Introduction to QED \& QCD Tutorial Questions

1. Suppose we have a plane-wave solution to the Klein-Gordon equation of the form

$$
\phi(\boldsymbol{x}, t)=A e^{-i(\omega t-\boldsymbol{k} \cdot \boldsymbol{x})} .
$$

Use the Klein-Gordon equation to find the dispersion relation, i.e. find ω in terms of \boldsymbol{k}. How do you interpret the two solutions?
Show that these solutions are eigenstates of the energy operator, $i \partial_{t}$, and the 3 -momentum operator, $-i \nabla$.
2. Show that the Dirac γ-matrices defined in the lectures:

$$
\gamma^{0}=\beta, \quad \gamma^{k}=\beta \alpha^{k},
$$

obey the hermiticity relation

$$
\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}
$$

3. When evaluating cross sections, you will frequently need to manipulate Dirac matrices. Using the anti-commutation relations for the γ-matrices, show that in 4 dimensions:
(i) $\gamma^{\mu} \gamma_{\mu}=4$,
(ii) $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu}$,
(iii) $\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma_{\mu}=4 g^{\nu \lambda}$,
(iv) $\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} \gamma_{\mu}=-2 \gamma^{\rho} \gamma^{\lambda} \gamma^{\nu}$.

How do these change in arbitrary dimensions where $g^{\mu \nu} g_{\mu \nu}=\delta_{\mu}^{\mu}=d$?
4. Verify the orthonormality and completeness relations for the solutions of the Dirac equation:

$$
\bar{u}_{r}(\boldsymbol{p}) u_{s}(\boldsymbol{p})=-\bar{v}_{r}(\boldsymbol{p}) v_{s}(\boldsymbol{p})=2 m \delta^{r s}, \quad \bar{u}_{r}(\boldsymbol{p}) v_{s}(\boldsymbol{p})=\bar{v}_{r}(\boldsymbol{p}) u_{s}(\boldsymbol{p})=0,
$$

and

$$
\sum_{r=1}^{2} u_{r}(\boldsymbol{p}) \bar{u}_{r}(\boldsymbol{p})=(\not p+m), \quad \sum_{r=1}^{2} v_{r}(\boldsymbol{p}) \bar{v}_{r}(\boldsymbol{p})=(\not p-m) .
$$

5. Show that the Dirac hamiltonian, $H=\boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta m$, commutes with the total angular momentum operator

$$
[\boldsymbol{L}+\boldsymbol{S}, H]=0,
$$

where $\boldsymbol{L}=\boldsymbol{x} \times \boldsymbol{p}$ is the orbital angular momentum and \boldsymbol{S} is the spin operator

$$
\boldsymbol{S}=\frac{1}{2}\left(\begin{array}{cc}
\boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{\sigma}
\end{array}\right) .
$$

6. Using the plane-wave solutions of the Dirac equation given in the lectures, show that for $\boldsymbol{p}=\left(0,0, p_{z}\right)$

$$
S_{z} u_{1}=\frac{1}{2} u_{1}, \quad S_{z} u_{2}=-\frac{1}{2} u_{2}, \quad S_{z} v_{1}=\frac{1}{2} v_{1} \quad \text { and } \quad S_{z} v_{2}=-\frac{1}{2} v_{2},
$$

where S_{z} is the z-component of the spin operator.
7. Draw all the tree-level diagrams for Bhabha-scattering, $e^{+}(p) e^{-}(k) \rightarrow e^{+}\left(p^{\prime}\right) e^{-}\left(k^{\prime}\right)$ and give the expression for the scattering amplitude, $i \mathcal{M}$, in Feynman gauge. What happens in an arbitrary gauge?
8. (a) Show that the process $e^{+}\left(k^{\prime}\right) e^{-}(k) \rightarrow \mu^{+}\left(p^{\prime}\right) \mu^{-}(p)$, in the limit $m_{e} \rightarrow 0$, has a matrix-element-squared given by

$$
\overline{|\mathcal{M}|}^{2}=\frac{1}{4} \frac{e^{4}}{\left(k+k^{\prime}\right)^{4}} \operatorname{Tr}\left[k^{\prime} \gamma^{\mu} k \gamma^{\nu}\right] \operatorname{Tr}\left[(\not p+M) \gamma_{\mu}\left(\not p^{\prime}-M\right) \gamma_{\nu}\right],
$$

when summed and averaged over final and initial spins, where M is the mass of the muon.
(b) Show that

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}=\frac{\overline{\mathcal{M} \mid}^{2}}{64 \pi^{2} s} \sqrt{1-\frac{4 M^{2}}{s}}
$$

where $s=\left(k+k^{\prime}\right)^{2}$.
(c) The traces evaluate to (check if you have time!)

$$
{\left.\overline{\mathcal{M}}\right|^{2}=\frac{8 e^{4}}{s^{2}}\left[(p k)^{2}+\left(p k^{\prime}\right)^{2}+M^{2}\left(k k^{\prime}\right)\right]}
$$

Move to the centre-of-mass frame and let the scattering angle be θ. Show that

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}=\frac{e^{4}}{64 \pi^{2} s} \sqrt{1-\frac{4 M^{2}}{s}}\left[1+\left(1-\frac{4 M^{2}}{s}\right) \cos ^{2} \theta+\frac{4 M^{2}}{s}\right] .
$$

(d) Find an expression for the total cross section in the high-energy limit where the mass of the muon can be neglected.
9. Write the amplitude for Compton scattering $e(p) \gamma(k) \rightarrow e\left(p^{\prime}\right) \gamma\left(k^{\prime}\right)$ in the form $i \mathcal{M}=$ $M_{\mu \nu} \varepsilon^{* \mu}\left(k^{\prime}\right) \varepsilon^{\nu}(k)$. Verify that this is gauge-invariant.
10. In the lectures, we found the matrix element squared for unpolarised Compton scattering was

$$
\overline{\mid \mathcal{M}}^{2}=2 e^{4}\left(\frac{p k}{p k^{\prime}}+\frac{p k^{\prime}}{p k}+2 m^{2}\left(\frac{1}{p k}-\frac{1}{p k^{\prime}}\right)+m^{4}\left(\frac{1}{p k}-\frac{1}{p k^{\prime}}\right)^{2}\right) .
$$

Working in the centre-of-mass system, in the limit where the electron mass m can be neglected, show that the matrix element squared is dominated by backward scattering, $\theta \simeq \pi$, where θ is the scattering angle of the photon.
11. Use the matrix-element squared for Compton scattering to obtain the matrix-element squared for the annihilation process $e^{+} e^{-} \rightarrow \gamma \gamma$. Again work in the centre-of-mass frame and show that, in the high-energy limit $E \gg m$,

$$
\overline{|\mathcal{M}|}{ }^{2} \simeq 4 e^{4} \frac{1+\cos ^{2} \theta}{\sin ^{2} \theta}
$$

12. Consider the diagrams in figure 1. Show that the colour factors are given by

$$
\text { (a) } t^{c} t^{a} t^{b} \delta^{b c}=-\frac{1}{2 N_{c}} t^{a}, \quad \text { and } \quad \text { (b) } i f^{a b c} t^{b} t^{c}=-\frac{1}{2} C_{A} t^{a}
$$

respectively.

Figure 1: One-loop corrections to a $q \bar{q} g$-vertex.
13. Calculate the summed and averaged matrix-element squared, ${\left.\overline{\mathcal{M}}\right|^{2} \text {, for the quark-scattering }}_{\text {a }}$, process $u d \rightarrow u d$.
14. Solve the one-loop β-functions for QCD and QED:

$$
\mu^{2} \frac{d \alpha_{s}}{d \mu^{2}}=-\frac{11 C_{A}-2 n_{f}}{12 \pi} \alpha_{s}^{2}, \quad \text { and } \quad \mu^{2} \frac{d \alpha}{d \mu^{2}}=\frac{1}{3 \pi} \alpha^{2},
$$

using as initial condition the value of the couplings at the Z mass. Sketch the solutions as a function of μ^{2}.

