
 

Quantum Field Theory Lecture 2

Let us now talk about classical fields A field
is a function that acts on spacetime it takes in

a spacetime point Xt and it outputs a value That

value may be

a number scalar field
a vector vector field
a spinor spinor field

Examples Temperature in this room scalar

Velocity of a fly flying around vector

fields obey field equations
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key point Field equations can be found from a

Lagrangian or Hamiltonian

Lagrangian
We will focus on a single scalar field of x
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We will only consider Lagrangians without explicit
time dependence Then with d thought of as a

generalised coordinate q I will depend on
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When we discussed the Lagrangian in classical
mechanics our generalised coordinates were only a

function of time In classical field theory they are

a function of spacetime and we can similarly define
a quantity that when integrated over spacetime gives

us the action
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This curly L is called the Lagrangian density
The principle of least action now gives
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This is the Euler Lagrange equation or equation of
motion for a general scalar field theory
Example Free massive scalar field
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This is the Klein Gordon equation

Hamiltonian
Introduce

T

and define the Hamiltonian density
H to L

Example For L Longorg 1m24 one can show

see problems that it of and
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anetLagrangian that possesses a

symmetry meaning it changes at most by a total
derivative under a group of transformations Then

Noether's theorem tells us that there exists a

corresponding conserved current
For a theory with a scalar field consider translations
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It is then straightforward to compute that
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is conserved i.e Ipta t titties Indeed
if Ext EM then

gy angry
totalderivative so 55 0

for arbitrary d and also
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If the Euler Lagrange equations are satisfied then
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Components of TM correspond toenergynand
momentum of the field
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Example For a free scalar field one may compute
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With É T this is exactly the Hamiltonian

density For Toi and pi see problems



Summary

Lagrangian and Hamiltonians are objects that can be

generalised from classical mechanics to classical field

theory
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We prefer the Lagrangian as it is Lorentz invariant
We analysed the real massive scalar field and

saw how energy is derived from the energy momentum tensor


