

The Trigger YETI 7th January 2008

Emily Nurse

Outline:

- Why do we need a Trigger?
- The trigger system at CDF
- Rate control at CDF
- Triggering on rare events
- Backup Triggers
- The LHC

Triggers

- The trigger is a vital part of collider experiments if you screw up the trigger the data is lost forever!
- Particularly challenging at hadron colliders:
 - I will use CDF as an example to discuss some of these challenges.

Why do we need a trigger at CDF?

- The Tevatron ring contains 36 bunches of protons and 36 bunches of antiprotons with 396 ns between bunch collisions.
- There is no way we can store the information from the detector for each collision and nor do we want to:
 - σ(ppbar) ~60 mb
 - σ(ppbar→W[±]) ~25 nb (1 in 2,400,000)
 - σ(ppbar→ttbar) ~7 pb (1 in 8,600,000,000)
 - σ(ppbar→W[±],H) ≤ 0.2 pb (1 in 300,000,000)
- The trigger decides in real-time whether a particular event is interesting enough to store for data analysis.

Cross section (σ) = measure of likelihood of a particular type of event occuring when particles collide (measured in barns = 10⁻²⁴ cm²)

CDF's 3 level trigger

CDF's 3 level trigger

- Level-1:
 - Calorimeter objects:
 - Jet object
 - EM object
 - $E_T^{miss}, \Sigma E_T$
 - COT tracks ($p_T > 1.5 \text{ GeV}$)
 - Muon tracks
- Level-2:
 - All L1 information with better granuality
 - Calorimeter *clustering* for jets, taus, electrons and photons.
 - ShowerMax measures EM cluster position
 - Silicon tracks with displaced vertex information for B decays.
- Level-3:
 - Fully reconstructed events using full granuality of detector (electrons, taus, muons, photons, E_T^{miss}, jets, B decays etc)

Trigger Table (a.k.a. Menu)

- The CDF physics program is rich and divergent •
- Many different triggers are required to select events with different • signatures:
 - Higgs searches e, μ, τ, E_T^{miss} , jets
 - BSM searches $e,\mu,\tau, E_T^{miss}, jets, \gamma$
 - EWK measurements e,μ,τ , E_{T}^{miss}

 - B physics
 - QCD
 - etc...

- Top physics e,μ,τ, E_T^{miss} , jets
 - e,μ , low p_{T} tracks with displaced vertex

jets

High p_T single e, μ

Low $p_{\tau} e, \mu, \tau$ pairs

Photons

 $\boldsymbol{E}_{\boldsymbol{\mathsf{T}}}^{\text{miss}}$

Jets

Di-tracks (with displaced vertex)

Luminosity

- Luminosity: measure of the probability of a proton-antiproton collision (the more particles per unit volume the higher the luminosity.)
 - Instantaneous luminosity: *L* [cm⁻²s⁻¹]
- A Tevatron store (period of continuous collisions) runs for ~24 hours *L* starts high and decreases with time.

Trigger rates

- For a given process (e.g. ppbar \rightarrow W \rightarrow µv) the rate[Hz] = σ . \mathcal{L}
 - Which can mean a factor ~5 variation in rate throughout a store!
- The σ of some *triggers* also depends on $\mathcal L$:
 - Some increase with $\ensuremath{\mathcal{L}}$ as there are more ppbar collisions per bunch crossing:
 - > More random hits in tracker \rightarrow more fake tracks.
 - > More energy in calorimeter \rightarrow more fake jets.
 - Some decrease (triggers with isolation cuts become less efficient).
 - Some are ~ constant.

Prescales

- The rates of some triggers are too high to sustain at high \mathcal{L} .
- Options:
 - Prescale the trigger by a constant factor (wasteful at low ⊥ where we can handle the rate!)

When a trigger is prescaled a fraction of the events satisfying the trigger criteria are randomly rejected.
A prescale of 10 means only 1 in 10 events will be accepted!

2) Apply a \mathcal{L} dependent prescale.

Types of \mathcal{L} dependent prescale:

- 1) Multiple tables: Make a low- \mathcal{L} and a high- \mathcal{L} table with different prescales (change in the middle of a store).
- 2) Luminosity enable: Some triggers are initially switched off then automatically switched on once a certain (low) luminosity is reached.
- **3) Dynamic prescale:** Feedback system that adjusts the prescale of triggers throughout a store according to the total trigger rate.

Dynamic Prescale

- Beginning of store:
 - High luminosity \rightarrow high rate.
 - High rate triggers prescaled by their MAXIMUM value.
- As the store progresses feedback system adjusts prescales:

• End of Store:

- Low luminosity \rightarrow low rate.

Time

- High rate triggers prescaled by their MINIMUM value (preferably =1!).
- Many triggers have dynamic prescales, algorithm decides which prescale to change first:
 - Order by **MAXIMUM** prescale then un-prescaled rate.

Trigger rate control at CDF

Trigger rates versus luminosity

The trigger

Triggering on rare events : Higgs searches at CDF

CDF and D0 are in with a *fighting* chance of discovering the SM Higgs.

- As well as more luminosity we need more improvements to existing analyses.
- The trigger plays a vital role in the acceptance of Higgs events there has been a recent surge in effort to improve Higgs triggers at CDF

Triggering on rare events: an example analysis

- Higgs production in association with a W: $H \rightarrow bb$, $W \rightarrow \mu v$
- Events can be selected by a number of different triggers:

✓ tight central muon:

29%

Triggering on rare events: an example analysis

- Higgs production in association with a W: $H \rightarrow bb$, $W \rightarrow \mu v$
- Events can be selected by a number of different triggers:

- ✓ tight central muon: 29%
- ✓ central muon extension: + 9%

Triggering on rare events: an example analysis

- Higgs production in association with a W: $H \rightarrow bb$, $W \rightarrow \mu v$
- Events can be selected by a number of different triggers:

- ✓ tight central muon: 29%
- ✓ central muon extension: + 9% × E_{τ}^{miss} : +28%
- $\times E_T^{miss} + jet: +14\%$
- × loose central muon: + 4%

TOTAL = 84%

Already used in analysis
 Trigger already running
 New trigger, recently added

- Level 1:
 - 8 GeV central track

- Level 1:
 - 8 GeV central track
 - Matched in ϕ to muon drift chamber and scintillator hits.

- Level 1:
 - 8 GeV central track
 - Matched in ϕ to muon drift chamber and scintillator hits.
- Level 2:
 - Increase track p_T threshold to 15 GeV.
 - Tighter matching cuts.
- Level 3:
 - Increase track p_T threshold to 18 GeV.
 - Tighter 3D matching cuts.

- Level 1:
 - 8 GeV central track
 - Matched in ϕ to muon drift chamber and scintillator hits.
- Level 2:
 - Increase track p_T threshold to 15 GeV.
 - Tighter matching cuts.
- Level 3:
 - Increase track p_T threshold to 18 GeV.
 - Tighter 3D matching cuts.

A rate of 400Hz at L2 for one trigger is too much! (total available ~650Hz). Emergency solution was to prescale this trigger at high luminosity

CMX trigger: saved by a track trigger upgrade?

The Central Outer Tracker consists of 8 layers of cells: 1,3,5 and 7 are axial (giving $r-\phi$ information only). 2,4,6 and 8 are at a small stereo angle giving z information.

L2 calorimeter trigger

- The L2 calorimeter trigger was also recently upgraded to cope with high luminosities.
- Smarter jet algorithm uses "cone" instead of "continuous" clustering, reducing luminosity growth terms.

- Better calorimeter granuality used for E_T^{miss} trigger.
- Sharper turn on curves → better efficiencies

"Backup" Triggers

Most analyses require "backup" triggers in addition to "signal" triggers:

- <u>Measurement of trigger efficiencies</u> :
 - − W_NOTRACK trigger selects W→ev events based on E_T^{miss} and tight EM cuts but no track → track trigger efficiency for high p_T electrons.
- Background studies :
 - \sim low E_T jet triggers to measure probability of a jet faking a lepton (fake rate).
 - A non-isolated version of τ triggers (with a prescale) can be used to estimate backgrounds.
- Detector calibration :
 - Low E_T electron trigger used to study time dependence of calorimeter gain.
- <u>Trigger studies</u> :
 - Trigger that passes any L2 accept through L3 (prescaled!) allows unbiased trigger studies.

LHC triggers

- Even more challenging than the Tevatron!:
 - 40 MHz crossing rate with ~10⁹ events per second at design luminosity.
- Level-1 :
 - Hardware trigger
 - CAL and MUON only (no track)
 - 40 MHz \rightarrow 50 -100 kHz
- High Level Triggers :
 - Software using full detector resolution.
 - Start with "Region Of Interest" (only reconstruct regions of the detector triggered at Level-1).
 - Eventually reconstruct entire event
 - 50 -100 kHz → 100 Hz

Summary : points to remember

- 1) Rate control : try to utilise available bandwidth at all luminosities (non-trivial!)
- 2) Beware of luminosity growth terms in trigger cross-sections!
- 3) Remember to "or" your triggers
 - Can lead to considerable increases in acceptance, maximise the significance of your result!
- 4) Design your trigger table carefully:
 - Remember to include backup triggers to measure efficiencies and backgrounds!
 - But don't sacrifice golden search channels with backups gone wild!

Back-up slides

The trigger

(1) Are our highest priority triggers running un-prescaled at all luminosities?

RunIIb Physics Priority & Triggers Committee's Straw Table @ 3E32 (CDF 8055, Ristori et al.)

	Trigger	Level 1	Level 2		
High p_{T}	Central Electron	L1_CEM8_PT8	L2_CEM16_PT8		
lepton	Central Muon	L1_CMUP6_PT4	L2_CMUP6_PT15_3D		
	Muon Extension	CMX6_PT8_CSX	L2_CMX6_PT15_3D_JET10_DPS		
	Single Jet/Electron-70	L1_JET20	L2_JET90		
	Single Isolated Photon	L1_EM12	L2_EM21_ISO_PASS4		
	Missing Et	L1_MET25	L2_MET35		
(e-central e-central	L1_CEM8_PT8	L2_CEM4_PT4_CES3_&_CEM8_PT8_CES3		
	e-central mu-central	L1_CEM8_PT8	L2_CEM8_PT8_CES3_&_CMUP6_PT4	Note: colour code	
SUCV		L1_CMUP6_PT4	L2_CEM4_PT4_CES3_&_CMUP6_PT8	indicates what is	
	e-central mu-extension	L1_CEM8_PT8	L2_CEM8_PT8_CES3_&_CMX1.5_PT4_CSX	indicates what is	
3031		L1_CMX6_PT8_CSX	L2_CEM4_PT4_CES3_&_CMX6_PT8_CSX	needed to conform to	
di-lepton	e-central e-plug	L1_EM8_&_CEM4_PT4	L2_CEM4_PEM8	Straw 7	Table projections.
I	mu-central mu-central	L1_TWO_CMU1.5_PT1.5	L2_CMUP4_CMUP8	many c	other triggers
	mu-central mu-extension	L1_CMU1.5_PT1.5_&_CMX1.5_PT2_CSX	L2_CMUP4_CMX4	will be helped by the	
	e-plug mu-central	L1_EM8_&_CMU1.5_PT1.5	L2_CMUP4_PEM8	will be helped by the	
	e-plug mu-extension	L1_EM8_&_CMX1.5_PT2_CSX	L2_CMX4_PEM8	upgrades.	
TAU + { lepton {	Tau+electron	L1_CEM8_PT8	L2_TAU4_PT5_CEM8_PT8_CES3		
	Tau+muon central	L1_CMUP6_PT4	L2_CMUP6_PT8_&_TRK5_3D		
	Tau+muon extension	L1_CMX6_PT8_CSX	L2_CMX6_PT8_&_TRK5_3D_DPS		_
	Plug e + Missing Et	L1_EM8_&_MET15	L2_PEM20_L1_EM8_&_MET15		Done
	Super Photon-70	L1_JET20	L2_JET90		L2 XFT upgrade
	Di-Gamma/Z-notrack	L1_TWO_EM8	L2_TWO_EM_16		L2 CAL upgrade
	Top Multijet	L1_JET20	L2_FOUR_JET15_SUMET175		Not yet needed

!!= prescaled at high lumi

- XFT hits are mapped to muon stubs at L2 based on a 3 sigma multiple scattering term a misalignment parameter (dominates at high PT).
- The default value of the misalignment parameter was 1.5 degrees (CMX and CMU).
- On April 5th (runs after 238243) tighter matching was added to the muon triggers: CMX: misAlign=0.6
 CMUP: misAlign=0.8

L2 stereo reconstruction

 $\sigma(p_T)/p_T^2 \sim 2\%, \sigma(\emptyset) \sim 6 \text{ mR}$

The trigger