,\hat{\sigma}(\hat{s}, \mu_R)$ $\downarrow ???$ $\sum \int dx_1 dx_2 d\Phi_{\rm FS} f_a(x_1, \mu_F) f_b(x_2, \mu_F) \hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$

QCD improved parton model

The parton model predicts scaling. Experiment shows:

ved!

Scaling violation

What are we missing?

UCL Université de Louvain

Given the computation of R at NLO, we expect IR divergences

We need to regulate these, and hope that they cancel!

Soft and UV divergences cancel but a collinear divergence arises:

What are functions P_{qq} and P_{qg} ?

Splitting functions $P_{ij}(x)$: they give the probability of parton j splitting into parton i which carries momentum fraction x of the original parton

$\hat{F}_{2}^{q} = e_{q}^{2} x [\delta(1-x) + \frac{\alpha_{s}}{4\pi} P_{qq} \log \frac{Q^{2}}{m_{c}^{2}} + C_{2}^{q}(x)] \qquad \hat{F}_{2}^{g} = e_{q}^{2} x [0 + \frac{\alpha_{s}}{4\pi} P_{qg} \log \frac{Q^{2}}{m_{c}^{2}} + C_{2}^{g}(x)]$

$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$ **Altareli Reacisi Splitting functions**tually a singular factor, so one will need to make sense precisely of this definition. At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi Branching hastag universal form given by the Altarelli-Parisi splitting functions

貒

$$P_{g \to qq}(z) = T_R \left[z^2 + (1-z)^2 \right],$$

These functions are universal for each type of splitting

Eleni Vryonidou

$$q(z) = C_F \left[\frac{1 + (1 - z)^2}{z} \right].$$

$$P_{g \to gg}(z) = C_A \left[z(1-z) + \frac{z}{1-z} + \frac{1-z}{z} \right]$$

What does this collinear divergence mean?

- Residual long-distance physics, not disappearing once real and virtual corrections are added. These appear along with the universal splitting functions. Can a physical observable be divergent?
- No, as the physical observable is the hadronic structure function: $F_{2}^{q}(x,Q^{2}) = x \sum_{i=q,\bar{q}} e_{q}^{2} \left[f_{i,0}(x) + \frac{\alpha_{S}}{2\pi} \int_{x}^{1} \frac{d\xi}{q\xi} f_{i,0}(\xi) \left[\frac{Q^{2}}{P_{qq}^{2}} + C_{2}^{q}(\frac{x}{\xi}) \right] \right]_{i=q,\bar{q}} e_{q}^{2} \left[f_{i,0}(x) + \frac{\alpha_{S}}{2\pi} \int_{x}^{1} \frac{d\xi}{q\xi} f_{i,0}(\xi) \left[\frac{Q^{2}}{P_{qq}^{2}} + C_{2}^{q}(\frac{x}{\xi}) \right] \right]_{i=q,\bar{q}} e_{q}^{2} \left[f_{i,0}(x) + \frac{\alpha_{S}}{2\pi} \int_{x}^{1} \frac{d\xi}{q\xi} f_{i,0}(\xi) \left[\frac{Q^{2}}{P_{qq}^{2}} + C_{2}^{q}(\frac{x}{\xi}) \right] \right]_{i=q,\bar{q}} e_{q}^{2} \left[f_{i,0}(x) + \frac{\alpha_{S}}{2\pi} \int_{x}^{1} \frac{d\xi}{q\xi} f_{i,0}(\xi) \left[\frac{Q^{2}}{P_{qq}^{2}} + C_{2}^{q}(\frac{x}{\xi}) \right] \right]_{i=q,\bar{q}} e_{q}^{2} \left[f_{i,0}(x) + \frac{\alpha_{S}}{2\pi} \int_{x}^{1} \frac{d\xi}{q\xi} f_{i,0}(\xi) \left[\frac{Q^{2}}{P_{qq}^{2}} + \frac{Q^{2}}{q} \left[\frac{x}{\xi} \right] \right] \right]_{i=q,\bar{q}} e_{q}^{2} e_{q}^{2} \left[f_{i,0}(x) + \frac{\alpha_{S}}{2\pi} \int_{x}^{1} \frac{d\xi}{q\xi} f_{i,0}(\xi) \left[\frac{Q^{2}}{P_{qq}^{2}} + \frac{Q^{2}}{q} \left[\frac{x}{\xi} \right] \right] e_{q}^{2} e_{q}^$

We can absorb the dependence on the IR cutoff into the PDF:

$$\begin{split} f_q(x,\mu_f) &\equiv f_{q,0}(x) + \frac{\alpha_S}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_{q,0}(\xi) \\ f_q(x,\mu_f) &\equiv f_{q,0}(x) + \frac{\alpha_S}{2\pi} \frac{\alpha_S}{2\pi} \frac{\mu_S}{2\pi} \end{split}$$

Factorisation

at all orders (renormalisation group invariance)

$$F_2^q(x,Q^2) = x \sum_{i=q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} f_i(\xi,\mu_f^2) \left[\delta(1-\frac{x}{\xi}) + \frac{\alpha_S(\mu_r)}{2\pi} \left[P_{qq}(\frac{x}{\xi}) \log \frac{Q^2}{\mu_f^2} + (C_2^q - z_{qq})(\frac{x}{\xi}) \right] \right]$$

don't depend on the process.

PDFs.

UCL Université catholique de Louvain

Structure function is a measurable object and cannot depend on scale

- Long distance physics is universally factorised into the PDFs, which now depend on μ_f . PDFs are not calculable in perturbation theory. PDFs are universal, they
- Factorisation scale μ_f acts as a cut-off, emissions below μ_f are included in the

DGLAP in scale:

Universality of splitting functions: we can measure pdfs in one process and use them as an input for another process

$$P_{ab}(\alpha_{s}, z) = \frac{\alpha_{s}}{2\pi} P_{ab}^{(0)}(z) + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} P_{ab}^{(1)}(z) + \left(\frac{\alpha$$

We can't compute PDFs in perturbation theory but we can predict their evolution

$$\mu^2 \frac{\partial f(\mathbf{x}, \mu^2)}{\partial \mu^2} = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z) f\left(\frac{x}{z}, \mu^2\right)$$

Altarelli, Parisi; Gribov-Lipatov; Dokshitzer '77

$\left(\frac{s}{z}\right)^3 P_{ab}^{(2)}(z) + \dots$	Splitting functions improved in perturbation theory!
1	LO Dokshitzer; Gribov, Lipatov; Altarelli, Parisi (19
NNLO (2004)	NLO Floratos,Ross,Sachrajda; Floratos, Lacaze, Ko Gonzalez-Arroyo,Lopez,Yndurain; Curci,Furmanski Petronzio, (1981)
STEC HEP school 2023	NNLO - Moch Vermaseren Vogt 2004

$Ji(J,\mu)$

PDF evolution

Collider Phenomenology (3) Eleni Vryonidou

STFC school, Oxford 11-15/9/23

Plan for the lectures

- Basics of collider physics
- Basics of QCD
 - DIS and the Parton Model
 - Higher order corrections
 - Asymptotic freedom
 - QCD improved parton model
- State-of-the-art computations for the LHC ullet
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

 $\sum \int dx_1 dx_2 d\Phi_{\rm FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \,\hat{\sigma}_{ab\to X}(\hat{s},\mu_F,\mu_R) \,\mathcal{O}$ a,b

 $\sum_{a,b} \int dx_1 dx_2 d\Phi_{PS} f_a(x_1) f_b(x) \,\hat{\sigma}(\hat{s}) \quad \text{Parton model}$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{PS} f_a(x_1) f_b(x) \,\hat{\sigma}(\hat{s}, \mu_R)$ QCD improved parton model

PDF extraction

DGLAP equations to evolve them to different scales.

- Choose experimental data to fit and include all info on correlations **Theory settings**: perturbative order, EW corrections, intrinsic heavy quarks, α_s , quark masses value and scheme
- Choose a starting scale Q₀ where pQCD applies
- **Parametrise** independent quarks and gluon distributions at the starting scale
- Solve **DGLAP equations** from initial scale to scales of experimental data and build up observables
- **Fit** PDFs to data
- Provide PDF error sets to compute PDF uncertainties

We can't compute PDFs in perturbation theory but we can extract them from data, and use

Data for PDF determination

LHC kinemat How can we tell wh

For the production of a par $M^{2} = x_{1}x_{2}S = x_{1}x_{2}4E_{\text{beam}}^{2}$ $y = \frac{1}{2} \log \frac{x_1}{x_2}$ $x_1 = \frac{M}{\sqrt{S}} e^y \quad x_2 = \frac{M}{\sqrt{S}} e^{-y}$ 9 See exercises! $x_2 =$

STFC HEP school 2023

Fabio Maltoni

Data complementarity

GLUON

PHOTON

Inclusive jets and dijets (medium/large x) Isolated photon and γ+jets (medium/large x) Top pair production (large x) High p_T V(+jets) distribution (small/medium x)

> <u>High p⊤ W(+jets) ratios</u> (medium/large x) W and Z production (medium x) Low and high mass Drell-Yan (small and large x) <u>Wc</u>(strangeness at medium x)

Low and high mass Drell-Yan WW production

STFC HEP school 2023

Different collaborations, predictions usually computed with different PDFs to extract an uncertainty envelope.

Impact of PDF uncertainties

STFC HEP school 2023

PDF uncertai

Fixed order computations Going to higher orders 2000 0000 000 $\begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(s, \mu_F, \mu_R) \\ P \end{array} \xrightarrow{\sigma_{ab} X(s, \mu_F, \mu_R)} P^{\text{Parton-level cross section}} \end{array}$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s},\mu_F,\mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP Achool 2023 functions functions

Fixed order computations Going to higher orders

We need to add real and virtual corrections to the hard scattering dealing with singularities

Relatively straightforward at NLO (automated), complicated at NNLO (tens of $x_1 dx_2 d$ froe fases), lextremely hard at XIX (fl. ϕ_A hand fille of factor sees fk (rown)_F) $\hat{\sigma}_{ab o X}(\hat{s}, \mu_B)$

a, b

Phase-space integral^{i Vryonidou} Parton density functions

Parton-level cPoase-space section HEP school 2023

Parton density functions

Difficulties:

- Antenna's)
- Loop calculations tough and time consuming
- Divergences: Both real and virtual corrections are divergent
- More channels, more phase space integrations

Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS,

How to deal with NLO in practice?

NLO corrections involve divergences: Divergences are bad for numerical computations

Subtraction:

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[\mathcal{V} \right]$$

$$-\int d\Phi^{(1)}S \bigg] + \int d\Phi^{(n+1)} \left[\mathcal{R} - S\right]$$
finite

Subtraction techniques at NLO

Dipole subtraction

- Catani, Seymour hep-ph/9602277
- Automated in MadDipole, Sherpa, HELAC-NLO **FKS** subtraction
- Frixione, Kunszt, Signer hep-ph/9512328
- Automated in MadGraph5_aMC@NLO and Powheg/Powhel

Detailed discussion of these could be another lecture course!

A note about NLO **NLO** is relative

Example: top pair production

Which observables do we compute at NLO?

Total cross-section

- pT of a top quark •
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Need for higher-orders Why is this so important?

Reminder:

Level of experimental precision demands precise theoretical predictions

Theorists are not simply having fun!!!

Higher order computations

Complexity rises a lot with each N!

Status of hard scattering cross-sections

- LO automated
- NLO automated

NNLO: Several processes known (VV production, top pair production, all $2 \rightarrow 1$ processes)

NNNLO: only a handful of processes!

- Higgs in gluon fusion (Anastasiou et al, arXiv:1602.00695)
- Higgs in VBF (Dreyer et al, arXiv:1811.07906)
- Higgs in bottom annihilation (Duhr et al, arXiv:1904.09990)
- Drell-Yan (Duhr et al, arXiv:2001.07717, 2007.13313)

Progress in higher-order computations

TIMELINE FOR NNLO

A. Huss, QCD@LHC-X 2020

 $\hat{\sigma}_{ab\to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

Hard scattering cross-section **Perturbative expansion**

Eleni Vryonidou

$$^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right)$$
N3LO

Improved accuracy and precision

Dilepton production

Uncertainties in theory predictions

Vary the renormalisation and factorisation scale

Typically pick some central scale μ_0 and vary the scale up and down by a factor of 2

 μ/m_H

How do we actually compute all of these?

Theory

Eleni Vryonidou

Invisibles school 2022

Experiment

Focusing on LO How to compute a LO cross-section

Example: 3 jet production in pp collisions

- 1. Know the Feynman rules (SM or BSM)
- 2. Find all possible Subprocesses

97 processes with 781 diagrams generated in 2.994 s

Total: 97 processes with 781 diagrams

- Compute the amplitude 3.
- Compute $|M|^2$ for each subprocess, sum over spin and colour 4.
- Integrate over the phase space 5.

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)$$

LO calculation of a cross-section

- How many subprocesses?
- Amplitude computation (Feynman diagrams)
- Square the amplitude, sum over spin and colour
- Integrate over the phase space
- Complexity increases with
- number of particles in the final state
- terms of leading couplings: see tutorial)

Difficulty

number of Feynman diagrams for the process (typically organise these in

Structure of an automated MC generator

- Input Feynman rules
- Define initial and final state 11_
- III. Automatically find all subprocesses
- IV. Compute matrix element (including tricks like helicity amplitudes) Integrate over the phase space by optimising the PS V.
- parametrisation and sampling
- VI. Unweight and write events in the Les Houches format

Next: Shower+Hadronisation Detector simulation and reconstruction

Output of LO MC generators Les houches events Example: gg>ZZ

<event></event>	>									
4	0 +1	.121100	0e+0	0 1.8	9058500e+02 7.81859000	e-03 1.15931300e-01			_	
_ Г	21 -1	0	0	502	501 +0.0000000000e+00	+0.0000000000e+00 +4.6570159241e+	01 4.6570159241e+01	0.0000000000e+00	0.0000e+00	1.0000e+00
	21 -1	0	0	501	502 -0.0000000000e+00	-0.000000000e+00 -1.9187776299e+	02 1.9187776299e+02	0.0000000000e+00	0.0000e+00	1.0000e+00
	23 1	1	2	0	0 +1.3441082214e+01	+1.3065682927e+01 -5.1959303141e+	01 1.0661295577e+02	9.1187600000e+01	0.0000e+00	1.0000e+00
. L	23 1	1	2	0	0 <u>-1.3441082214e+01</u>	-1.3065682927e+01 -9.3348300610e-	01 1.3183496646e+02	9.1187600000e+01	0.0000e+00	1.0000e+00
<td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	>									
PI	Лi					IVIomenta		Mass		

All Information needed to pass to parton shower is included in the event

Νυπσπα

IVIASS

Available public MC generators

Matrix element generators (and integrators):

- MadGraph/MadEvent
- Comix/AMEGIC (part of Sherpa)
- HELAC/PHEGAS
- Whizard
- CalcHEP/CompHEP

Is Fixed Order enough?

Fixed order computations can't g at the LHC

Fixed order computations can't give us the full picture of what we see

An LHC event

Is fixed order enough?

- Fixed order calculations involve only a few partons
- Not what we see in detectors
- Need Shower and Hadronisation

A multiscale story

High- Q^2 scattering: process dependent, systematically improvable with higher order corrections, where we expect new physics

Parton Shower: QCD, universal, soft and collinear physics

Hadronisation: low Q^2 , universal, based on different models

Underlying event: low Q^2 , involves multiple interactions

Parton Shower What does the parton shower do/should do?

- Dress partons with radiation with an arbitrary number of branchings
- Preserve the inclusive cross-section: unitary
- Needs to evolve in scale from Q~1TeV (hard scattering) down to ~GeV

Basics of parton shower Collinear factorisation

- This kind of splitting should be described by a branching probability
- The parton shower will quantify the probability of emission

貒

Collinear factorisation:

 $|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$

Time scale associated with splitting much longer than the one of the hard scattering

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_n$$

- t is the evolution variable
 - t tends to zero in the collinear limit (this factor is singular) lacksquare

• $\oint azimuthal_angle$ $P_{q \to qg}(z) = C_F \begin{bmatrix} \frac{1}{1-z} \end{bmatrix}, \quad P_{q \to gq}(z) = C_F \begin{bmatrix} \frac{1+(1-z)^2}{z} \end{bmatrix}.$ The branching probability has the same form for all quantities $\propto \theta^2$

- transverse momentum $k_{\perp} \sim z^2 (1-z)^2 \theta^2 E^2$
- invariant mass $Q^2 \sim z(1-z)\theta^2 E^2$

Eleni Vryonidou

n and splitting functions a θ

• $z \operatorname{energy}_{R \neq qq(z)} = Q_R [z \neq (1 - z)], \text{ for } p_{g \to gg(z)} = C_A [z(1 - z)], \text{ for } p_{g \to gg(z)} = C_A$

 $t \in \{\theta^2, k_1^2, Q^2\}$

$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$ **Altarelli-Parisi Splitting** as **functions** ching probability' is actually a singular factor, so one will need to make sense precisely of this definition. At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi Branching has a universal former gives why dasie Altarelli Parisi splitting functions (as we saw in DIS) M_n $*^a$ C P_{a-} $P_{q \to qg}(z) = C_F \left[\frac{1+z^2}{1-z} \right], \qquad P_{q \to gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right].$ $P_{q \to qq}(z) =$

$$P_{g \to gg}(z) = C_A \left[z(1-z) + \frac{z}{1-} \frac{1-z}{\text{These functions are un}} \right]$$

$$\rightarrow gg(z) \text{Eleni(Pryonomidou)} \left[\frac{1+(1-z)^2}{1-} \right].$$
ST

$$T_R \left[z^2 + (1-z)^2 \right], \qquad P_{g \to gg}(z) = C_A \left[z(1-z) + \frac{z}{1-z} + \frac{1-z}{z} \right]$$

niversal for each type of splitting

FFC HEP school 2023

 $|\mathcal{M}_{n+2}|^2 d\Phi_{n+2} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{a\to bc}(z) \times \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{b\to de}(z')$

We $|\phi_{an}| g_{en}^{2}$ where $|t_{n}| s^{2} f_{en} a_{n}^{dt} a_{n} d_{n} s_{n}^{dt} h_{n} s_{n} h_{n} h_$ Iterative sequence of emissions which does not depend on the history (Markov Chain)

Multiple emissions How does this change with multiple emissions?

- Q is the hard scale and Q_0 is an infrared cut off (separating non-perturbative regime)

$$n\left(\frac{\alpha_{\rm S}}{2\pi}\right)^k \log^k(Q^2/Q_0^2)$$

• Each power of $\alpha_{\rm c}$ comes with a logarithm (breakdown of perturbation theory when large)

STFC HEP school 2023