

Tau Reconstruction

Stefan Söldner-Rembold/Mark Owen The University of Manchester

YETI'08, Durham January 2008

Thanks to Cristobal Cuenca Almenar (CDF)

Outline

- Detectors
- Motivation
- Tau Properties + Reconstruction
- Background Reduction
 - Cuts CDF
 - Neural Network DØ
- Tau Energy Scale
- Physics with Taus
- Conclusion

Tau reconstruction challenging, requires

- tracking
- calorimetry
- electron identification
- muon identification

Why Detect Taus?

- Can potentially increase acceptance for all channels with leptons (e.g. SUSY trileptons).
 - Assuming same efficiency (certainly wrong!) for any lepton ID:
 - Single lepton channel: 1.5 x acceptance
 - Di-lepton channel: 2 x acceptance
 - Tri-lepton channel: 3 x acceptance
- MSSM with large tanβ favour Higgs decays to taus.
 - BR Higgs to ττ about 10% in MSSM.
- bb final states suffer from large backgrounds
- Associated SM Higgs producion (WH,ZH) with W,Z to taus
- 3rd generation Leptoquarks and other new phenomena that couple to taus
- Will be very important at the LHC.

Tau Properties

- Mass = 1.78 GeV
- $c\tau = 87 \mu m$ (could look for displaced tracks).
- Kinematic distributions depend on the τ polarization, need special MC: TAUOLA.

Main decay channels:

Final State	BR (%)	Decay Type	
e + υ _e + υ _τ	17.8	Leptonic	$\tau_{\rm e}$
$\mu + \nu_{\mu} + \nu_{\tau}$	17.4	35.2	$ au_{\mu}$
$\pi(/K) + \upsilon_{\tau}$	11.8	1-Prong	
$\pi(/K) + \upsilon_{\tau} + \ge 1\pi^{\circ}$	36.9	48.7	(τ_h)
$\pi\pi\pi + \geq 0\pi^{\circ} + v_{\tau}$	13.9	3-Prong	

Detect with standard electron or muon ID

Need dedicate tau ID

Di-tau Final States

Drell-Yan background

large QCD background

di-tau final states currently studied at Tevatro

Tau Reconstruction at CDF

- Start with a calorimeter tower, $E_T > 6$ GeV.
- Add up to six contiguous towers with $E_T > 1$ GeV.
- Associate tracks with the calorimeter cluster, must have at least one track with $p_{\scriptscriptstyle T} > 6$ GeV (seed track).
- Tau cone defined by seed track, half angle, $\theta_{sig} = 50 175$ mrad, depends on cluster energy.
- Isolation annulus, $30^{\circ} < \theta < \theta_{\text{sig.}}$
- 1 or 3 tracks, charge = 1, in θ_{sig}
- Reconstruct π^0 's.
- Require M(tracks, π^0 's) < 1.8 GeV

π^0 Reconstruction at CDF

- The central electromagnetic shower maximum detector (CES) allows the identification of π^0 s.
- This is a proportional strip / wire drift chamber 6 rad. lengths inside the EM calorimeter.

Tau Reconstruction at DØ

- Start with calorimeter cluster, simple cone algorithm, cone size R = 0.3.
- Isolation cone, R = 0.5, require energy weighted sum of clusters (rms) to be < 0.25

$$rms = \sqrt{\sum_{i=1}^{n} \frac{(\Delta \phi_i)^2 E_{T_i}}{E_T} + \frac{(\Delta \eta_i)^2 E_{T_i}}{E_T}} \qquad \eta = -\ln \tan(\theta/2)$$

- Associate electromagnetic (EM) subclusters:
 - Nearest neighbour algorithm in 3rd EM layer, cluster energy > 800 MeV. EM cells in other layers and preshower hits are attached to the found EM3 cluster.
- Associate up to three tracks with $p_T > 1.5$ GeV to the tau candidate.

Tau Reconstruction at DØ

Split tau candidates into three types, based on

detector signature:

1) One track + calorimeter cluster, no EM subclusters.

- 2) One track + calorimeter cluster and at least one EM subcluster.
- 3) At least two tracks + calorimeter cluster and ≥ 0 EM subclusters

main backgrounds: jets and electrons

Jet-т Separation at CDF

• Use cone sizes that vary with energy, one for tracks, $p_T > 1$ GeV one for π^0 , $p_T > 1$ GeV :

e – т Separation at CDF

- Need to also remove electrons that are identified as hadronic taus.
- Use the cut:
 - $\xi \equiv E_H / \Sigma p_{trk} > 0.2$
 - Where E_H is the energy deposited in the hadronic part of the calorimeter.

Tau Efficiency & Fake Rate at CDF

Tau efficiency after tight selection :

Jet fake rate, using jet triggers :

- Algorithm only efficient at high p_T. Low p_T taus require dedicated algorithm (also true at DØ, important for SUSY trileptons)
- Efficiency, ϵ_h is for τ_h , so total efficiency, $\epsilon = 0.65 \times \epsilon_h$

Jet-т Separation at DØ

- Use a Neural Network (NN) that uses both calorimeter and tracking variables.
- Example variables:
 - Calorimeter isolation = $(E_T^{R=0.5} E_T^{R=0.3}) / E_T^{R=0.3}$
 - Profile = $(E_T^{Tower 1} + E_T^{Tower 2}) / E_T$
 - Track isolation = $\Sigma p_T^{\text{Trks in Cone R} = 0.5} / \Sigma p_T^{\text{Tau Trks}}$
 - EM Isolation Fraction = $(E^{EM1} + E^{EM2}) / E$
- One Neural Network per tau type, trained with:
 - Signal: τ MC
 - Background: Jets from data

Jet-⊤ Separation at DØ

 Example NN input variables for tau type 1, signal (MC τ) and background (jets from data).

Jet-т Separation at DØ

• Efficiencies (%) for taus with $E_T > 15$ GeV, $|\eta| < 2.5$:

Tau Type	1	2	3		
Reconstruction					
Jets	1.5	10	38		
Taus	9.1	50	20		
NN > 0.9					
Jets Taus	0.04	0.2	0.8		
Taus	5.8	37	13		

e-т Separation at DØ

- Electrons look similar to tau-type 2 candidates (tracks + EM cluster).
- The Neural Network trained against jets (NN_{iet}) is of no use against electrons.
- Train a separate Neural Network (NN_e) to separate electrons from taus.
- Efficiency for type-2 taus in the range 20 < E_T < 40 GeV, decaying to hadrons, compared to electrons:

	Efficiency (%)		
	$NN_{jet} > 0.9$	$NN_e > 0.5$	
e	98	3.4	
τ	34	30	

Background Estimation

- Best estimate of jet background from Same Sign (SS) vs Opposite Sign (OS) method:
- charge correlation between muon (from tau) and hadronic tau:

Tau Energy Scale

- -tau four-vector calculated from tracks and $\pi^0 \rightarrow \gamma \gamma$
- -verified with W $\rightarrow \tau v$ (+ 0 jets)
- -MC/data agreement at 1% level

Tau Energy Scale

Two methods to reconstruct tau momentum:

(1) Track for type 1 Calorimeter for types 2/3

(2)
$$E_{corr} = E_{trk} + E_{cal} - \langle R \rangle E_{trk}$$

R is single pion response

Trigger

It is difficult to trigger on hadronic taus due to the large QCD background

CDF (di-taus):

muon or electron (8 GeV) + isolated track (5 GEV)

DØ: (di-taus):

high transverse momentum electron or muon triggers

Dedicated tau triggers exist, but not used in analysis yet

Physics Results with Taus

Z -> TT Cross-Section

- This is a benchmark measurement tests how the tau algorithms perform on data.
- CDF, measured in $\tau_e \tau_h$ channel:

- $\sigma xBr = 265 \pm 20 \text{ (stat)} \pm 21 \text{ (sys)} \pm 15 \text{ (lumi)} pb$
- DØ, measured in $\tau_{\mu}\tau_{e,h}$ channel:
 - $\sigma xBr = 247 \pm 8 \text{ (stat)} \pm 13 \text{ (sys)} \pm 15 \text{ (lumi)} pb$

Good agreement with NNLO calculation

MSSM Higgs -> TT Searches

$$M_{vis} = \sqrt{(P_{\tau 1} + P_{\tau 2} + P_T^{miss})^2}$$

MSSM Higgs (bττ)

	Type 1	Type 2	Type 3
Signal Accept. (%)	0.15 ± 0.03	0.87 ± 0.11	0.30 ± 0.04
Expected Signal	0.6 ± 0.1	3.5 ± 0.5	1.2 ± 0.2
QCD	0.62 ± 0.22	0.51 ± 0.14	1.45 ± 0.18
Z+jet	0.34 ± 0.09	1.6 ± 0.3	0.35 ± 0.10
$t ar{t} \; (\mathrm{di}$ - $l)$	0.18 ± 0.03	0.50 ± 0.11	0.007 ± 0.0013
$t\bar{t}$ $(l+\mathrm{jet})$	0	0.008 ± 0.008	0.15 ± 0.04
W+jj	0.005 ± 0.005	0.05 ± 0.02	0.40 ± 0.14
W+cc	0.003 ± 0.002	0	0.003 ± 0.003
W+bb	0	0	0.016 ± 0.010
WW	0	0.010 ± 0.002	0.0013 ± 0.0004
Total Background	1.2 ± 0.2	2.6 ± 0.3	2.5 ± 0.2
Observed	0	1	2

largely orthogonal to inclusive $h \rightarrow \tau\tau$

3rd Generation Leptoquarks

$$LQ_3LQ_3 \to \tau b\tau b$$

similar search at CDF

Conclusions

- DØ and CDF both have effective high p_T hadronic tau ID.
- Hadronic tau efficiencies of about 40% can be achieved at high p_T with jet rejections of 1% or better.
- Methods have been validated with Z->TT cross section.
- Taus are playing an important role in the search for new physics at the Tevatron; many channel still need to be studied.

Backup

Full list of Variables for DØ Neural Networks

- Caliso = $(E_T^{R=0.5} E_T^{R=0.3}) / E_T^{R=0.3}$
- Trkiso = $\sum p_T^{\text{trks in R=0.5}} / \sum p_T^{\text{tau trks}}$
- Profile = $(E_T^{Tower 1} + E_T^{Tower 2}) / E_T$
- EM Isolation Fraction = $(E^{EM1} + E^{EM2}) / E$
- Tau RMS
- EM fraction
- Hadronic fraction
- \bullet EM profile = $E_T^{EM \text{ subclusters}} / E_T^{EM3}$
- Angle between sum of tau tracks and sum of EM-subcluster(s)
- Calorimeter-Track Correlation = $E_T / (E_T + \Sigma p_T^{tau trks})$