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Motivation

• Unobserved particles crucial to standard model measurements and
future discoveries

– Neutrinos:
• W and top mass measurements

– constrain the Higgs mass and the existence of
supersymmetric particles

• Higgs decay to WW
– discovery channel if Higgs mass is ~160 GeV

– Dark matter:
• Heavy neutral particles such as the lightest supersymmetric particle

–  Inferred by excess of events with large momentum imbalance of observed particles

Jan 7, 2008 Chris Hays, Oxford University 2



Measurement

• Initial state z-momentum not known, can only infer momentum imbalance in
the direction transverse to the beam line

• Momentum imbalance measured primarily using
calorimeter energy and a vertex

– Hence the jargon “missing transverse energy” or ET
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Jan Henrik-Andersen

WW  decay to a pair of 
electrons and neutrinos

(CDF)



Measurement

• Correct for particles not measured well by calorimeter
– Muons: use track momentum, subtract energy in calorimeter
– Jets: apply calibrations to correct for lost particles and calorimeter response

• The end result is an accurate measurement of momentum imbalance

Jan 7, 2008 Chris Hays, Oxford University 4

Object

Unclustered energy

Diphoton plus dijet event
(CDF)



Mismeasurement

• Background to events with large ET results predominantly from pathological 
mismeasurements

– Beam-induced background
– Cosmic-ray muons
– Jet energy lost in detector cracks
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Jets plus ET search
for squarks and gluinos

(CDF)



Beam Halo

• Beam interactions with pipe produce showers upstream of detector
– CDF: shielding significantly attenuates shower
– Muons can penetrate shielding and deposit energy in calorimeter
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Photon plus ET search for
large extra dimensions (CDF)

Line of minimum-ionizing energy deposition

Bremsstrahlung results in single
high-momentum photon



Beam Halo

• Halo observable in timing distribution of photon candidates
– 18 ns beam bunch structure
– Width due to size of central calorimeter
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Photon plus ET searches (CDF)

Timing cut reduces background

Residual background removed with calorimeter
requirements:

No more than 8 central EM and 2 forward hadronic
towers with energy along the line of the candidate photon



Beam Splash

• Tevatron Run 1: Two accelerator rings, one went through top of DØ calorimeter
– Beam interactions with pipe produced showers inside detector

• Vetoed events collected while beam passed through top ring
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Two jets plus ET search for
leptoquarks (DØ)



Beam Splash

• Events collected in crossings after beam splash also had large ET
– Charge dissipation from readout resulted in negative observed energies

• Charge at end of bunch lower than at start of bunch
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Two jets plus ET search for leptoquarks (DØ)

Remove events with either positive or
negative energy resulting from beam splash

(|ET| > 10 GeV)



Cosmic-Ray Muons

• Cosmic-ray muon bremsstrahlung contributes to ET
– Predominantly single-photon and single-jet events
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Remove events with fewer than 3 central tracks

Photon plus ET search for large extra dimensions (CDF)



Cosmic-Ray Muons

• Cosmic-ray muons can overlap collision events
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Use EM timing system to remove cosmic overlaps with collisions

Photon plus ET search for large extra dimensions (CDF)



Cosmic-Ray Muons

• Large residual background of cosmic-ray muons overlapping collision events
– Create discriminant using:

• Track stubs in muon chamber in the same direction as photon candidate
• Energy in hadronic calorimeter and in strip chamber at nominal shower maximum
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Photon plus ET search for
large extra dimensions (CDF)

• Cosmics can also produce jets if bremsstrahlung is in hadronic calorimeter
– Remove by requiring jets to have EM fraction between 0.1 and 0.95

Two jets plus ET search for leptoquarks (DØ)



Cosmic-Ray Muons

• A cosmic-ray muon reconstructed on only one side of detector results in ET
– Search for muon track opposite to reconstructed muon
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All final states with muons (CDF)



Lost Particles in Jets

• Detector cracks a significant source of ET
– CDF: “Chimney” for cables at top of calorimeter
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– CDF: Central crack between calorimeters



Lost Particles in Jets

• Chimney observable in φ distribution of ET
– Reduce background by requiring separation between ET and jet directions
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Jets plus ET final states (CDF and DØ)

after cleanup cuts



Physics Results

• After removing pathological events a good description of ET is achieved
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Jets plus ET squark/gluino search (CDF)

Two jets plus ET

leptoquark search (DØ)



Physics Results

• After removing pathological events a good description of ET is achieved
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One photon
plus ET

large extra
dimensions

search (CDF)

One jet plus ET

large extra dimensions search
(CDF)



Modelling Momentum Imbalance

• Given understanding of pathologies, ET can be modelled by understanding scale
and resolution of collision products
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muons
electrons & photons

taus
jets

underlying event
extra interactions

• Approaches to modelling ET
– Data-based
– Fast simulation tuned to data
– Full GEANT simulation tuned to data

2 jets + ET search (DØ), 2 photons + ET search (CDF)
W mass measurement (CDF & DØ)

Jets + ET search (CDF)



Case Study:  CDF Run II W Mass Measurement
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e
pT = -(pT

l + uT)

unclustered energy:
“recoil”

• ET calibrated to 0.1% accuracy
– Procedure:

• Calibrate electrons and muons
• Define unclustered energy measurement
• Calibrate unclustered energy



Electron and Muon Calibration

• Calibrate electron and muon momenta using masses of well-known resonances
and ratio of calorimeter to tracker measurements

• Z mass measurement validates the calibration
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mZ
PDG = 91188 MeV

Electrons Muons



Electron and Muon Removal

• Remove calorimeter towers with energy from electron or muon
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Need to simulate underlying event energy removed from towers



Unclustered Energy Measurement

• Apply large (5 GeV) threshold to calorimeter towers closest to beam
– Reduces bias from beam splash and low-momentum central particles
– Maintains measurement of high-energy jets

• Apply 12% relative scale between central and forward calorimeter towers
– Determined by comparing calorimeter and tracker measurements for isolated

charged pions
– Improves resolution of unclustered energy

measurement

• Correct measured energy for acceptance variations
from beam radial offset

– Towers closest to beam have highest
acceptance: scale down measured energy
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closest to beam

furthest from beam



Unclustered Energy Calibration

• Recoil model components
– Radiation in production of W boson
– Radiation from “spectator” partons (underlying event) and additional pp collisions

• Calibrate radiation and measurement with events where all particles are observable
– Generic inelastic pp collisions
– Z boson decays to charged leptons

• Define coordinate system (η, ξ) such that net
radiation lies along -η direction
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Underlying Event Energy Calibration

• Underlying event and additional interactions
– Resolution depends on energy in calorimeter
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Low total

energy
High total

energy

Net energy in x-direction (GeV)

Underlying event resolution gaussian for a given ΣET



Underlying Event Energy Calibration

• Calorimeter samples energy deposited by particle showers
– Statistical fluctuations on the number of sampled particles result in √ΣET dependence

to resolution

Jan 7, 2008 Chris Hays, Oxford University 25

Net energy in x-direction (GeV)

Fit to function σ = scale ΣET 
power



Underlying Event Energy Calibration
• Model underlying event and additional interactions using a per-event ΣET distribution

– Take distribution from generic pp interactions (“minimum bias”)
– Use expected number of interactions per pp crossing to extract a single-interaction

distribution
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Scale single-collision energy according to Z data fit



Radiated Energy Calibration

• Net radiation in W production calibrated using Z production
– Small theoretical correction due to difference between W and Z masses
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Radiated Energy Calibration

• Fraction of measured radiation (“scale”) and resolution calibrated using Z data
– Scale has logarithmic dependence on radiated energy
– Resolution has quadratic dependence on radiated energy
– Apply angular resolution to radiated momentum
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Angular resolution

Scale



Results

• Net radiation in W events well modelled
• Missing momentum fit gives 0.1% accuracy on mW
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Missing momentum fit in muon channel:
45 MeV systematic uncertainty

80 MeV total uncertainty



Summary

• Missing transverse energy a part of many discovery and measurement signatures

• Two aspects to understanding missing momentum:
– Determine and reduce pathologies

• Model residual pathological events with data using discriminating variables

– Calibrate detector response to high-pT particles and unclustered energy
• Results can be used in tuned fast simulation or full GEANT simulation

• Expect new challenges with the new collider and detectors at the LHC!
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