

IPPP Seminar

MUonE

$\mu\text{-}e$ scattering at 10ppm

Yannick Ulrich

IPPP, University of Durham

10 March 2023

most precise measurement of g-2

 \Rightarrow needs precise theory

	value	diagrams	
QED 1-loop	$\alpha/2\pi=116140973$		+ 3 others
QED 2-loop	-177231		+ 1 conspiracy theory
QED 3-loop more QED	$\frac{1480}{-5}$	\$ \$	+ 70 others
EW	153	Ζ/Ĥ/	
HVP	6845(40)		+ others
HLbL	92(17)		
total FNAL+BNL	$\frac{116591810(43)}{116592062(40)}$		

largest source of uncertainty & non-perturbative

- historically: using dispersive data (see next slide)
- \Rightarrow 4.2 σ BSM potential
 - lattice only recently good enough
 - BMW20 doesn't require BSM in g-2
- \Rightarrow this problem is bigger than g-2!
 - more input is required

using optical theorem s > 0

Durham

Ip3)~~

- measure $ee \rightarrow hadrons$
- remove radiative corrections
- extrapolate to $s \to \infty$ using pQCD
- integrate over *s*

$$a_{\mu} \supset \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \left(K(s) \right)$$

- most of the uncertainty comes from $s \lesssim 1 \, {\rm GeV}$

measure low Q^2 regions

Durham

- instead measure in *t*-channel, i.e. space-like
- no resonances \rightarrow much cleaner signal
- HVP is loop-induced \rightarrow much smaller signal $(10^{-3} \times LO)$
- competitive extraction @ 10^{-2}
- \Rightarrow goal for MUonE: measure $e\mu \rightarrow e\mu$ @ 10^{-5}

$$a_{\mu} \supset \int_{0}^{1} \mathrm{d}x \left(K' \left(t = \frac{m_{\mu}^{2} x^{2}}{x-1} \right) \underbrace{\searrow} \right)$$

– QED

5+ years, 4+ workshops, 34+ authors

- ~ IP3~ University
 - scattering μ of low-Z material (₄Be)
 - pure t-channel $-s \simeq Q^2 \simeq 0$
 - \Rightarrow high $s \leftrightarrow$ measure more of the curve
 - beam energy needs to be quite high $E_{\mu} \simeq 160 \, {
 m GeV}$
 - \Rightarrow M2 muon beam at CERN North Area
 - main measurement: $heta_e$, $heta_\mu$
 - + E_{beam} for calibration
 - $+~~E_{\mu}$ for particle ID

cancel systematic effects $\left(d\sigma/d\theta\right)_{sig} / \left(d\sigma/d\theta\right)_{norm}$

	problem	solution	what?	doable up to?
1	lots of masses	massification	expand in m_e^2/Q^2	LP, two-loop
2 3	numerical issues in real corrections	NTS stabilisation jettification	expand in $E_\gamma/\sqrt{Q^2}$ expand in $\cos heta ightarrow 1$	NLP, two-loop LP, one-loop
	phase space	FKSℓ	YFS-inspired subtraction scheme	all-orders

- NNLO double-boxes: (1)
- NNLO real-virtual: (2)
- N³LO real-virtual-virtual: (1), (2), (3)

implemented in MCMULE v0.4.2

side note: new manual, let us know what you think!
https://mule-tools.gitlab.io/manual/

• $\mu^-e^- \rightarrow \mu^-e^-$

- S1: $E_e > 1 \text{ GeV}, \ \theta_{\mu} > 0.3 \text{ mrad}$
- run for 2.5 CPU yr (290 kWh energy / 3.5 kgCO2e)

all results and data: https://mule-tools.gitlab.io/user-library//mu-e-scattering/muone-full-legacy/

this clearly isn't working

Durham

Ip3)~~

- at this rate ($\sim 10\%$ NLO, $\sim 0.1\%$ NNLO), we would need N^4LO to reach 10^{-5}
- most of this is due to hard radition
- S2: same as S1 + needs to be in the band

playing with the beam

the beam can do both μ^+ and μ^-

 \Rightarrow some of the difficult stuff cancels

Durham

IP3~~

(**IP**³)~

- $\checkmark\,$ first NNLO with multiple external masses
- \checkmark event generation (not in MCMULE)
- $\checkmark\,$ iterative HVP extraction procedure
- \checkmark precision now: $\mathcal{O}(10^{\{-3,-4\}})$, goal: $\mathcal{O}(10^{-5})$
- lots of optimisation still possible (observable, beam, polarsisation etc)
- resummation (analytic & parton shower)
- partial N³LO $(Q_e^8 Q_\mu^2)$

MCMULE mule-tools.gitlab.io

f.l.t.r.: F.Hagelstein (Mainz), A.Coutinho (IFIC), N.Schalch (Bern), L.Naterop (Zurich & PSI), S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), M.Rocco (PSI), T.Engel (Freiburg), V.Sharkovska (Zurich & PSI), Y.Ulrich (Durham), A.Gurgone (Pavia) not pictured: P.Banerjee (IIT Guwahati), D.Moreno (PSI), D.Radic (Tubingen)