Standard Model course 2023

S.P. and N.R.

September 11, 2023

Problem 1

(From Thompson) Explaining your reasoning, state whether each of the sixteen diagrams below represents a valid Standard Model vertex.
(a) e^{-}

(i) e^{-}

g
(m) u

W
(e) e^{-}

γ
(e)

(b)

(c) e^{-}

(d)

γ
τ
(g) e^{-}

Z
(h) e^{-}
W
Z
(f) e^{-}

w
(k)

(o) d

w
(1) γ
(p) e^{-}

(j) b

g
(n) u

W

Problem 2

Draw the Feynman diagram for the process $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$ (the π^{-}is the lightest d \bar{u} meson).

Problem 3

Show that for matrices A and B it is valid that:

$$
\begin{equation*}
e^{A} e^{B}=\exp \left(A+B+\frac{1}{2}[A, B]+\cdots\right) \tag{1}
\end{equation*}
$$

where the notation ... denotes higher order commutators.

Hint: Use the exponential expansion formula:

$$
e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}
$$

to show that the first term in the expansion is the same between the left and right hand side of Eq. (2).

Problem 4

(i) Show that elements of the group $S U(N)$ (i.e. special unitary $N \times N$ matrices, U) each have $N^{2}-1$ parameters.
(ii) The group elements, U, can be expressed in terms of the generators, t^{a} ($a=1, \ldots, N^{2}-1$) , as

$$
U=e^{i \theta^{a} t^{a}}
$$

Show that U being unitary implies that the matrices t^{a} are Hermitian. Show that U having determinant 1 implies that the matrices t^{a} are traceless (Hint: prove first the identity $\left.\operatorname{det} e^{A}=e^{\operatorname{Tr} A}\right)$.
(iii) Consider the generators of $S U(2)$ in the fundamental representation:
$t_{1}=\frac{\sigma_{1}}{2}=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad t_{2}=\frac{\sigma_{2}}{2}=\frac{1}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \quad t_{3}=\frac{\sigma_{3}}{2}=\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$,
and find the structure constants of the group, $f_{a b c}$.
(iv) Then use them to find the generators of the adjoint representation using that:

$$
\left(t_{a}^{\text {adjoint }}\right)_{b c}=-i f_{a b c}
$$

Hint: use the property of the Pauli matrices:

$$
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}
$$

Problem 5

Use the Lorentz transformation properties of spinors that you studied in the QED/QCD course to show that the product:

$$
\bar{\psi}_{L} \psi_{R},
$$

where the subscripts L and R denote the left and right handed chirality, respectively, is Lorentz invariant.
Why are direct mass terms like $\bar{e}_{L} e_{R}$ not allowed in the Standard Model Lagrangian, hence the need for Yukawa couplings with the Higgs to give masses to the fermions?

Hint: First show that for $\gamma^{5} \equiv \frac{i}{4!} \epsilon_{\mu \nu \kappa \lambda} \gamma^{\mu} \gamma^{\nu} \gamma^{\kappa} \gamma^{\lambda}$:

$$
\gamma^{5} S=S \gamma^{5}
$$

where $\psi(x) \rightarrow S(\Lambda) \psi\left(\Lambda^{-1} x\right)$ under a Lorentz transformation and $S^{-1} \gamma^{\mu} S=$ $\Lambda_{\nu}^{\mu} \gamma^{\nu}$.

Problem 6

Consider the case of QCD and do the following algebra to fill in the gaps in the lecture notes.
i) Show that the commutator of the covariant derivative:

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}+i g t^{a} A_{\mu}^{a}, \tag{2}
\end{equation*}
$$

is proportional to the field strength tensor field strength tensor, $F_{\mu \nu}^{a} t^{a}=$ $\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a}{ }_{b c} A_{\mu}^{b} A_{\nu}^{c}\right) t^{a}$, i.e.

$$
-\frac{i}{g}\left[D_{\mu}, D_{\nu}\right]=F_{\mu \nu}^{a} t^{a} .
$$

ii) Then show how $F_{\mu \nu}^{a}$ transforms under $\mathrm{SU}(3)$. To show this in an efficient way, consider that the covariant derivative acting on a spinor field transforms like the spinor field itself, i.e.

$$
\begin{equation*}
D_{\mu} \psi \rightarrow D_{\mu}^{\prime} \psi^{\prime}=U D_{\mu} \psi, \tag{3}
\end{equation*}
$$

where

$$
\psi^{\prime}=U \psi,
$$

as a step to show that:

$$
F_{\mu \nu}^{\prime a} t^{a}=U F_{\mu \nu}^{a} t^{a} U^{-1}
$$

iii) Consider Eq. 3 to show that:

$$
A_{\mu}^{\prime a} t^{a}=A_{\mu}^{a} U t^{a} U^{\dagger}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{\dagger}
$$

iv) Use the transformation

$$
U=\exp \left(-i g \theta^{a} t^{a}\right)
$$

to show that for small g (i.e. for an infinitessimal transformation) it holds that:

$$
A_{\mu}^{\prime c}=A_{\mu}^{c}+g f^{b a c} \theta^{b} A_{\mu}^{a}+\partial_{\mu} \theta^{c}
$$

that is, for a global transformation, A_{μ}^{a} transforms as the adjoint representation:

$$
A_{\mu}^{c}=A_{\mu}^{c}+i g\left(t^{\text {adjoint }}\right)^{b a c} \theta^{b} A_{\mu}^{a}
$$

Problem 7

The CKM matrix, $V_{A B}$, is a unitary matrix that relates the quark weak eigenstates, $d_{L A}^{\prime}$, to the quark mass eigenstates, $d_{L A}$, as $d_{L A}^{\prime}=V_{A B} d_{L B}$, such that the weak charged current interaction for the quark sector can be written as:

$$
\begin{equation*}
\mathcal{L}_{c c}=-\frac{g}{\sqrt{2}} \sum_{A, B} \bar{u}_{L A} \gamma^{\mu} W_{\mu}^{+} V_{A B} d_{L B}+\bar{d}_{L B} V_{A B}^{*} \gamma^{\mu} W_{\mu}^{-} u_{L A} \tag{4}
\end{equation*}
$$

with $A, B=1, \ldots, n$ labelling the generation.
For the 3 generations known in the Standard Model:

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

with the (non-unique) parameterisation:

$$
V=\left(\begin{array}{ccc}
c_{1} & -s_{1} c_{3} & -s_{1} s_{3} \\
s_{1} c_{2} & c_{1} c_{2} c_{3}-s_{2} s_{3} e^{i \delta} & c_{1} c_{2} s_{3}+s_{2} s_{3} e^{i \delta} \\
s_{1} s_{2} & c_{1} s_{2} c_{3}+c_{2} s_{3} e^{i \delta} & c_{1} s_{2} s_{3}-c_{2} c_{3} e^{i \delta}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

where $c_{a}=\cos \theta_{a}$ and $s_{a}=\sin \theta_{a}$.
Assume n generations. Show that a unitary matrix has n^{2} real parameters. Out of these, $n(n-1) / 2$ parameters can be expressed as rotation angles and the remaining $n(n+1) / 2$ parameters can be expressed as phases. Explain why only $\frac{1}{2}(n-1)(n-2)$ of these phases are physical.
Use the transformation under CP:

$$
\mathrm{CP}: \bar{\psi}_{1} \gamma^{\mu} \psi_{2} W_{\mu}^{+} \rightarrow \bar{\psi}_{2} \gamma^{\mu} \psi_{1} W_{\mu}^{-}
$$

to show that (4) violates the $C P$-symmetry only for $n \geq 3$ generations.

Problem 8

List the 19 parameters of the Standard Model.

