YETI SL practical

Durham

Mark Smith, Lucia Grillo

August 2023

Introduction

You have been presented with some "data" and simulation to study the $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$ SL decay:

- The "data" is a mixture of the signal decay and various backgrounds
- The signal in the data may include some NP can we measure it? You have a choice:
 - 1. Find the q^2 distribution of the signal and compare with SM theory prediction
 - 2. Measure an angular observable the lepton forward-backward asymmetry, A_{FB} compare with SM theory prediction

Steps to follow

- 1. Look at the necessary kinematic variables in your data and MC $m_{\rm corr}$, q^2 , $\cos \theta_{\ell}$, (Manipulating_tuples.ipynb)
 - You will need to calculate the corrected mass.
 - What is the resolution? Does the resolution depend on some characteristics of the *B* kinematics?
 - Plot signal and some backgrounds how good is the separation in corrected mass?
- 2. Bin in your chosen variable of interest and fit m_{corr} to extract a signal yield in each bin, (CorrectedMassFit.ipynb, config.yaml, YAML_writer.ipynb)
 - If you choose to study the q^2 distribution you will need a few bins
 - If you measure A_{FB} you need two bins of $\cos heta_\ell$
- 3. Unfold yields in each bin from reconstructed variable to true variable, (Unfolding.ipynb)
 - Extract the true q^2 distribution or A_{FB}
 - Compare with SM prediction is your data SM?

Template fit

Binned likelihood: *b* bins, *c* components of the model:

$$\mathcal{L} = \prod_{i}^{b} \mathcal{P}(N_{\mathrm{exp}}^{i} | N_{\mathrm{obs}}^{i})$$
 $N_{\mathrm{exp}}^{i} = \sum_{j}^{c} \mu_{j} N_{j,i}$

 $N_{j,i}$ is expected no. of events of component j in bin i, μ_j is a scaling factor - **fit variables**. \mathcal{P} is a Poisson.

The $N_{i,j}$ are taken from MC or data control samples - they have statistical uncertainty. Include in the fit likelihood (BB-lite [CPC 77, 2 (1993)]). Allow the total expected number $N_{\rm exp}^i$ to vary with a Gaussian (\mathcal{G}) of width $\sqrt{N_{\rm exp}^i}$

$$\mathcal{L} = \prod_{i}^{b} = \mathcal{P}(N_{ ext{fit}}^{i}|N_{ ext{obs}}^{i}) \cdot \mathcal{G}(N_{ ext{fit}}^{i}|N_{ ext{exp}}^{i})$$

So you have a scaling factor for each component and a nuisance parameter in each bin for the statistical uncertainty of the templates.

A_{FB}

The differential decay rate of $B^0 \to D^{*-} \mu^+ \nu_{\mu}$ is completely described by 4 kinematic variables: q^2 , $\cos \theta_{\ell}$, $\cos \theta_D$, χ . The rate is

$$rac{d\Gamma}{dq^2 d\cos heta_\ell, d\cos heta_D d\chi} \sim \sum_{12} J_i(q^2) f_i(\cos heta_\ell, \cos heta_D, \chi),$$

where the 12 angular coefficients, J_i are q^2 dependent. Simplify - average B^0 and \overline{B}^0 , integrate over χ , $\cos \theta_D$, q^2 and normalise to the total rate $\hat{\Gamma}$:

$$\frac{1}{\hat{\Gamma}}\frac{d\hat{\Gamma}}{d\cos\theta_{\ell}} = \frac{1}{2} + \langle A_{FB}\rangle\cos\theta_{\ell} + \frac{1}{8}(1 - 3\langle F_{L}\rangle)(3\cos^{2}\theta_{\ell} - 1)$$

 $\langle F_L \rangle$ and $\langle A_{FB} \rangle$ are q^2 integrated observables. Now integrate twice more:

$$\int_{-1}^{0} \frac{1}{\hat{\Gamma}} \frac{d\hat{\Gamma}}{d\cos\theta_{\ell}} d\cos\theta_{\ell} = \frac{1}{2}(1 - A_{FB}) \qquad \int_{0}^{1} \frac{1}{\hat{\Gamma}} \frac{d\hat{\Gamma}}{d\cos\theta_{\ell}} d\cos\theta_{\ell} = \frac{1}{2}(1 + A_{FB})$$

So take two bins of $\cos \theta_{\ell}$, [-1,0] and [0,1] (it is a forward-backward asymmetry), find difference in yields and measure A_{FB}

Backgrounds

- Combinatorial random combinations of tracks. Data control sample
- Mis-identified particles Usually use data control samples could use MC
- Feed-down
 - Higher excited charm states that decay to D^{*−}π, i.e. D₁(2420)[−] → D^{*−}π⁰. Not well measured. Use MC.
- Double charm
 - Decays to $D^{*-}H_c$, where H_c is some charm hadron that decays $H_c \to \mu^+ \nu_\mu X$. Use MC.
- SL decays to τ^+ , with $\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau$. Use MC.
- Fake D^{*-}
 - Usually a combination of real D^0 with a random π^- . Remove with cut on $\Delta m = m(D^{*-}) m(D^0)$

Yes!

- Integrating over angles to reduce the number of observables to measure only works if the experimental efficiency is flat in the variables you integrate over
 - If not flat then angular functions $f_i(\cos \theta_\ell, \cos \theta_D \chi)$ do not integrate to 0. Neglecting them can lead to biases
 - Similarly integrating q^2 is only viable if your q^2 efficiency is flat otherwise you may end up with a bias
- How many bins?
 - Ideally have more bins of q^2 more sensitive to the shape variations, i.e A_{FB} at low q^2 .
 - Narrower bins make the unfolding less reliable more bin migration across multiple bins.
 - Narrower bins can make the $m_{\rm corr}$ fit unstable with fewer events in each
 - It is a trade-off could be optimised
- Could NP (also FFs) affect your discriminating fit variables?
 - $m_{\rm corr}$ is in general agnostic to the physics model width dominated by experimental resolution
 - $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ analyses fit more kinematic variables assuming SM for the templates could lead to a bias. Need to introduce FF variations.

What you will not do

- Data/MC corrections
 - pythia, trigger, tracking efficiency, PID calibration etc
- Validate background models
 - Fit many control regions
- Mis-ID unfolding
- Isolation