Quantum Field Theory - Lecture 3

Our aim now is to find real $(\phi^* = \phi)$ solutions to the Klein-Gordon equation, $(\Im^2 + m^2)\phi = 0$.

Fourier-transform method We have the operator 2²+m² that annihilates \$(x). A standard way to find the solutions in such situations is to use Fourier space. Define real space $\rightarrow \phi(t, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \phi(t, \vec{k}) e^{i\vec{k}\cdot\vec{x}}$ momentum space $\phi(t, \vec{E}) = \int d^3x \ \phi(t, \vec{x}) \ e^{-i\vec{E}\cdot\vec{x}}$ Now go to the Klein-Gordon equation and compute: $\int \frac{d^3 E}{(2\pi)^3} \left(\partial_t^2 - \vec{7}^2 + m^2 \right) \phi(t, \vec{E}) e^{i\vec{F}\cdot\vec{X}} = 0 \implies$ $= \int \frac{d^{3}k}{(2\pi)^{3}} \left[\dot{\varphi}(t,\vec{k}) - (i\vec{k})\cdot(i\vec{k}) \dot{\varphi}(t,\vec{k}) + m^{2}\dot{\varphi}(t,\vec{k}) \right] e^{i\vec{k}\cdot\vec{x}} = 0$ $= \int \frac{d^{2} E}{(2\pi)^{3}} \left[\ddot{\varphi}(t,\vec{E}) + (\vec{E}^{2} + m^{2}) \dot{\varphi}(t,\vec{E}) \right] e^{i\vec{E}\cdot\vec{x}} = 0$ We can satisfy this equation if $\phi(t,\vec{k}) + \omega_{\vec{E}} \phi(t,\vec{k}) = 0$ i.e. if $\phi(t, \vec{k})$ solves the differential equation for simple harmonic motion with frequency $w_{\vec{E}}$. Such solutions take the form

$$\begin{aligned} \varphi(t,\vec{k}) &= \varphi(0,\vec{k}) e^{\pm i\omega\vec{k}t} \\ \text{The naive solution is} \\ \varphi_{\text{naive}}(t,\vec{x}) &= \int \frac{d^3k}{(2\pi)^3} \ \varphi(0,\vec{k}) e^{\pm i\omega\vec{k}t} e^{i\vec{k}\cdot\vec{x}} \\ &\to \int \frac{d^3k}{(2\pi)^3} \ \varphi(0,\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \end{aligned}$$

where we chose the negative sign in $e^{\pm i\omega Et}$ and wrote $e^{-ik\cdot x} = e^{-i\omega Et + iE\cdot x}$. However now our noive solution is not real, but that is easy to fix since, for any complex number z, $z + z^*$ is real: $\phi(t, \overline{x}) = \int \frac{d^3 k}{(2\pi)^3} \left[\phi(0, \overline{k}) e^{-ik\cdot x} + \phi^*(0, \overline{k}) e^{ik\cdot x} \right]$

Quantisation of single SHO
In classical mechanics nothing to do

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
, $k = m\omega^2$.
In the canonical approach to quantisation we proceed
as follows:
(i) promote P, x, H to operators $\hat{P}, \hat{x}, \hat{H}$
(ii) impose commutation relations $(\pi = 1)$

$$\begin{bmatrix} \hat{x}, \hat{x} \end{bmatrix} = \begin{bmatrix} \hat{p}, \hat{p} \end{bmatrix} = 0, \quad \begin{bmatrix} \hat{x}, \hat{p} \end{bmatrix} = i$$

(iii) in the Schrödinger picture the state
$$|\psi(t)\rangle \text{ evolves according to}$$

$$\hat{H} |\psi(t)\rangle = i \frac{\partial}{\partial t} |\psi(t)\rangle.$$

There is a different approch that is more useful as it generalises to QFT, namely the ladder operator approach. Here we write the Hamiltonian in the form

$$\hat{H} = \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

where

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\sqrt{mw} \hat{x} + \frac{i}{\sqrt{mw}} \hat{p} \right)$$
$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2}} \left(\sqrt{mw} \hat{x} - \frac{i}{\sqrt{mw}} \hat{p} \right).$$
Since $[\hat{x}, \hat{x}] = [\hat{p}, \hat{p}] = 0$ and $[\hat{x}, \hat{p}] = i$ we

can show that

$$\begin{bmatrix} \hat{a} & \hat{a}^{\dagger} \end{bmatrix} = 1$$

$$\begin{bmatrix} \hat{H} & \hat{a} \end{bmatrix} = -\omega \hat{a}$$

$$\begin{bmatrix} \hat{H} & \hat{a}^{\dagger} \end{bmatrix} = \omega \hat{a}^{\dagger}$$

Now if we have an eigenstate (n) of the Hami-Itonian, then

$$\hat{H}(\hat{a}^{\dagger}|n\rangle) = [\hat{H}, \hat{a}^{\dagger}]|n\rangle + \hat{a}^{\dagger}\hat{H}|n\rangle$$

$$= \omega \hat{a}^{\dagger}|n\rangle + E_n \hat{a}^{\dagger}|n\rangle$$

$$= (\omega + E_n) \hat{a}^{\dagger}|n\rangle$$
and thus we may denote

$$\hat{a}^{\dagger}(n) \propto (n+1),$$

where $(n+1)$ is an eigenstate of \hat{H} with energy
 $E_{n+1} = E_n + \omega.$ Similarly,
 $\hat{H}(\hat{a}(n)) = (E_n - \omega) \hat{a}(n)$

and

$$\hat{a}(n) \propto (n-1), \quad E_{n-1} = E_n - \omega.$$

For any energy eigenstate (n) , \hat{a}^{\dagger} raises its
energy by one unit of ω and \hat{a} lowers it by one
unit of ω . The ground state is the state $|0\rangle$
such that
 $\hat{a}(0) = 0$ we do not want
negative energies

Now we write $\hat{H}_i = \omega \left(\hat{a}_i^{\dagger}\hat{a}_i + \frac{1}{2}\right)$ and these a's satisfy $\left[\hat{a}_i, \hat{a}_j\right] = \left[\hat{a}_i^{\dagger}, \hat{a}_j^{\dagger}\right] = 0$, $\left[\hat{a}_i, \hat{a}_j^{\dagger}\right] = \delta_{ij}$. We denote states by $\left[N_2, N_2, \dots, N_N\right] = \left[N_3\right] \otimes \left[N_2\right] \otimes \dots \otimes \left[N_N\right]$ where each of the N SHOs is in a state $\left[N_i\right]$ independently of the others (product state). The operator \hat{a}_i^{\dagger} acts as follows: $\hat{a}_i^{\dagger} \mid N_2, \dots, N_i, \dots, N_N \rangle = \left[N_1, N_2, \dots, N_i + 1, \dots, N_N\right]$. The vacuum state is that of all SHOs in their vacuum state:

$$a_{i}|0,0,\ldots,0\rangle = 0 \quad \text{for all } i=1,\ldots,N.$$

Excited states are given by

$$|m_{s_{1}}\ldots,m_{N}\rangle = \frac{(a_{s}^{+})^{m_{s}}\ldots(a_{s}^{+})^{m_{N}}}{\sqrt{m_{s}!}} |0,\ldots,0\rangle.$$

This is called the occupation number representation.

Summary

- Solutions to Klein-Gordon equation are linear superpositions of an infinite number of SHOs for each mode E.
- We solved the SHO with raising/lowering (or creation/annihilation) operators.

Recorp of Day 1

- · Talted about what QFT is and why we use it.
- · Fundamental degrees of freedom: fields
- We can write Lagrangians and Hamiltonians (densities) with fields
- Free massive scalar field: $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \frac{1}{2} m^2 \phi^2$ $\mathcal{H} = \frac{1}{2} (\pi^2 + \vec{\nabla} \phi \cdot \vec{\nabla} \phi + m^2 \phi^2)$ • EOM: $(\mathfrak{I}^2 + \mathfrak{m}^2) \perp -\mathfrak{I}$ $\pi = \phi$
- EOM : $(\Im^2 + m^2) \neq = 0$ Klein - Gordon equation
- Solutions in Fourier space: each Fourier mode (È component) satisfies the simple harmonic motion equation with w_E² = E² + m².
 Quantised SHOs using raising/lowering operators.

* Invariance of integration measure
Using
$$k^{h}$$
 we may write the manifestly Lorentz
invariant
 $M = \frac{d^{4}k}{(2\pi)^{4}} 2\pi \delta^{(4)} (k^{2} - m^{2}) \theta(k^{0})$
Then,
 $M = \frac{d^{3}k dk^{0}}{(2\pi)^{3}} 5^{(4)} ((k^{0} - \omega_{\vec{k}})(k^{0} + \omega_{\vec{k}})) \theta(k^{0})$
 $= \frac{d^{3}k dk^{0}}{(2\pi)^{3}} \frac{1}{2k^{0}} (\delta^{(4)} (k^{0} - \omega_{\vec{k}}) \theta(k^{0}) + \delta^{(4)}(k^{0} + \omega_{\vec{k}}) \theta(k^{0}))$
 $= \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2\omega_{\vec{k}}},$
 $\kappa |f(x)=0|f'(x)|$

which is the normalisation we used above.