Collider Phenomenology (2)

Eleni Vryonidou

STFC school, Oxford
11-15/9/23

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Factorisation

Breit picture frame allows us to assume partons are free within proton:

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\int_{0}^{1} \frac{d \xi}{\xi} \sum_{i} f_{i}(\xi) \frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\left(\frac{x}{\xi}, Q^{2}\right)
$$

DIS cross-section

Comparing our inclusive cross-section:

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left\{\left[1+(1-y)^{2}\right] F_{1}\left(x, Q^{2}\right)+\frac{1-y}{x}\left[F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right)\right]\right\}
$$

Factorised cross-section in the parton model:
$\frac{d^{2} \sigma}{d x d Q^{2}}=\int_{0}^{1} \frac{d \xi}{\xi} \sum_{i} f_{i}(\xi) \frac{d^{2} \sigma}{d x d Q^{2}}\left(\frac{x}{\xi}, Q^{2}\right) \quad$ with $\frac{d^{2} \hat{\sigma}}{d Q^{2} d x}=\frac{4 \pi \alpha^{2}}{Q^{4}} \frac{1}{2}\left[1+(1-y)^{2}\right] e_{q}^{2} \delta(x-\xi)$
We can express the structure functions as:

$$
F_{2}(x)=2 x F_{1}=\sum_{i=q, \bar{q}} \int_{0}^{1} d \xi f_{i}(\xi) x e_{q}^{2} \delta(x-\xi)=\sum_{i=q, \bar{q}} e_{q}^{2} x f_{i}(x)
$$

DIS cross-section

We can express the structure functions as:

$$
F_{2}(x)=2 x F_{1}=\sum_{i=q, \bar{q}} \int_{0}^{1} d \xi f_{i}(\xi) x e_{q}^{2} \delta(x-\xi)=\sum_{i=q, \bar{q}} e_{q}^{2} x f_{i}(x)
$$

Quarks and anti-quarks enter together.
$f_{i}(x)$ are the parton distribution functions which describe the probabilities of finding specific partons in the proton carrying momentum fraction x

Scaling and Callan-Gross relation

Scaling: Structure function does not depend on Q
Callan-Gross relation
Quarks are spin-1/2 particles!

Parton distribution functions

$$
\begin{aligned}
& u(x)=u_{V}(x)+\bar{u}(x) \quad \int_{0}^{1} d x u_{V}(x)=2, \quad \int_{0}^{1} d x d_{V}(x)=1 \\
& d(x)=d_{V}(x)+\bar{d}(x) \quad \\
& s(x)=\bar{s}(x) \\
& \sum_{q} \int_{0}^{1} d x x[q(x)+\bar{q}(x)] \simeq 0.5
\end{aligned}
$$

Quarks carry only 50\% of the proton momentum
Evidence for gluons!

Parton model summary

DIS experiments show that virtual photon scatters off massless, free, point like, spin-1/2 quarks

One can factorise the short- and long-distance physics entering this process. Long-distance physics absorbed in PDFs. Short distance physics described by the hard scattering of the parton with the virtual photon.

$d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s})$

R-ratio@NLO

Real

Virtual

$$
\sigma_{N L O}=\sigma_{L O}+\int_{R}\left|M_{\text {real }}\right|^{2} d \Phi_{3}+\int_{V} 2 \operatorname{Re}\left(M_{0} M_{v i r}^{*}\right) d \Phi_{2}
$$

QCD in the final state

R-ratio@NLO

Real corrections:

$$
\begin{aligned}
A & =\bar{u}(p) \epsilon\left(-i g_{s}\right) \frac{-i}{\not p+\not b x} \Gamma^{\mu} v(\bar{p}) t^{a}+\bar{u}(p) \Gamma^{\mu} \frac{i}{\bar{p}+\not x \phi}\left(-i g_{s}\right) \epsilon v(\bar{p}) t^{a} \\
& =-g_{s}\left[\frac{\bar{u}(p) \epsilon(\not p+\not p) \Gamma^{\mu} v(\bar{p})}{2 p \cdot k}-\frac{\bar{u}(p) \Gamma^{\mu}(\bar{p}+\not x) \epsilon v(\bar{p})}{2 \bar{p} \cdot k}\right] t^{a}
\end{aligned}
$$

What are those denominators?

$$
p \cdot k=p_{0} k_{0}(1-\cos \theta)
$$

What happens when the gluon is soft $\left(k_{0} \rightarrow 0\right)$ or collinear $(\theta \rightarrow 0)$ to the quark?

QCD in the final state
 R-ratio@NLO

What happens when the gluon is soft $\left(k_{0} \rightarrow 0\right)$ or collinear $(\theta \rightarrow 0)$ to the quark?

$$
A_{\text {soft }}=-g_{s} t^{a}\left(\frac{p \cdot \epsilon}{p \cdot k}-\frac{\bar{p} \cdot \epsilon}{\bar{p} \cdot k}\right) A_{\text {Born }}
$$

Very important property of QCD
Factorisation of long-wavelength (soft) emission from the shortdistance (hard) scattering!

Soft emission factor is universal!

QCD in the final state
 R-ratio@NLO

$$
\sigma_{N L O}=\sigma_{L O}+\int_{R}\left|M_{r e a l}\right|^{2} d \Phi_{3}+\int_{V} 2 \operatorname{Re}\left(M_{0} M_{v i r}^{*}\right) d \Phi_{2}
$$

$$
A_{\text {soft }}=-g_{s} t^{a}\left(\frac{p \cdot \epsilon}{p \cdot k}-\frac{\bar{p} \cdot \epsilon}{\bar{p} \cdot k}\right) A_{B o r n}
$$

What does that mean for the NLO cross-section?

$$
\begin{aligned}
\sigma_{q \bar{q} g}^{\mathrm{REAL}} & =C_{F} g_{s}^{2} \sigma_{q \bar{q}}^{\mathrm{Born}} \int \frac{d^{3} k}{2 k^{0}(2 \pi)^{3}} 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)} \\
& =C_{F} \frac{\alpha_{S}}{2 \pi} \sigma_{q \bar{q}}^{\mathrm{Born}} \int d \cos \theta \frac{d k^{0}}{k^{0}} \frac{4}{(1-\cos \theta)(1+\cos \theta)}
\end{aligned}
$$

QCD in the final state
 R-ratio@NLO

$$
\begin{aligned}
\sigma_{q \bar{q} g}^{\mathrm{REAL}} & =C_{F} g_{s}^{2} \sigma_{q \bar{q}}^{\mathrm{Born}} \int \frac{d^{3} k}{2 k^{0}(2 \pi)^{3}} 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)} \\
& =C_{F} \frac{\alpha_{S}}{2 \pi} \sigma_{q \bar{q}}^{\mathrm{Born}} \int d \cos \theta \frac{d k^{0}}{k^{0}} \frac{4}{(1-\cos \theta)(1+\cos \theta)}
\end{aligned}
$$

Soft divergence Collinear divergence

$$
\begin{aligned}
& x_{1}=1-x_{2} x_{3}\left(1-\cos \theta_{23}\right) / 2 \\
& x_{2}=1-x_{1} x_{3}\left(1-\cos \theta_{13}\right) / 2 \\
& x_{1}+x_{2}+x_{3}=2 \\
& 0 \leq x_{1}, x_{2} \leq 1, \quad \text { and } \quad x_{1}+x_{2} \geq 1
\end{aligned}
$$

Divergences

$$
\begin{aligned}
& x_{1}=1-x_{2} x_{3}\left(1-\cos \theta_{23}\right) / 2 \\
& x_{2}=1-x_{1} x_{3}\left(1-\cos \theta_{13}\right) / 2 \\
& x_{1}+x_{2}+x_{3}=2 \\
& 0 \leq x_{1}, x_{2} \leq 1, \quad \text { and } \quad x_{1}+x_{2} \geq 1
\end{aligned}
$$

$$
x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}}
$$

Why is $x_{1}=x_{2}=1$ the soft case?
$\sigma^{q \bar{q} g}=\frac{4 \pi^{2}}{3 s} f_{q}^{2} C_{F} \frac{\alpha_{s}}{2 \pi} \iint d x_{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$
Integral diverges if $x_{1} \rightarrow 1$ or $x_{2} \rightarrow 1$ or $x_{1}, x_{2} \rightarrow 1$!

What happens now?

IR singularities

IR singularities arise when a parton is too soft or if two partons are collinear

- Infrared divergences arise from interactions that happen a long time after the creation of the quark/antiquark pair.
- When distances become comparable to the hadron size of ~ 1 Fermi, quasi-free partons of the perturbative calculation are confined/hadronized non-perturbatively.

How do we proceed with our calculation?

Cancellation of divergences

Divergent!
Real
In practice: regularise both divergences (with either dimensional regularisation or mass regulator)

$$
\begin{aligned}
\sigma^{\mathrm{REAL}} & =\sigma^{\mathrm{Born}} C_{F} \frac{\alpha_{S}}{2 \pi}\left(\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}-\pi^{2}\right) \\
\sigma^{\mathrm{VIRT}} & =\sigma^{\mathrm{Born}} C_{F} \frac{\alpha_{S}}{2 \pi}\left(-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\pi^{2}\right)
\end{aligned}
$$

$$
\lim _{\epsilon \rightarrow 0}\left(\sigma^{\mathrm{REAL}}+\sigma^{\mathrm{VIRT}}\right)=C_{F} \frac{3}{4} \frac{\alpha_{S}}{\pi} \sigma^{\mathrm{Born}} \quad R_{1}=R_{0}\left(1+\frac{\alpha_{S}}{\pi}\right) \text { Finite! }
$$

KLN Theorem

Why does this work?

Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless theory cancel out after summing over degenerate (initial and final) states

Physically a hard parton can not be distinguished from a hard parton plus a soft gluon or from two collinear partons with the same energy. They are degenerate states. A final state with a soft gluon is nearly degenerate with a final state with no gluon at all (virtual)
Hence, one needs to add all degenerate states to get a physically sound observable

Infrared safety

How can we make sure IR divergences cancel?

We need to pick observables which are insensitive to soft and collinear radiation. These observables are determined by hard, short-distance physics, with long distance effects suppressed by an inverse power of a large momentum scale.

Schematically for an IR safe observable:

$$
\mathcal{O}_{n+1}\left(k_{1}, k_{2}, \ldots, k_{i}, k_{j}, \ldots k_{n}\right) \rightarrow \mathcal{O}_{n}\left(k_{1}, k_{2}, \ldots k_{i}+k_{j}, \ldots k_{n}\right)
$$

whenever one of the $\mathrm{k}_{\mathrm{i}} / \mathrm{k}_{\mathrm{j}}$ becomes soft or k_{i} and k_{j} are collinear

Which observables are infrared safe?

- energy of the hardest particle in the event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- jet cross-sections

Event shapes

Event shapes: describe the shape of the event, but are largely insensitive to soft and collinear branching

- widely used to measure α s
- measure colour factors
- test QCD
- learn about non-perturbative physics

pencil-like

Thrust

Event-shape example

Sum over all final state particles
Find axis n which maximises this projection

Noteby: if one of the partons emits a soft or collinear gluon the value of thrust is not changing. IRC safe

What happens in an $e^{+} e^{-} \rightarrow q \bar{q} g$ event?

Thrust

What happens in an $e^{+} e^{-} \rightarrow q \bar{q} g$ event?

$$
T=\max _{\overrightarrow{\hat{n}}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \overrightarrow{\hat{n}}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \quad \frac{1}{\sigma} \frac{d \sigma}{d T}=C_{F} \frac{\alpha_{S}}{2 \pi}\left[\frac{2\left(3 T^{2}-3 T+2\right)}{T(1-T)} \log \left(\frac{2 T-1}{1-T}\right)-\frac{3(3 T-2)(2-T)}{1-T}\right]
$$

Divergent for $\mathrm{T}=1$

Why?

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} T} \xrightarrow{T \rightarrow 1}-C_{F} \frac{\alpha_{S}}{2 \pi}\left[\frac{4}{(1-T)} \ln (1-T)+\frac{3}{1-T}\right]
$$

Large higher order terms of the form $\alpha_{S}^{N} \frac{\log ^{2 N-1}(1-T)}{1-T}$ need to be resummed.

Use either analytic resummation or the parton shower! See later!

Asymptotic freedom

How about the UV?

$$
R_{1}=R_{0}\left(1+\frac{\alpha_{S}}{\pi}\right) \quad \text { No divergences! }
$$

What happens at higher orders?

Finite but scale dependent!

Asymptotic freedom

$$
\mu^{2} \frac{d \alpha}{d \mu^{2}}=\beta(\alpha)=-\left(b_{0} \alpha^{2}+b_{1} \alpha^{3}+b_{2} \alpha^{4}+\cdots\right)
$$

1-loop

$$
\beta\left(\alpha_{S}\right) \equiv \mu^{2} \frac{\partial \alpha_{S}}{\partial \mu^{2}}=-b_{0} \alpha_{S}^{2} \quad \Rightarrow \quad \alpha_{S}(\mu)=\frac{1}{b_{0} \log \frac{\mu^{2}}{\Lambda^{2}}}
$$

$$
\begin{array}{lll}
\text { QCD } & b_{0}=\frac{11 N_{c}-2 n_{f}}{12 \pi} & \Rightarrow \beta\left(\alpha_{S}\right)<0 \\
\text { QED } & b_{0}=-\frac{n_{f}}{3 \pi} & \Rightarrow \beta\left(\alpha_{\mathrm{EM}}\right)>0
\end{array}
$$

2-loop

$$
\alpha_{S}(\mu)=\frac{1}{b_{0} \log \frac{\mu^{2}}{\Lambda^{2}}}\left[1-\frac{b_{1}}{b_{0}^{2}} \frac{\log \log \mu^{2} / \Lambda^{2}}{\log \mu^{2} / \Lambda^{2}}\right]
$$

Running of α_{s}

Many measurements at different scales all leading to very consistent results once evolved to the same reference scale, M_{z}.

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
\underset{\square}{\boldsymbol{\downarrow}}{ }_{\text {??? }} \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{F S} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
\end{gathered}
$$

QCD improved parton model

The parton model predicts scaling. Experiment shows:

Scaling violation

What are we missing?

QCD improved parton model

Given the computation of R at NLO, we expect IR divergences
We need to regulate these, and hope that they cance!!

$$
\left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{q}
$$

Soft and UV divergences cancel but a collinear divergence arises:

$$
\hat{F}_{2}^{q}=e_{q}^{2} x\left[\delta(1-x)+\frac{\alpha_{s}}{4 \pi} P_{q q} \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right] \quad \hat{F}_{2}^{g}=e_{q}^{2} x\left[0+\frac{\alpha_{s}}{4 \pi} P_{q g} \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{g}(x)\right]
$$

QCD improved parton model

Soft and UV divergences cancel but a collinear divergence arises:

$$
\hat{F}_{2}^{q}=e_{q}^{2} x[\delta(1-x)+\frac{\alpha_{s}}{4 \pi} P_{q q} \log \underbrace{\left.\frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right] \quad \hat{F}_{2}^{g}=e_{q}^{2} x\left[0+\frac{\alpha_{s}}{4 \pi} P_{q g} \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{g}(x)\right]} \text { IR cut-off }
$$

What are functions $P_{q q}$ and $P_{q g}$?
Splitting functions $P_{i j}(x)$: they give the probability of parton j splitting into parton i which carries momentum fraction x of the original parton

Altarelli-Parisi Splitting functions

Branching has a universal form given by the Altarelli-Parisi splitting functions

$$
P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right], \quad P_{q \rightarrow g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right] .
$$

$$
P_{g \rightarrow q q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g \rightarrow g g}(z)=C_{A}\left\lceil z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
$$

These functions are universal for each type of splitting

What does this collinear divergence mean?

Residual long-distance physics, not disappearing once real and virtual corrections are added. These appear along with the universal splitting functions.

Can a physical observable be divergent?
No, as the physical observable is the hadronic structure function:

$$
F_{2}^{q}\left(x, Q^{2}\right)=x \sum_{i=q, \bar{q}} e_{q}^{2}\left[f_{i, 0}(x)+\frac{\alpha_{S}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{i, 0}(\xi)\left[P_{q q}\left(\frac{x}{\xi}\right) \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}\left(\frac{x}{\xi}\right)\right]\right]
$$

We can absorb the dependence on the IR cutoff into the PDF:

$$
f_{q}\left(x, \mu_{f}\right) \equiv f_{q, 0}(x)+\frac{\alpha_{S}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{q, 0}(\xi) P_{q q}\left(\frac{x}{\xi}\right) \log \frac{\mu_{f}^{2}}{m_{g}^{2}}+z_{q q}
$$

Renormalised PDFs!

Factorisation

Structure function is a measurable object and cannot depend on scale at all orders (renormalisation group invariance)

$$
F_{2}^{q}\left(x, Q^{2}\right)=x \sum_{i=q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi} f_{i}\left(\xi, \mu_{f}^{2}\right)\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{S}\left(\mu_{r}\right)}{2 \pi}\left[P_{q q}\left(\frac{x}{\xi}\right) \log \frac{Q^{2}}{\mu_{f}^{2}}+\left(C_{2}^{q}-z_{q q}\right)\left(\frac{x}{\xi}\right)\right]\right]
$$

Long distance physics is universally factorised into the PDFs, which now depend on μ_{f}. PDFs are not calculable in perturbation theory. PDFs are universal, they don't depend on the process.

Factorisation scale μ_{f} acts as a cut-off, emissions below μ_{f} are included in the PDFs.

DGLAP

We can't compute PDFs in perturbation theory but we can predict their evolution in scale:

$$
\mu^{2} \frac{\partial f\left(x, \mu^{2}\right)}{\partial \mu^{2}}=\int_{x}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} P(z) f\left(\frac{x}{z}, \mu^{2}\right)
$$

Altarelli, Parisi; Gribov-Lipatov; Dokshitzer '77

Universality of splitting functions: we can measure pdfs in one process and use them as an input for another process

Splitting functions improved in perturbation theory!
LO Dokshitzer; Gribov, Lipatov; Altarelli, Parisi (1977)
NLO Floratos,Ross,Sachrajda; Floratos, Lacaze, Kounnas Gonzalez-Arroyo,Lopez,Yndurain; Curci,Furmanski Petronzio, (1981)

PDF evolution

Collider Phenomenology (3)

Eleni Vryonidou

STFC school, Oxford
11-15/9/23

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

LHC Master Formula

$$
\begin{aligned}
& \sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
& \sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
& \qquad{ }^{\downarrow} x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow x}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
\end{aligned}
$$

PDF extraction

We can't compute PDFs in perturbation theory but we can extract them from data, and use DGLAP equations to evolve them to different scales.

- Choose experimental data to fit and include all info on correlations

Theory settings: perturbative order, EW corrections, intrinsic heavy quarks, α_{s}, quark masses value and scheme

- Choose a starting scale Q_{0} where pQCD applies
- Parametrise independent quarks and gluon distributions at the starting scale
- Solve DGLAP equations from initial scale to scales of experimental data and build up observables
- Fit PDFs to data
- Provide PDF error sets to compute PDF uncertainties

Data for PDF determination

LHC kinematics

How can we tell which x data probes?

For the production of a particle of mass M :

$$
\begin{aligned}
M^{2} & =x_{1} x_{2} S=x_{1} x_{2} 4 E_{\text {beam }}^{2} \\
y & =\frac{1}{2} \log \frac{x_{1}}{x_{2}} \\
x_{1} & =\frac{M}{\sqrt{S}} e^{y} \quad x_{2}=\frac{M}{\sqrt{S}} e^{-y}
\end{aligned}
$$

See exercises!

Data complementarity

From. M. Ubiali

Modern PDFs

Different collaborations, predictions usually computed with different PDFs to extract an uncertainty envelope.

Impact of PDF uncertainties

Progress in PDFs!

Fixed order computations

Going to higher orders

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right) \\
\hat{\sigma}=\sigma^{\text {Born }}\left(1+\frac{\alpha_{s}}{2 \pi} \sigma^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \sigma^{(2)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \sigma^{(3)}+\ldots\right) \\
\text { LO NLO } \quad \text { NNLO }
\end{gathered}
$$

Fixed order computations

Going to higher orders

We need to add real and virtual corrections to the hard scattering dealing with singularities

Relatively straightforward at NLO (automated), complicated at NNLO (tens of processes), extremely hard at NNNLO (handful of processes known)

Structure of an NLO calculation

Difficulties:

- Loop calculations: tough and time consuming
- Divergences: Both real and virtual corrections are divergent

- More channels, more phase space integrations

How to deal with NLO in practice?

NLO corrections involve divergences: Divergences are bad for numerical computations

Subtraction techniques at NLO

Dipole subtraction

- Catani, Seymour hep-ph/9602277
- Automated in MadDipole, Sherpa, HELAC-NLO

FKS subtraction

- Frixione, Kunszt, Signer hep-ph/9512328
- Automated in MadGraph5_aMC@NLO and Powheg/Powhel

A note about NLO
 NLO is relative

Example: top pair production

Which observables do we compute at NLO? Total cross-section pT of a top quark pT of top pair pT of hardest jet tt invariant mass

It is certain observables which are computed at NLO

Need for higher-orders

Why is this so important?

Standard Model Total Production Cross Section Measurements

Reminder:
Level of experimental precision demands precise theoretical predictions

Theorists are not simply having fun!!!

Higher order computations

Complexity rises a lot with each N !

Status of hard scattering cross-sections

LO automated
NLO automated
NNLO: Several processes known (VV production, top pair production, all $2 \rightarrow 1$ processes)

NNNLO: only a handful of processes!

- Higgs in gluon fusion (Anastasiou et al, arXiv:1602.00695)
- Higgs in VBF (Dreyer et al, arXiv:1811.07906)
- Higgs in bottom annihilation (Duhr et al, arXiv:1904.09990)
- Drell-Yan (Duhr et al, arXiv:2001.07717, 2007.13313)

Progress in higher-order computations

A. Huss, QCD@LHC-X 2020

Hard scattering cross-section

Perturbative expansion

$$
\begin{gathered}
\hat{\sigma}=\sigma^{\text {Born }}\left(1+\frac{\alpha_{s}}{2 \pi} \sigma^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \sigma^{(2)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \sigma^{(3)}+\ldots\right) \\
\text { LO NLO } \quad \text { NNLO }
\end{gathered}
$$

Higgs production arXiv:2203.06730

Uncertainties in theory predictions

How do we estimate uncertainties?

Vary the renormalisation and factorisation scale

Typically pick some central scale μ_{0} and vary the scale up and down by a factor of 2

How do we actually compute all of these?

Theory

Experiment

Focusing on LO

How to compute a LO cross-section

Example: 3 jet production in pp collisions

1. Know the Feynman rules (SM or BSM)
2. Find all possible Subprocesses

97 processes with 781 diagrams generated in 2.994 s Total: 97 processes with 781 diagrams
3. Compute the amplitude

4. Compute $|M|^{2}$ for each subprocess, sum over spin and colour
5. Integrate over the phase space

$$
\sigma=\frac{1}{2 s} \int|\mathcal{M}|^{2} d \Phi(n)
$$

LO calculation of a cross-section

How many subprocesses?
Amplitude computation (Feynman diagrams)
Difficulty
Square the amplitude, sum over spin and colour
Integrate over the phase space

Complexity increases with

- number of particles in the final state
- number of Feynman diagrams for the process (typically organise these in terms of leading couplings: see tutorial)

Structure of an automated MC generator

I. Input Feynman rules
II. Define initial and final state
III. Automatically find all subprocesses
IV. Compute matrix element (including tricks like helicity amplitudes)
V. Integrate over the phase space by optimising the PS parametrisation and sampling
VI. Unweight and write events in the Les Houches format

Output of LO MC generators

Les houches events

Example: gg>ZZ

<event>

Momenta Mass
All Information needed to pass to parton shower is included in the event

Available public MC generators

Matrix element generators (and integrators):

- MadGraph/MadEvent
- Comix/AMEGIC (part of Sherpa)
- HELAC/PHEGAS
- Whizard
- CalcHEP/CompHEP

Is Fixed Order enough?

Fixed order computations can't give us the full picture of what we see at the LHC

An LHC event

Is fixed order enough?

- Fixed order calculations involve only a few partons
- Not what we see in detectors
- Need Shower and Hadronisation

A multiscale story

High- Q^{2} scattering: process dependent, systematically improvable with higher order corrections, where we expect new physics
Parton Shower: QCD, universal, soft and collinear physics
Hadronisation: low Q^{2}, universal, based on different models

Underlying event: low Q^{2}, involves multiple interactions

Parton Shower
 What does the parton shower do/should do?

- Dress partons with radiation with an arbitrary number of branchings
- Preserve the inclusive cross-section: unitary
- Needs to evolve in scale from Q~1TeV (hard scattering) down to $\sim \mathrm{GeV}$

Basics of parton shower

Collinear factorisation

Starting with one splitting

small angle=collinear

- Time scale associated with splitting much longer than the one of the hard scattering
- This kind of splitting should be described by a branching probability
- The parton shower will quantify the probability of emission

Collinear factorisation:

$$
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{S}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Collinear factorisation and splitting functions

$\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n}\left(\frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(z)\right.$

- t is the evolution variable
- t tends to zero in the collinear limit (this factor is singular)
- z energy fraction transferred from parton a to parton b in splitting $(z \rightarrow 1$ in the soft limit)
- ϕ azimuthal angle

The branching probability has the same form for all quantities $\propto \theta^{2}$

$$
\begin{aligned}
& \frac{d \theta^{2}}{\theta^{2}}=\frac{d k_{\perp}^{2}}{k_{\perp}^{2}}=\frac{d Q^{2}}{Q^{2}} \\
& t \in\left\{\theta^{2}, k_{\perp}^{2}, Q^{2}\right\}
\end{aligned}
$$

- invariant mass $Q^{2} \sim z(1-z) \theta^{2} E^{2}$

Altarelli-Parisi Splitting functions

Branching has a universal form given by the Altarelli-Parisi splitting functions (as we saw in DIS)

$$
P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right], \quad P_{q \rightarrow g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right]
$$

$\frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)$

$$
P_{g \rightarrow q q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g \rightarrow g g}(z)=C_{A}\left[z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
$$

[^0]
Multiple emissions

How does this change with multiple emissions?

$$
\left|\mathcal{M}_{n+2}\right|^{2} d \Phi_{n+2} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \times \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{d \phi^{\prime}}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right)
$$

We can generalise this for an arbitrary number of emissions
Iterative sequence of emissions which does not depend on the history (Markov Chain)

No interference: Classical

Multiple emissions

How does this change with multiple emissions?

Dominant contribution comes from subsequent emissions which satisfy strong ordering $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime}$

For k emissions the rate takes the form:

$$
\sigma_{n+k} \propto \alpha_{\mathrm{s}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

- Q is the hard scale and Q_{0} is an infrared cut off (separating non-perturbative regime)
- Each power of α_{s} comes with a logarithm (breakdown of perturbation theory when large)

[^0]: These functions are universal for each type of splitting

