STFC HEP summer school 2023

Phenomenology Problems
Eleni Vryonidou (University of Manchester)

1 Basic Kinematics

The rapidity y and pseudo-rapidity η are defined as:

$$
\begin{aligned}
y & =\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right) \\
\eta & =-\log \left(\tan \left(\frac{\theta}{2}\right)\right)
\end{aligned}
$$

where z is the direction of the colliding beams.
a) Verify that for a particle of mass m

$$
\begin{aligned}
E & =\sqrt{m^{2}+p_{T}^{2}} \cosh y \\
p_{z} & =\sqrt{m^{2}+p_{T}^{2}} \sinh y
\end{aligned}
$$

with $p_{T}^{2}=p_{x}^{2}+p_{y}^{2}$.
b) Prove that $\tanh \eta=\cos \theta$
c) Prove that rapidity equals pseudo-rapidity for a relativistic particle $E \gg m$
d) Prove that the difference of two rapidities is Lorentz invariant.

$2 e^{+} e^{-} \rightarrow$ hadrons

By studying the shape of the Z-resonance in the R-ratio we can try to see the effect of some parameters in the electro-weak interactions. You can answer the questions qualitatively but you could also plot the function if you have time. Recall from the lectures that:

$$
\begin{align*}
d \sigma\left(f \bar{f} \rightarrow f^{\prime} \bar{f}^{\prime}\right)= & \alpha^{2} \frac{\pi}{2 s} d(\cos \theta) \\
& \left\{\left(1+\cos ^{2} \theta\right)\left(q_{f}^{2} q_{f^{\prime}}^{2}+\frac{g_{z}^{2}}{4 g_{e}^{2}} q_{f} q_{f^{\prime}} v_{f} v_{f^{\prime}} \chi_{1}+\frac{g_{z}^{4}}{16 g_{e}^{4}}\left(a_{f}^{2}+v_{f}^{2}\right)\left(a_{f^{\prime}}^{2}+v_{f^{\prime}}^{2}\right) \chi_{2}\right)\right. \\
& \left.+\cos \theta\left(\frac{g_{z}^{2}}{2 g_{e}^{2}} q_{f} q_{f^{\prime}} v_{f} v_{f^{\prime}} \chi_{1}+\frac{g_{z}^{4}}{2 g_{e}^{4}} a_{f} a_{f^{\prime}} v_{f} v_{f^{\prime}} \chi_{2}\right)\right\} \tag{1}
\end{align*}
$$

where

$$
\frac{g_{Z}}{g_{e}}=\frac{1}{\cos \theta_{w} \sin \theta_{w}} \quad \chi_{1}=\frac{s\left(s-m_{Z}^{2}\right)}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}} \quad \chi_{2}=\frac{s^{2}}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}
$$

	q_{f}	a_{f}	v_{f}
u, c, t	$2 / 3$	$1 / 2$	$1 / 2-4 / 3 \sin ^{2} \theta_{w}$
d, s, b	$-1 / 3$	$-1 / 2$	$-1 / 2+2 / 3 \sin ^{2} \theta_{w}$
e, μ, τ	-1	$-1 / 2$	$-1 / 2+2 \sin ^{2} \theta_{w}$
ν_{e}, μ, τ	0	$1 / 2$	$1 / 2$

Table 1: EW couplings in the Standard Model.
and

$$
g_{z}^{2}=\frac{4 \pi \alpha}{\cos ^{2} \theta_{w} \sin ^{2} \theta_{w}} \quad \Gamma_{Z} \approx \sum_{l} \Gamma_{Z \rightarrow l \bar{l}}+\sum_{q} N_{c} \Gamma_{Z \rightarrow q \bar{q}} \quad \Gamma_{Z \rightarrow f \bar{f}}=\frac{m_{Z} \alpha}{12 \cos ^{2} \theta_{w} \sin ^{2} \theta_{w}}\left(a_{f}^{2}+v_{f}^{2}\right)
$$

The axial and vector couplings in the Standard Model are given in Table 1.
a) Look at the expression above (1) and identify the physical origin of each term, e.g. draw the relevant Feynman diagrams and discuss the link to the terms in the equations.
b) What happens to the interference between the photon and the Z diagrams if $\sin ^{2} \theta_{w}=0.25$?
c) Schematically plot $R\left(\frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}\right)$like we saw in the lectures.

3 Jet Kinematics

At the LHC each beam has an energy of 7 TeV . Two partons collide and produce two jets with negligible mass, transverse momentum p_{T} and rapidities $y_{3,4}$.
a) Show that

$$
x_{1}=\frac{p_{T}}{\sqrt{s}}\left(e^{y_{3}}+e^{y_{4}}\right), x_{2}=\frac{p_{T}}{\sqrt{s}}\left(e^{-y_{3}}+e^{-y_{4}}\right)
$$

b) Show that the invariant mass of the dijet system is

$$
M_{J J}=2 p_{T} \cosh \left(\frac{y_{3}-y_{4}}{2}\right)
$$

and the centre of mass scattering angle is:

$$
\cos \theta^{*}=\tanh \left(\frac{y_{3}-y_{4}}{2}\right)
$$

c) Discuss the regions of $x_{1,2}, M_{J J}$ and θ^{*} probed with a jet trigger of $p_{T}>35$ and $\left|y_{3,4}\right|<3$

4 Event shapes

The thrust is defined as

$$
T=\max _{\overrightarrow{\hat{n}}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \overrightarrow{\hat{n}}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

where the sum is over all the particles, the i th particle has 3 -momentum \vec{p}_{i}, and $\overrightarrow{\hat{n}}$ is a unit-vector.
Explain why the value of the thrust is given by
a) 1 for back-to-back configurations,
b) $\frac{1}{2}$ for a perfectly spherical event (i.e. uniform ditribution of momenta).
c) Calculate the minimum possible value of the thrust for a $q \bar{q} g$ state. [Hint: This occurs for the 'Mercedes' configuratio where all the particles have the same energy and the angle between any two particles is 120°.]

Consider the two event shape variables

$$
S_{\text {lin }}=\left(\frac{4}{\pi}\right)^{2} \min _{\vec{n}}\left(\frac{\sum_{i}\left|\vec{p}_{i} \times \overrightarrow{\hat{n}}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}\right)^{2}, \quad S_{\text {quad }}=\frac{3}{2} \min _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \times \overrightarrow{\hat{n}}\right|^{2}}{\sum_{i}\left|\vec{p}_{i}\right|^{2}}
$$

d) Determine whether $S_{\text {lin }}$ is infrared safe or not.
e) What are the limiting values of $S_{\text {lin }}$ for pencil-like (back-to-back) and spherical events?
f) What is the value for the Mercedes configuration?

5 Infrared safety

Are these observables infrared safe at a hadron collider? If not, how would you modify them to make them infrared safe?
a) Partonic center of mass energy (defined as a the invariant mass of the sum of all final state particles in the event).
b) The sum of the energies of all jets with transverse momentum above a given p_{T} threshold.
c) The invariant mass of all jets in the event.
d) The number of partons.

6 Jet algorithms

Recall the distance measure used by the anti- k_{T} jet algorithm is given by:

$$
d_{i, j}=\min \left(p_{i, \perp}^{-2}, p_{j, \perp}^{-2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{i, \perp}^{-2} .
$$

where $\Delta R_{i j}=\sqrt{\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}}$. Consider the clustering of a three particle system with one hard jet $j_{H}=\left(p_{H, \perp}, \eta, \phi\right)$ and two softer jets $j_{1}=\left(p_{1, \perp}, 0,0\right)$ and $j_{2}=\left(p_{2, \perp}, \eta_{0}, 0\right)$ where $p_{H, \perp} \gg p_{i, \perp}$. You may also take $R=1$.
a) Find the conditions for the soft jets to be clustered with the hard jet.
b) Show that anti- k_{T} jets are circular in the $\eta-\phi$ plane.
c) What happens to the clustering when cones of jets 1 and 2 overlap?
d) How does it depend on the relative size of the transverse momentum, $r=\frac{p_{1, \perp}}{p_{2, \perp}}$?

7 EFT and anomalous couplings

The following dimension-6 operators modify the couplings of the top quark to the weak gauge bosons (Q is the third generation left-handed doublet and t the right handed top quark field, φ is the Higgs field):

$$
\begin{align*}
& O_{\varphi Q}^{(3)}=i \frac{1}{2} y_{t}^{2}\left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi\right)\left(\bar{Q} \gamma^{\mu} \tau^{I} Q\right) \tag{2}\\
& O_{\varphi Q}^{(1)}=i \frac{1}{2} y_{t}^{2}\left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{Q} \gamma^{\mu} Q\right) \tag{3}\\
& O_{\varphi t}=i \frac{1}{2} y_{t}^{2}\left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{t} \gamma^{\mu} t\right) \tag{4}\\
& O_{t W}=y_{t} g_{w}\left(\bar{Q} \sigma^{\mu \nu} \tau^{I} t\right) \tilde{\varphi} W_{\mu \nu}^{I} \tag{5}\\
& O_{t B}=y_{t} g_{Y}\left(\bar{Q} \sigma^{\mu \nu} t\right) \tilde{\varphi} B_{\mu \nu} \tag{6}
\end{align*}
$$

a) Explain qualitatatively which particular top couplings will be modified by each operator.
b) Write down the Feynman rules for the $t t Z$ vertex including the impact of 2-fermion operators listed above: $\mathcal{O}_{t W}, \mathcal{O}_{t B}, \mathcal{O}_{\phi t}, \mathcal{O}_{\phi Q}^{(3)}, \mathcal{O}_{\phi Q}^{(1)}$ e.t.c. and compare with the typical anomalous coupling parametrisation of the $t t Z$ vertex.

$$
\mathcal{L}_{t t Z}=e \bar{u}\left(p_{t}\right)\left[\gamma^{\mu}\left(C_{1, V}^{Z}+\gamma_{5} C_{1, A}^{Z}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{m_{Z}}\left(C_{2, V}^{Z}+i \gamma_{5} C_{2, A}^{Z}\right)\right] v\left(p_{\bar{t}}\right) Z_{\mu}
$$

c) What are the expressions for: $C_{1, V}^{Z}, C_{1, A}^{Z}, C_{2, V}^{Z}$ and $C_{2, A}^{Z}$ in terms of the dim-6 Wilson coefficients?
d) Use this to explain why there are degeneracies between operators if one only looks at processes involving the $t t Z$ interaction.

8 DGLAP splitting kernels (Optional)

Show that in the collinear limit $p_{3} \rightarrow z p_{\tilde{13}}, p_{1} \rightarrow(1-z) p_{13}$ the matrix element

$$
\left.\left.\langle | \mathcal{M}\left(a_{e^{+}}, b_{e^{-}}, 1_{q}, 2_{\bar{q}}, 3_{g}\right)\right|^{2}\right\rangle=\frac{4 e^{2} e_{q}^{2} g_{s}^{2} N_{c}}{s} C_{F} \frac{s_{a 1}^{2}+s_{a 2}^{2}+s_{b 1}^{2}+s_{b 2}^{2}}{s_{13} s_{23}}
$$

factorizes to

$$
\begin{gathered}
\left|\mathcal{M}_{q \bar{q} g}\right|^{2} \rightarrow\left|\mathcal{M}_{q \bar{q}}\right|^{2} \times \frac{2 g_{s}^{2}}{s_{13}} \times C_{F} \frac{1+(1-z)^{2}}{z} \\
\left.\left.\langle | \mathcal{M}\left(a_{e^{+}}, b_{e^{-}}, 1_{q}, 2_{\bar{q}}, 3_{g}\right)\right|^{2}\right\rangle \xrightarrow{3 \| 1}\langle | \mathcal{M}\left(a_{e^{+}}, b_{e^{-}},(\tilde{13})_{q},\left.2_{\bar{q}}\right|^{2}\right\rangle \frac{2 g_{s}^{2} C_{F}}{s_{13}} \frac{1+(1-z)^{2}}{z}
\end{gathered}
$$

with

$$
\left.\left.\langle | \mathcal{M}\left(a_{e^{+}}, b_{e^{-}}, 1_{q}, 2_{\bar{q}}\right)\right|^{2}\right\rangle=2 e^{2} e_{q}^{2} N_{c} \frac{s_{a 1}^{2}+s_{a 2}^{2}}{s_{a b}}
$$

9 Operators and EOMs (Optional)

Show that the two operators in:

$$
\begin{align*}
\mathcal{O}_{g t} & =\bar{t} T_{A} \gamma^{\mu} D^{\nu} t G_{\mu \nu}^{A} \tag{7}\\
\mathcal{O}_{g Q} & =\bar{Q} T_{A} \gamma^{\mu} D^{\nu} Q G_{\mu \nu}^{A} \tag{8}
\end{align*}
$$

can be written as a sum of four fermion operators

