Quantum Field Theory - Lecture 3

Our aim now is to find real $\left(\phi^{*}=\phi\right)$ solutions to the Klein-Gordon equation,

$$
\left(\partial^{2}+m^{2}\right) \phi=0 .
$$

Fourier-transform method
We have the operator $\partial^{2}+m^{2}$ that annihilates $\phi(x)$. A standard way to find the solutions in such situations is to use Fourier space. Define

$$
\begin{aligned}
& \begin{array}{l}
\text { real space } \\
\text { field }
\end{array} \phi(t, \vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \phi(t, \vec{k}) e^{i \vec{k} \cdot \vec{x}} \\
& \text { momentum spence } \phi(t, \vec{k})=\int d^{3} x \phi(t, \vec{x}) e^{-i \vec{k} \cdot \vec{x}} \\
& \quad \text { ied }
\end{aligned}
$$

Now go to the Klein-Gordon equation and compute:

$$
\begin{aligned}
& \int \frac{d^{3} k}{(2 \pi)^{3}}\left(\partial_{t}^{2}-\vec{\nabla}^{2}+m^{2}\right) \phi(t, \vec{k}) e^{i \vec{k} \cdot \vec{x}}=0 \Rightarrow \\
\Rightarrow & \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\ddot{\phi}(t, \vec{k})-(i \vec{k}) \cdot(i \vec{k}) \phi(t, \vec{k})+m^{2} \phi(t, \vec{k})\right] e^{i \vec{k} \cdot \vec{x}}=0 \\
\Rightarrow & \int \frac{d^{3} k}{(2 \pi)^{3}}[\ddot{\phi}(t, \vec{k})+(\underbrace{\vec{k}^{2}+m^{2}}_{\omega_{k}^{2}}) \phi(t, \vec{k})] e^{i \vec{k} \cdot \vec{x}}=0
\end{aligned}
$$

We can satisfy this equation if

$$
\ddot{\phi}(t, \vec{k})+\omega_{\vec{k}}^{2} \phi(t, \vec{k})=0
$$

i.e. if $\phi(t, \vec{k})$ solves the differential equation for simple harmonic motion with frequency $\omega_{\vec{k}}$. Such solutions take the form

$$
\phi(t, \vec{k})=\phi(0, \vec{k}) e^{ \pm i \omega \vec{k} t}
$$

The naive solution is

$$
\begin{aligned}
\phi_{\text {naive }}(t, \vec{x}) & =\int^{\text {ave solution }} \frac{d^{3} k}{(2 \pi)^{3}} \phi(0, \vec{k}) e^{ \pm i \omega_{\vec{k}} t} e^{i \vec{k} \cdot \vec{x}} \\
& \rightarrow \int \frac{d^{3} k}{(2 \pi)^{3}} \phi(0, \vec{k}) e^{-i k \cdot x}
\end{aligned}
$$

where we chose the negative sign in $e^{ \pm i \omega_{k} t}$ and wrote $e^{-i k \cdot x}=e^{-i \omega_{\vec{k} t}+i \vec{k} \cdot \vec{x}}$. However now our naive solution is not real, but that is easy to fix since, for any complex number $z, z+z^{*}$ is real:

$$
\phi(t, \vec{x})=\int \frac{\phi^{3} k}{(2 \pi)^{3}}\left[\phi(0, \vec{k}) e^{-i k \cdot x}+\phi^{*}(0, \vec{k}) e^{i k \cdot x}\right]
$$

In order to guarantee Lorentz invariance of the integration measure we normalise as follows:

$$
\phi(t, \vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega_{\vec{k}}}\left(a_{\vec{k}} e^{-i k \cdot x}+a_{\vec{k}}^{*} e^{i k \cdot x}\right) .
$$

This is our solution to the Klein-Gordon equation and now we want to quantise it.

Quantisation of single SHO
In classical mechanics

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}, \quad k=m \omega^{2}
$$

In the canonical approach to quantisation we proceed as follows:
(i) promote P, x, H to operators $\hat{P}, \hat{x}, \hat{H}$
(ii) impose commutation relations $(\hbar=1)$

$$
[\hat{x}, \hat{x}]=[\hat{p}, \hat{p}]=0, \quad[\hat{x}, \hat{p}]=i
$$

(iii) in the Schrodinger picture the state $|\psi(t)\rangle$ evolves according to

$$
\hat{H}|\psi(t)\rangle=i \frac{\partial}{\partial t}|\psi(t)\rangle
$$

There is a different approach that is more usefuel as it generalises to QFT, namely the ladder operator approach. Here we write the Hamiltonian in the form

$$
\hat{H}=\omega\left(\hat{a}^{+} \hat{a}+\frac{1}{2}\right)
$$

where

$$
\begin{aligned}
& \hat{a}=\frac{1}{\sqrt{2}}\left(\sqrt{m \omega} \hat{x}+\frac{i}{\sqrt{m \omega}} \hat{p}\right) \\
& \hat{a}^{+}=\frac{1}{\sqrt{2}}\left(\sqrt{m \omega} \hat{x}-\frac{i}{\sqrt{m \omega}} \hat{p}\right)
\end{aligned}
$$

Since $[\hat{x}, \hat{x}]=[\hat{p}, \hat{p}]=0$ and $[\hat{x}, \hat{p}]=i$ we can show that

$$
\begin{aligned}
& {\left[\hat{a}, \hat{a}^{+}\right]=1} \\
& {[\hat{H}, \hat{a}]=-\omega \hat{a}} \\
& {\left[\hat{H}, \hat{a}^{+}\right]=\omega \hat{a}^{+}}
\end{aligned}
$$

Now if we have an eigenstate $|n\rangle$ of the HamiIonian, then

$$
\begin{aligned}
\hat{H}\left(\hat{a}^{+}|n\rangle\right) & =\left[\hat{H}, \hat{a}^{+}\right]|n\rangle+\hat{a}^{+} \hat{H}|n\rangle \\
& =w \hat{a}^{+}|n\rangle+E_{n} \hat{a}^{+}|n\rangle \\
& =\left(\omega+E_{n}\right) \hat{a}^{+}|n\rangle
\end{aligned}
$$

and thus we may denote

$$
\hat{a}^{+}|n\rangle \propto|n+1\rangle,
$$

where $|n+1\rangle$ is an eigenstate of \hat{H} with energy $E_{n+1}=E_{n}+w$. Similarly,

$$
\hat{H}(\hat{a}|n\rangle)=\left(E_{n}-\omega\right) \hat{a}|n\rangle
$$

and

$$
\hat{a}|n\rangle \propto|n-1\rangle, \quad E_{n-1}=E_{n}-\omega .
$$

For any energy eigenstate $|n\rangle, \hat{a}^{+}$raises its energy by one unit of ω and \hat{a} lowers it by one unit of ω. The ground state is the state 10\rangle such that

$$
\hat{a}|0\rangle=0^{\sum^{\text {we do not want }} \text { negative energies }}
$$

and then

$$
\begin{aligned}
& \hat{H}|0\rangle=\omega\left(\hat{a}^{+} \hat{a}+\frac{1}{2}\right)|0\rangle=\frac{1}{2} \omega|0\rangle . \\
& \vdots \\
& \hat{a}\left(\hat { a } ^ { + } \left(\begin{array}{ll}
a & \\
\hat{a}\left(\hat{a}^{+}(2)\right. & E_{2}=5 \omega / 2 \\
& \mid 1) \\
E_{1}=3 \omega / 2
\end{array}\right.\right. \\
& E_{0}=\omega / 2
\end{aligned}
$$

It turns out that all states can be built from $|0\rangle$:

$$
|n\rangle=\frac{\left(\hat{a}^{+}\right)^{n}}{\sqrt{n!}}|0\rangle, \quad\langle n \mid m\rangle=\delta_{n m} \quad \text { for any } m, n \geqslant 0
$$

Generalisation to multiple decoupled SHOS
Suppose we have N SHOT:

$$
H=\sum_{i=1}^{N} \hat{H}_{i}, \quad \hat{H}_{i}=\frac{\hat{P}_{i}^{2}}{2 m}+\frac{1}{2} m \omega \hat{\mathbb{V}}_{i}^{2} \text {. }
$$

Now we write $\hat{H}_{i}=\omega\left(\hat{a}_{i}^{+} \hat{a}_{i}+\frac{1}{2}\right)$ and these $a^{\prime} s$ satisfy

$$
\left[\hat{a}_{i}, \hat{a}_{j}\right]^{\prime}=\left[\hat{a}_{i}^{+}, \hat{a}_{j}^{+}\right]=0, \quad\left[\hat{a}_{i}, \hat{a}_{j}^{+}\right]=\delta_{i j} .
$$

We denote states by

$$
\left|n_{1}, n_{2}, \ldots, n_{N}\right\rangle=\left|n_{1}\right\rangle \otimes\left|n_{2}\right\rangle \otimes \ldots \otimes\left|n_{N}\right\rangle
$$

where each of the N SHOS is in a state $\left|n_{i}\right\rangle$ independently of the others (product state). The operator \hat{a}_{i}^{+}acts as follows:

$$
\hat{a}_{i}^{+}\left|n_{1}, n_{2}, \ldots, n_{i}, \ldots, n_{N}\right\rangle=\left|n_{1}, n_{2}, \ldots, n_{i}+1, \ldots, n_{N}\right\rangle .
$$

The vacuum state is that of all sHOA in Their vacuum state:

$$
a_{i}|0,0, \ldots, 0\rangle=0 \text { for all } i=1, \ldots, N \text {. }
$$

Excited states are given by

$$
\left|n_{1}, \ldots, n_{N}\right\rangle=\frac{\left(\hat{a}_{1}^{+}\right)^{n_{1}} \cdots\left(\hat{a}_{N}^{+}\right)^{n_{N}}}{\sqrt{n_{1}!\cdots \sqrt{n_{N}!}}}|0, \ldots, 0\rangle .
$$

This is called the occupation number representation

Summary

- Solutions to Klein-Gordon equation are linear superpositions of an infinite number of SHOS for each mode \vec{k}.
- We solved the SHO with raising/lowering (or creation/annihilation) operators.

Recap of Day 1

- Talked about what QFT is and why we use it.
- Fundamental degrees of freedom: fields
- We can write Lagrangians and Hamiltonians (densities) with fields
- Free massive scalar field.

$$
\mathcal{L}=\frac{1}{2} \partial_{r} \phi \partial^{r} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

$$
H=\frac{1}{2}\left(\pi^{2}+\vec{\sigma}_{\phi} \cdot \vec{\sigma}_{\phi}^{2}+x^{2} \phi^{2}\right)
$$

- SOM $=\left(\partial^{2}+m^{2}\right) \phi=0$

Klein - Gordon equation

- Solutions in Fourier space: each Fourier mode (\vec{k} component) satisfies the simple harmonic motion equation with $\omega_{\vec{k}}^{2}=\vec{k}^{2}+m^{2}$.
- Quantised SHOA using raising/lowering operators.
* Invariance of integration measure

Using k^{h} we may write the manifestly Lorentz invariant

$$
M=\frac{d^{4} k}{(2 \pi)^{4}} 2 \pi \underbrace{\delta^{(4)}\left(k^{2}-m^{2}\right)}_{\begin{array}{c}
\text { to make sure that } \\
K-G \text { eq. is satisfied }
\end{array}} \theta\left(k^{0}\right)^{\text {enforces } k^{0}>0} \text { en }
$$

Then,
which is the normalisation we used above.

$$
\begin{aligned}
& M=\frac{d^{3} k d k^{0}}{(2 \pi)^{3}} \delta^{(4)}\left(\left(k^{0}-\omega_{\vec{k}}\right)\left(k^{0}+\omega_{\vec{k}}\right)\right) \theta\left(k^{0}\right) \\
& =\frac{d^{3} k d k^{0}}{(2 \pi)^{3}} \frac{1}{2 k^{0}}\left(\delta^{(4)}\left(k^{0}-\omega \vec{k}\right) \theta\left(k^{0}\right)+\delta^{(4)}\left(k^{0}+\omega \vec{k}\right) \theta\left(k^{0}\right)\right) \\
& =\frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega \vec{k}}, \\
& \delta(f(x))=\sum_{x \mid f(x)=0} \frac{1}{\left|f^{\prime}(x)\right|} \delta(x)
\end{aligned}
$$

