Quantum Field Theory - Lecture 8
Scattering
The scattering of particles, e.g. that of two particles with momenta \vec{p}_{1}, \vec{p}_{2} into n particles with momenta $\vec{k}_{1}, \ldots, \vec{k}_{n}$, can be represented by

In the in and out regions the particles are free, while the interactions happen in the interaction region and typically last a very short time.

In the in region, we may define

$$
\hat{\dot{\phi}}_{\text {in }}(x)=\lim _{t \rightarrow-\infty} " \hat{\phi}(x)
$$

and similarly

$$
\hat{\phi}_{\text {out }}(x)=\lim _{t \rightarrow \infty}{ }^{\prime \prime} \hat{\phi}(x) .
$$

These are free fields:

$$
\left(\partial^{2}+m^{2}\right) \hat{\phi}_{\text {in }}=\left(\partial^{2}+m^{2}\right) \hat{\phi}_{\text {out }}=0 .
$$

They can be written as

$$
\begin{aligned}
& \hat{\phi}_{\text {in }}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{k}}}\left(\hat{a}_{\vec{k}, \text { in }} e^{-i k \cdot x}+\hat{a}_{\vec{k}, \text { in }}^{+} e^{i k \cdot x}\right) \\
& \hat{\phi}_{\text {out }}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{k}}}\left(\hat{a}_{\vec{k}, \text { out }} e^{-i k \cdot x}+\hat{a}_{\vec{k}, \text { out }}^{+} e^{i k \cdot x}\right) .
\end{aligned}
$$

The operators $\hat{a}_{\vec{k} \text {, in }}^{+}$create in states and the operators $\hat{a}_{\vec{k} \text {, out }}^{+}$create out states. Since
\langle in $| \hat{\phi}_{\text {in }} \mid$ in $\rangle=\langle$ out $| \hat{\phi}_{\text {out }} \mid$ out $\rangle, S_{\text {S }}^{\text {spmeferent bases }}$
it must be that there exists some operator \hat{S} such that

$$
\left.\left.\hat{\phi}_{\text {in }}=\hat{S} \hat{\phi}_{\text {out }} \hat{S}_{h}^{+} \mid \text {in }\right\rangle=\hat{S} \mid \text { out }\right\rangle,\langle\text { in }|=\langle\text { out }| S^{+}, \quad \hat{S}+\hat{S}=1 .
$$

This operator \hat{S} is called the S-matrix.
Returning to our scattering picture above,

$$
\begin{aligned}
\left\langle\vec{k}_{1} \cdots \vec{k}_{n} \mid \vec{p}_{1} \vec{p}_{2}\right\rangle & =\left\langle\vec{k}_{1} \cdots \vec{k}_{n}(t \rightarrow+\infty)\right| \hat{u}(\infty, 0) \hat{u}(0,-\infty)\left|\vec{p}_{1} \vec{p}_{2}(t \rightarrow-\infty)\right\rangle \\
& =\left\langle\vec{k}_{\text {free }} \cdots \vec{k}_{n}\right| \underbrace{\hat{u}(\infty, 0) \hat{u}(0,-\infty)}_{\hat{S}}\left|\vec{p}_{1} \vec{p}_{2}\right\rangle_{\text {free }}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\hat{S} & =\hat{U}(\infty, 0) \hat{U}(0,-\infty) \\
& =\hat{U}(\infty,-\infty) \\
& =\hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{\text {int, }}(t) d t}
\end{aligned}
$$

Note that if $\hat{H}_{\text {int }}=0$, then $\hat{S}=1$ as would be expected.

Dyson's expansion
Our expression for \hat{S} as a time-ordered exponential will be understood in perturbation theory:

$$
\hat{S}=\hat{T}\left(1-i \int_{-\infty}^{\infty} d t \hat{H}_{i n t, F}(t)+\cdots\right)
$$

We will use

$$
\hat{H}_{\text {int, } I}(t)=\int d^{3} \times \hat{H}_{\text {int, I }}^{\text {Stamiltorian }}(t)
$$

to write

$$
\hat{S}=T\left(1-i \int d^{4} x \hat{H}_{\text {int ,I }}(t)+\cdots\right)
$$

In ϕ^{4} theory,

$$
\hat{H}_{\text {int }}=\frac{1}{4!} \lambda \phi^{4},
$$

So

$$
\begin{aligned}
\hat{H}_{\text {int, } I}(t) & =e^{i \hat{H}_{0} t} \hat{H}_{\text {int }}(t=0) e^{-i \hat{H}_{0} t} \\
& =\frac{1}{4!} \lambda e^{i \hat{H}_{0} t} \hat{\phi}^{4} e^{-i \hat{H}_{0} t} \\
& =\frac{1}{4!} \lambda e^{i \hat{H}_{0} t} \hat{\phi} \underbrace{e^{-i \hat{H}_{0} t} e^{i \hat{H}_{0} t}}_{1} \phi \cdots \hat{\phi} e^{-i \hat{H}_{0} t} \\
& =\frac{1}{4!} \lambda \hat{\phi}_{I}^{4}, \quad \hat{\phi}_{I}(t)=e^{i \hat{H}_{0} t} \hat{\phi}(t=0) e^{-i \hat{H}_{0} t} .
\end{aligned}
$$

Let's compute the scattering amplitude

1. Use vacuum states:

$$
\begin{aligned}
A_{2 \rightarrow 2} & =\left\langle\overrightarrow{\text { free }} \vec{p}_{2}\right| \hat{S}\left|\vec{k}_{1} \vec{k}_{2}\right\rangle_{\text {free }} \\
& =\langle 0| \hat{a}_{\vec{p}_{1}} \hat{a} \vec{p}_{2} \hat{S} \hat{a}_{\vec{k}_{1}}^{+} \hat{a}_{\vec{k}_{2}}^{+}|0\rangle
\end{aligned}
$$

We assume that in and out states have the same vacuum.
2. Work to leading order in λ :

$$
\hat{S}=\hat{T}\left(1-i \frac{\lambda}{4!} \int d^{4} x \hat{\phi}^{4}(x)+\ldots \text { sind }^{\text {intergtio }}\right.
$$

3. Plug this into $A_{2 \rightarrow 2}$:

$$
\begin{aligned}
A_{2 \rightarrow 2}=\hat{T} & \left(\langle 0| \hat{a}_{\vec{p}_{1}} \hat{a} \vec{p}_{2} \hat{a}_{\vec{k}_{1}}^{+} \hat{a}_{\vec{k}_{2}}^{+}|0\rangle\right. \\
& -\frac{i \lambda}{4!} \int d^{4} x\langle 0| \hat{a}_{\vec{p}_{1}} \hat{a}_{\vec{p}_{2}} \hat{\phi}^{4}(x) \hat{a}_{\overrightarrow{k_{1}}}^{+} \hat{a}_{\vec{k}_{2}}^{+}|0\rangle \\
& +\cdots)
\end{aligned}
$$

4. Use Wick's theorem to simplify expression.

Wick's theorem
Wick's theorem says that time-ordered products of operators are given by

$$
\begin{aligned}
\hat{T}\left(\phi_{1} \cdots \phi_{N}\right)= & \hat{N}\left(\phi_{1} \cdots \phi_{n}\right) \\
& +\hat{N}\left(\text { all possible contractions of } \phi_{1}, \cdots, \phi_{N}\right)
\end{aligned}
$$

where \hat{N} denotes the normal-ordered product (which we denoted by : previously). A contraction replaces two ϕ 's with a Feynman propagator:

$$
\overline{\phi\left(x_{1}\right) \phi}\left(x_{2}\right) \longrightarrow D_{F}\left(x_{1}-x_{2}\right) \text {. }
$$

For example,

$$
\begin{aligned}
\hat{T}\left(\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right)= & \hat{N}\left(\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right)+\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \\
\hat{T}\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)= & \hat{N}\left(\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right)+D_{F}\left(x_{1}-x_{2}\right) \\
& \left.\left.+\phi_{2} \phi_{3} \phi_{4}\right)+\hat{\phi_{1} \phi_{2}} \hat{N}\left(\phi_{2} \phi_{4}\right)+\cdots \phi_{4}\right) \\
& +\hat{\phi}_{1} \phi_{2} \dot{\phi}_{3} \phi_{4}+\dot{\phi}_{1} \phi_{2} \phi_{3} \phi_{4}+\hat{\phi}_{1} \dot{\phi}_{2} \phi_{3} \phi_{4} \\
= & \hat{N}\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)+D_{F}\left(x_{1}-x_{2}\right) \hat{N}\left(\phi_{3} \phi_{4}\right) \\
& +D_{F}\left(x_{1}-x_{3}\right) \hat{N}\left(\phi_{2} \phi_{4}\right)+\cdots \\
& +D_{F}\left(x_{1}-x_{2}\right) D_{F}\left(x_{3}-x_{4}\right)+D_{F}\left(x_{1}-x_{3}\right) D_{F}\left(x_{2}-x_{4}\right) \\
& +D_{F}\left(x_{1}-x_{4}\right) D_{F}\left(x_{2}-x_{3}\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\langle 0| \hat{T}\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)|0\rangle= & \langle 0| D_{F}\left(x_{1}-x_{2}\right) D_{F}\left(x_{3}-x_{4}\right)|0\rangle \\
& +\langle 0| D_{F}\left(x_{1}-x_{3}\right) D_{F}\left(x_{2}-x_{4}\right)|0\rangle \\
& +\langle 0| D_{F}\left(x_{1}-x_{4}\right) D_{F}\left(x_{2}-x_{3}\right)|0\rangle,
\end{aligned}
$$

because

$$
\langle 0| \hat{N}(\text { anything })|0\rangle=0
$$

since $\quad \hat{a} \vec{k}|0\rangle=0$.

Now $D_{F}(x-y)$ is not an operator so it can simply come out of $\langle 0| \ldots|0\rangle$. Using $\langle 0 \mid 0\rangle=1$, we find

$$
\begin{aligned}
\langle 0| \hat{T}\left(\phi_{1} \phi_{2}\right)|0\rangle= & D_{F}\left(x_{1}-x_{2}\right)\langle 0 \mid 0\rangle=D_{F}\left(x_{1}-x_{2}\right), \\
\langle 0| \hat{T}\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)|0\rangle= & D_{F}\left(x_{1}-x_{2}\right) D_{F}\left(x_{3}-x_{4}\right) \\
& +D_{F}\left(x_{1}-x_{3}\right) D_{F}\left(x_{2}-x_{4}\right) \\
& +D_{F}\left(x_{1}-x_{4}\right) D_{F}\left(x_{2}-x_{3}\right) .
\end{aligned}
$$

Thus we have completed the computation of vacuum expectation values of time-ordered products of scalar operators. These results will be used to finish the computation of $A_{2 \rightarrow 2}$. Before going back to that, let us introduce a pictorial representation of our results above.
5. Interpret vacuum expectation values as Feynman diagrams.

$$
\begin{aligned}
& \text { Propagators }=\text { lines } \\
& \langle 0| \hat{T} \phi(x) \phi(y)|0\rangle=D_{F}(x-y)=\underset{x}{ } \quad y \\
& \langle 0| \hat{T}\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)|0\rangle={ }_{3}^{1} \longrightarrow_{4}^{2}+{ }_{3}^{1} d \quad a_{4}^{2}+{ }_{30}^{1} \lambda_{4}^{2}
\end{aligned}
$$

