
Quantum Field Theory - Tuesday Problems

Christopher McCabe (King’s College London)

1 Classical Physics

1.1 Consider a transformed Lagrangian L′, which is related to another Lagrangian L as follows:

L′(q̇, q, t) = L(q̇, q, t) +
dF (q, t)

dt
. (1)

Here, F is an arbitrary function of q and t but is not a function of q̇.
Show that the Euler-Lagrange equations are invariant under this transformation.
What does this imply about the uniqueness of the Lagrangian for a given physical system (e.g. the
Lagrangian for the Simple Harmonic Oscillator)?

1.2 Show that if the Hamiltonian does not depend on time explicitly (i.e. ∂H/∂t = 0), then H is a constant
of motion.
In many cases when H is a constant of the motion, it is identified with a well known quantity. Which
quantity?

1.3 Verify that

φ(x) =

∫

d3k

(2π)3
√

2E(k)

{

eik·xa(k) + e−ik·xb(k)
}

is a solution of the Klein-Gordon equation if E(k)2 = k2 +m2.
Show that a real scalar field φ∗(x) = φ(x) requires the condition b(k) = a∗(k).

1.4 The Lagrangian density for classical ‘φ4-theory’ is

L =
1

2
∂µφ∂

µφ−
1

2
m2φ2

−
λ

4!
φ4 .

Use the Euler-Lagrange equations to find the field equation that φ satisfies.

1.5 Derive the components P0, P of the energy-momentum four-vector Pµ for classical φ4-theory.

1.6 Calculate the Hamiltonian density H for φ4-theory. Is this Hamiltonian density Lorentz invariant?
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1 Free quantum fields: working with commutators

1.1 Consider the Heisenberg equation of motion for the momentum operator p̂ of the harmonic oscillator
with Hamiltonian

Ĥ =
1

2

(

p̂2

m
+mω2x̂2

)

,

and show that it is equivalent to Newton’s law for the position operator x̂.

1.2 Starting from the expression

φ̂(x) =

∫

d3k

(2π)3
√

2E(k)

(

eik·xâ†(k) + e−ik·xâ(k)
)

,

find the corresponding expression for the canonical momentum operator π̂(x) = ∂0φ̂(x).

1.3 Show that the equal time commutation relations
[

φ̂(x, t), π̂(x′, t)
]

= iδ3(x− x′) ,
[

φ̂(x, t), φ̂(x′, t)
]

= [π̂(x, t), π̂(x′, t)] = 0 ,

imply that
[â(k), â(p)] = 0 .

(A similar method would also show that
[

â†(k), â†(p)
]

= 0.)

1.4 In this problem, we want to show that the scalar field operator φ̂(x, t) satisfies the Klein-Gordon
equation:

∂µ∂
µφ̂(x, t) +m2φ̂(x, t) = 0 .

We know already that
π̂(x, t) = ∂tφ̂(x, t) .

We now need to find an equation for ∂tπ̂(x, t). This can be done with the Heisenberg equation of
motion, which for a general field operator Ô is

∂

∂t
Ô = i[Ĥ, Ô] ,

where

Ĥ =
1

2

∫

d3x
{

π̂2 + (∇φ̂)2 +m2φ̂2

}

.

Assuming the equal time commutation relations
[

φ̂(x, t), π̂(x′, t)
]

= iδ3(x− x′) ,
[

φ̂(x, t), φ̂(x′, t)
]

= [π̂(x, t), π̂(x′, t)] = 0 ,

evaluate [Ĥ, π̂(x, t)] to show that

∂tπ̂(x, t) = ∇
2φ̂(x, t)−m2φ̂(x, t) .

[Hint: You will need to integrate terms involving (∇φ̂)2 by parts and assume that the fields vanish at
the boundary of space (spatial infinity).]
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1.1 What is the normal ordered product : â†(p)â(q)â(r)â†(s) : ?

1.2 After normal ordering, the conserved three-momentum P i =
∫
d3xT 0i takes the form

: P̂ i :=

∫
d3p

(2π)3
piâ†(p)â(p) .

Prove the commutator relation [

: P̂ i :, â†(k)
]

= kiâ†(k) .

1.3 Write down the general result for
[

: P̂µ :, â†(k)
]

in terms of kµ and â†(k). Hence show that

: P̂µ : â†(k2)â
†(k1)|0〉 = (kµ

1
+ k

µ
2
) â†(k2)â

†(k1)|0〉. (1)

Interpret the physics of this result.

1.4 The number operator is

N̂ =

∫
d3p

(2π)3
â†(p)â(p)

Prove by induction that

∫
d3p

(2π)3
â†(p)â(p) |k, . . . ,k〉

︸ ︷︷ ︸

n momenta

= n |k, . . . ,k〉
︸ ︷︷ ︸

n momenta

.

[Hint: induction proceeds in two steps. i) show that the statement is true for some starting value of
n; ii) show that if the statement holds for some general n, then it also holds for n+ 1.]

1.5 Show that N̂ is a constant of motion when

Ĥ =

∫
d3p

(2π)3
Epâ

†(p)â(p) .

1.6 We normalise our momentum eigenstates such that 〈p|k〉 = 2Ep(2π)
3δ3(p− k). Show that the combi-

nation Ep δ
3(p− k) is Lorentz invariant.
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1.1 Consider a theory with the Hamiltonian H = H0+Hint. Using the definition U(t) = eiH0t e−iHt, derive
the evolution equation for U(t):

i
d

dt
U(t) = Hint(t)U(t),

where
Hint(t) = eiH0t Hint e

−iH0t.

1.2 Use Wick’s theorem to find an expression for T [φ(x1)φ(x2)φ(x3)] in terms of N [φ(x1)φ(x2)φ(x3)] and
the Feynman propagators DF (xi − xj).

1.3 Given that φin is a free field, obeying the Heisenberg equation of motion

φ̇in = i [H0(φin, πin), φin] ,

show that φout is also a free field, which obeys

φ̇out = i [H0(φout, πout), φout] .

[Hint: use φout = S†φinS and πout = S†πinS. Keep in mind that the S-matrix has no explicit time
dependence.]

1.4 (Harder) Find the expressions corresponding to the following momentum space Feynman diagrams for
the scattering amplitude (i.e. the truncated Green’s function)

Integrate out all the δ-functions but do not perform the remaining integrals. Argue from the behaviour
of the integrands as the loop momenta diverge that both of these Feynman diagrams give infinite
results. Which one is more divergent?


