Quantum Field Theory - Lecture 2

Let us now talk about classical fields. A field is a function that acts on spacetime: it takes in a spacetime point x^h and it outputs a value. That value may be

•	α	number	(scalar	field)
•	α	vector	Cuector	field)
•	a	spinor	Cspinor	field)
•				

<u>Examples</u> Temperature in this room \rightarrow scalar Velocity of a fly flying around \rightarrow vector

Fields obey field equations, e.g.

$$\vec{r} \cdot \vec{B} = 0$$
, $\vec{v} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$, $\frac{\partial \vec{B}}{\partial t} = -\vec{r} \times \vec{E}$
Key point: Field equations can be found from a
Lagrangian or Hamiltonian.

Lagrangian
We will focus on a single scalar field
$$\phi(x)$$
,
 $\phi(x) = \phi(x^{\circ}, x^{i})$.
We will only consider Lagrangians without explicit
time dependence. Then with ϕ thought of as a
generalised coordinate g , L will depend on
 $\phi(x)$, $\partial_{\mu}\phi(x) = (\partial_{\circ}\phi(x^{\circ}, x^{j}), \partial_{i}\phi(x^{\circ}, x^{j}))$

When we discussed the Lagrangian in classical mechanics our generalised coordinates were only a function of time. In classical field theory they are a function of spacetime, and we can similarly define a quantity that, when integrated over spacetime, gives us the action:

$$S(\phi) = \int d^4x \mathcal{L}(\phi, \partial_{\mu}\phi).$$

This curly I is called the Lagrangian density. The principle of least action now gives

$$SS = 0 \implies \Im_{\mu}\left(\frac{\Im_{\mu}}{\Im_{\mu}}\right) - \frac{\Im_{\mu}}{\Im_{\mu}} = 0.$$

This is the Euler-Lagrange equation or equation of motion for a general scalar field theory. <u>Example</u>: Free massive scalar field

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^{2} \phi^{2}$$

$$= \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^{2} \phi^{2}$$

$$= \frac{1}{2} \partial_{0} \phi \partial_{0} \phi - \frac{1}{2} \sum_{i=1}^{3} \partial_{i} \phi \partial_{i} \phi - \frac{1}{2} m^{2} \phi^{2}$$

$$= \frac{1}{2} \dot{\phi}^{2} - \frac{1}{2} \nabla \phi \cdot \nabla \phi - \frac{1}{2} m^{2} \phi^{2}$$

Euclidean dot product in space

We have

$$\begin{aligned}
\frac{\partial \mathcal{I}}{\partial \varphi} &= -m^{2}\varphi \\
\frac{\partial \mathcal{I}}{\partial \varphi} &= -m^{2}\varphi \\
\frac{\partial \mathcal{I}}{\partial (\partial_{r}\varphi)} &= \frac{\partial}{\partial (\partial_{r}\varphi)} \left(\frac{1}{2}\eta^{\nu\varrho} \partial_{\nu}\varphi \partial_{\varrho}\varphi\right) \\
&= \frac{1}{2}\eta^{\nu\varrho} \left(\delta_{\nu}r \partial_{\varrho}\varphi + \partial_{\nu}\varphi \delta_{\varrho}r\right) \\
&= \frac{1}{2} \left(\eta^{\mu\varrho} \partial_{\varrho}\varphi + \eta^{\nu} \partial_{\nu}\varphi\right)
\end{aligned}$$

$$= \Im^{r} \varphi$$

and so
$$\Im_{r} \frac{\Im \mathcal{L}}{\Im(\Im_{r} \varphi)} - \frac{\Im \mathcal{L}}{\Im \varphi} = 0 \implies \Im_{r} (\Im^{r} \varphi) + m^{2} \varphi = 0$$

This is the Klein-Gordon equation.

,

Introduce

$$\pi = \frac{\partial \chi}{\partial \phi}$$

and define the Hamiltonian density

$$H = \pi \dot{\phi} - \mathcal{L}$$
Example: For $\mathcal{L} = \frac{1}{2}\partial_{\mu}\phi \partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2}$ one can show
(see problems) that $\pi = \dot{\phi}$ and

$$H = \frac{1}{2}(\pi^{2} + \nabla \phi \cdot \nabla \phi + m^{2}\phi^{2})$$

Every-momentum tensor
Suppose we have a Lagrangian that possesses a
symmetry, meaning it changes at most by a total
derivative under a group of transformations. Then,
Noether's theorem tells us that there exists a
corresponding conserved current.
For a theory with a scalar field, consider translations

$$\pi^{h} \longrightarrow \pi^{h} + \epsilon^{h} \epsilon^{h} consider derivations$$

Then, $\phi(x) \rightarrow \phi(x+\epsilon) = \phi(x) + \epsilon^{h} \partial_{\mu} \phi(x) + \cdots$.

It is then straightforward to compute that

$$T^{\mu} = \frac{\partial \chi}{\partial(\partial_{r} + i)} \partial^{\nu} d - \eta^{r\nu} d.$$
is conserved, i.e. $\partial_{p} T^{\mu\nu} = 0$, $\nu = 0, 1, 2, 3$. Indeed,
if $\nabla x^{r} = \varepsilon^{r}$, then
 $\nabla x^{r} = \varepsilon^{r} \partial_{r} d$
for arbitrary ϕ , and also
 $\nabla d = \frac{\partial \chi}{\partial \phi} \nabla \phi + \frac{\partial \chi}{\partial(\partial_{r} + i)} = 0$
If the Euler-Lagrange equations are satisfied, then
 $\varepsilon^{\mu}\partial_{\mu} d = \partial_{r} \left(\frac{\partial \chi}{\partial(\partial_{r} + i)} \frac{\varepsilon^{\nu} \partial_{\nu} \phi}{\partial \phi}\right) \Rightarrow \partial_{\mu} \left(\frac{\partial \chi}{\partial(\partial_{r} + i)} \nabla^{\nu} \phi - \eta^{\mu} d\right) = 0$
Components of $T^{\mu\nu}$ correspond to energy and
momentum of the field:
 $E = \int d^{3}x T^{0^{\circ}},$
 $p^{i} = \int d^{3}x T^{0^{\circ}},$
 $p^{i} = \int d^{3}x T^{0^{\circ}},$
 $E^{i} \cos a$ free scalar field one may compute
 $T^{0^{\circ}} = \frac{\partial \chi}{\partial(\partial_{r} \phi)} \partial^{0} \phi - \eta^{0^{\circ}} (\frac{1}{2} \partial_{\mu} + \partial^{\mu} \phi - \frac{1}{2} u^{2} \phi^{2})$
 $= (\partial^{\circ} \phi)^{2} - \frac{1}{2} (\partial_{0} \phi)^{2} + \frac{1}{2} \nabla \phi \cdot \nabla \phi + \frac{1}{2} u^{2} \phi^{2}).$
With $\dot{\phi} = \pi$ this is exactly the Hamiltonian

density. For Toi and pi see problems.

Summary

Lagrangians and Hamiltonians are objects that can be generalised from classical mechanics to classical field theory. H, L \rightarrow H, L $f^{3}x L = L$ We prefer the Lagrangian as it is Lorentz invariant. We analysed the real massive scalar field and sow how energy is derived from the energy-momentum tensor.