Top Quark Physics at the Tevatron

Christian Schwanenberger University of Manchester

YETI 2008 Durham 07/01/2008

1

The Top Quark

u

Vμ

H

19113 BOIST

discovered in 1995 by CDF and DØ:
m_{top} ~ gold atom

Iarge coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?

short lifetime: τ ~ 5 ·10⁻²⁵s ≪ Λ⁻¹_{QCD}:
decays before fragmenting
→ observe "naked" quark

The Tevatron at FERMILAB: pp Collisions

MANCHESTER 07/01/2008 Top Quark Physics at the Tevatron

- Christian Schwanenberger -

YETI 2008, Durham

Top Quark Analyses at the Tevatron

MANCHESTER 07/01/2008 Top Quark Phy

Top Quark Physics at the Tevatron

- Christian Schwanenberger -

YETI 2008, Durham

Top Quark Analyses at the Tevatron

MANCHESTER 07/01/2008

Outline

Top Pair Production Cross Section Searches in Top Pair Production New Resonances Top Mass **Single Top Production Outlook: Top Physics at LHC**

Top Quark Pair Production

Top Antitop Signatures

<u>top decay:</u>

 reconstruct and identify: electrons, muons, jets, b-jets and missing transverse energy

Event Topology in Lepton+Jets

signal

- 1 lepton with high p_T
- 1v: high missing transverse energy
- ≥ 4 jets

9

Event Topology in Lepton+Jets

signal

- 1 lepton with high p_T
- 1v: high missing transverse energy
- ≥ 4 jets

Typical µ+jets Event

Lepton+Jets Topological Cross Section

<u>no b-tag → less model dependent</u>

 kinematic properties allow separation between signal and background

use as variables:

energy-dependent quantities:

 \cdot e.g. $H_{\!_T}$ (scalar sum of $p_{\!_T}$ of 4 leading jets)

angular dependent:

• e.g. aplanarity

H⊤ [GeV]

8.

Lepton+Jets Topological Cross Section

b-tagging

- explicitly reconstruct 3D vertices
- use properties from displaced tracks to form a 7-variable neural network
- improvements of up to 50%
- ttbar event tagging efficiency 54% (with fake rate of 1%)

Lepton+jets cross section with b-tagging

<u>1 b tag:</u>

≥2 b tags: L=900 pb⁻¹

Top Pair Production Cross-Sections

Outline

Top Pair Production Cross Section Searches in Top Pair Production – New Resonances Top Mass **Single Top Production Outlook: Top Physics at LHC**

Search for tt Production via New Resonances

Harris, Hill, Parke, hep-ph/9911288

- no resonance production in ttbar system is expected in SM
- some models predict ttbar bound states: large top mass can be generated through dynamical ttbar condensate X formed by new strong gauge force coupling to 3rd generation
- e.g. topcolor assisted technicolor predicts leptophobic Z' with strong 3rd generation coupling
- experimental check: search for bumps in ttbar reconstructed mass spectrum
- sufficiently narrow so that width is dominated by detector effects

Search for tr Production via New Resonances

Total Invariant Mass of the tt System

MANCHESTER 07/01/2008 Top Quark Physics at the Tevatron - Christian Schwanenberger - YETI 2008, Durham

Outline

Top Pair Production Cross Section Searches in Top Pair Production New Resonances **Top Mass Single Top Production Outlook: Top Physics at LHC**

The Top Quark Mass

- free parameter in the Standard Model
- check the self-consistency of the Standard Model in combination with W mass measurement

Extraction Techniques: Template Method

use variables strongly correlated with m_{top}
compare data to MC with different m_{top} hypotheses

Extraction Techiques: Matrix Element

probability densities for every event as function of m_{top}

Maximum Likelihood fit

$$P_{m}(m_{top}, x) = \underbrace{Acc(x)}_{G} \times \frac{1}{\sigma} \int d^{n} \underbrace{\sigma(y; m_{top})}_{PDF's} dq_{1} \underbrace{dq_{2} f(q_{1}) f(q_{2})}_{PDF's} \underbrace{W(x, y)}_{Transfer Functions}_{(Probability to measure x when y was produced)}$$

Lepton+Jets Channel

<u>jet energy scale:</u>

translate jet into parton energy

Results for Matrix Element Method

• maximum Likelihood fit using signal and background pdfs

Tevatron Combination: March 2007

 account for correlations

Summary: Top Mass Measurements

Outline

Top Pair Production Cross Section Searches in Top Pair Production New Resonances Top Mass **Single Top Production Outlook: Top Physics at LHC**

Single Top Quark Production

first direct measurement of |V_{tb}|

It has been challenging for years...

Single Top Quark Production

<u>no b-tagging yet</u>

signal < background uncertainty!

Multivariate Analysis Techniques

- Likelihood discriminants (CDF)
- Artificial neural network (CDF)
- Matrix element (DØ, CDF)
- Bayesian neural network (DØ)
- Boosted decision trees (DØ)

background

signal

 $\mathcal{L}(\vec{x})$

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

MANCHESTER

07/01/2008

Top Quark Physics at the Tevatron

- Christian Schwanenberger -

YETI 2008, Durham 36

B

 IDEA: recover events that fail criteria in cut-based analyses

boosting:

- train tree: T
- derive weight: α_{k}
- retrain tree: T_{k+1}
 to minimize error
- average: $T = \Sigma \alpha_i T_i$

MANCHESTER 07/01/2008

Top Quark Physics at the Tevatron

- Christian Schwanenberger -

erger – YETI 20

YETI 2008, Durham 37

Boosted Decision Tree Output

Boosted Decision Tree Output

Boosted Decision Tree Output

<u>Entropy</u> Results of other Methods

• CDF has found evidence as well for matrix element (3.1 σ) but not yet for likelihood (2.7 σ) and NN...

45

MANCHESTER 07/01/2008

- Christian Schwanenberger -

First direct measurement of |V_{th}|

• before only indirect limits: $|V_{tb}| = 0.999127 \pm 0.00026$ (1 σ CL) CKM Fitter Group for Beauty 2006

- assume: $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$ • assume: pure V-A and CP-conserving Wtb interaction
- no assumption on quark families or CKM matrix unitarity

$$|V_{tb}| = 1.3 \pm 0.2$$
 $0.68 < |V_{tb}| \le 1$ (95% CL)

Summary

new era of top physics at the Tevatron:

precision measurements & searches in the top sector

- cross section measurement top pair production
- search for new resonances
- top mass
- evidence for single top production
- \Rightarrow all measurements are in agreement with SM
- more interesting results will follow with more data
- ⇒ will continue to explore top sector in detail

important experiences as preparation for LHC: analysis techniques, trigger efficiencies, background estimation, systematics as e.g. jet energy scale, statistical methods

MANCHESTER

Outline

Top Pair Production Cross Section Searches in Top Pair Production New Resonances Top Mass **Single Top Production Outlook: Top Physics at LHC**

Top Pair Production at the LHC

10 top pairs per day @ Tevatron \leftrightarrow 1 top pair per second @ LHC

Top Quarks as "Standard Candles"

• use for detector commissioning: e.g. trigger, b-tagging, jet energy scale

07/01/2008 Top Quark Physics at the Tevatron - Christian Schwanenberger -MANCHESTER

Single Top Production at the LHC

4 single tops per day @ Tevatron \leftrightarrow 30 single tops per minute @ LHC

Outlook: Top Quark Physics at the LHC

- LHC is a top factory: 1 top pair per second at nominal luminosity
 30 single top per minute at nominal luminosity
- systematically limited Tevatron analyses hard to beat:
 Δm_{top} ~1 GeV (instead of 1 1.5 GeV at the Tevatron)
- statistically limited Tevatron analyses important:
 2% statistical error expected for single top production in t-channel
- measure basic quantities as spin, charge and couplings!
- role of top quark in electroweak symmetry breaking: measure top-Yukawa coupling
- high precision SM measurements
- high sensitivity for new physics
- much wider range of topics

explore top quark physics in great detail

Backup

First direct measurement of $|V_{th}|$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM Fitter Group for Beauty 2006

• before only indirect limits: $|V_{tb}| = 0.999127 \pm 0.00026$ (1 σ CL) • assume: $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$

• assume: pure V-A and CP-conserving Wtb interaction

$$|V_{tb}f_{1}^{L}| = 1.3 \pm 0.2$$

• assume: $f_1^{L} = 1$ 0.68 < $|V_{tb}| \le 1$ (95% CL)

• no assumption on quark families or CKM matrix unitarity

07/01/2008

R

The Tevatron at Fermilab: Luminosity

- Tevatron has delivered ~3.4 fb⁻¹ per experiment
- CDF and DØ ~2.9 fb⁻¹ recorded each
- current data taking efficiency is approaching ~90%

The DØ Experiment

B

Event Topology in Dilepton Channel

small background \rightarrow precise measurement in future

MANCHESTER 07/01/2008 Top Quark Physics at the Tevatron – Christian Schwanenberger –

Dilepton: Typical eµ Event

MANCHEER 07/01/2008 Top Quark Physics at the Tevatron – Christian Schwanenberger –

58

B 🏄

Dilepton Topological Cross Section

Top Pair Production Cross-Section

combined:

YETI 2008, Durham

60

Measurement of cross section ratios

$$\frac{\sigma(t\overline{t})_{L+J}}{\sigma(t\overline{t})_{DIL}}$$

• many uncertainties cancel!

= 1 in SM

- < 1 due to e.g. t \rightarrow b H⁺ \mapsto c s
- radiative corrections in MSSM hep-ph/9907422
- in multi Higgs dublet models
 hep-ph/9509203 hep-ph/9401311

Measurement of cross section ratios

$$\frac{\sigma(t\overline{t})_{L+J}}{\sigma(t\overline{t})_{DIL}}$$

• many uncertainties cancel!

= 1 in SM

- < 1 due to e.g. t \rightarrow b H⁺ \rightarrow c s
- radiative corrections in MSSM hep-ph/9907422
- in multi Higgs dublet models hep-ph/9509203 hep-ph/9401311

Cross section ratio and limit on B(t \rightarrow b H⁺)

$$R_{\sigma} = 1.21_{-0.26}^{+0.27}$$
 (stat+syst)

 leptophobic charged Higgs with mass close to W boson

$$B = 0.13 _{-0.11}^{+0.12} \text{(stat+syst)}$$

Results for e, μ + jets combined

data and SM:

SM: use ttbar cross section $6.77 \pm 0.60 \text{ pb}$ (NLO+resummations)

⇒ e, µ + jets combined: 197 events, 187 expected ⇒ binned Likelihood fit to get upper limit

MANCHESTER 07/01/2008

Top Quark Physics at the Tevatron

- Christian Schwanenberger -

YETI 2008, Durham 64

Limits for e, μ + jets combined

07/01/2008 Top Quark Physics at the Tevatron MANCHESTER

- Christian Schwanenberger -

YETI 2008, Durham

Results for Matrix Element Method

• maximum Likelihood fit using signal and background pdfs

Tevatron Combination: March 2007

MANCHESER 07/01/2008 Top Quark Physics at the Tevatron – Christian Schwanenberger –

YETI 2008, Durham 67

Dilepton-Channel: Neutrino Weighting

Dilepton-Channel: Neutrino Weighting

Dilepton-Channel: Neutrino Weighting

Neutrino Weighting Algorithm

 compare measured \(\vec{F}_t\) with expected (MC) for different m_{top} hypotheses

derive w(m_{top}) for every event

Neutrino Weighting Algorithm

 compare measured \(\vec{F}_t\) with expected (MC) for different m_{top} hypotheses

derive w(m_{top}) for every event

Neutrino Weighting Method: Result

NEW: simultaneous 3 (2)-dimensional fit to signal (background) templates

<u>rms=45 GeV</u>

• maximum Likelihood function L(m_{top}, mean, rms): PRELIMINARY

 $m_{top} = 172.5 \pm 5.8(stat.) \pm 3.5 (syst.) GeV$

Combination for matrix/neutrino weighting

What mass do we measure?

$$\mathcal{L} = \dots - \overline{\psi} M \psi \left(1 + \frac{H}{\nu} \right) \dots$$

• LO QCD: free parameter m_{top}

• NLO QCD: dependent on the renormalisation scale M

"Bare parameters of QCD: gs, mu, md, ms, Mc, men Kenormalised parameters of QCD: gs (M), mu (M), md (M), mg (M), mg (M), mg (M), mg (M), mg (M)

the concept of quark mass is convention-dependent!

Differences in top mass definitions

\Rightarrow difference between \overline{MS} and pole mass is ≈ 7 GeV...

MANCHESTER 07/01/2008

Top Quark Physics at the Tevatron

- Christian Schwanenberger -

Extraction techniques: Matrix Element

probability densities for every event as function of m_{top}

Maximum Likelihood fit

$$P_{m}(m_{top}, x) = \underbrace{Acc(x)}_{G} \times \frac{1}{\sigma} \int d^{n} \underbrace{\sigma(y; m_{top})}_{PDF's} dq_{1} \underbrace{dq_{2} f(q_{1}) f(q_{2})}_{PDF's} \underbrace{W(x, y)}_{Transfer Functions}_{(Probability to measure x when y was produced)}$$

• matrix element in LO QCD

• matrix element in LO QCD

parton showers simulate higher orders,

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

MANCHESER 07/01/2008 Top Quark Physics at the Tevatron – Christian Schwanenberger – YETI 2008

Important to know...

M. Seymour: "... as far as I know, noone understands in detail the relationship between the quantity you measure and any fundamental parameter of the theory."

07/01/2008

- Christian Schwanenberger -

YETI 2008, Durham

84

Important to know...

M. Seymour: "... as far as I know, noone understands in detail the relationship between the quantity you measure and any fundamental parameter of the theory."

87

M. Cacciari: "... at least in principle the mass you measure from the kinematical fits is not the same as the one you might extract from the cross section (LO pythia mass versus NLO pole mass)"

Cross section in lepton+jets/dilepton channel

CDF Results of all Methods

- Likelihood discriminants: σ < 2.7 pb @ 95% CL
- 2 artificial neural networks: $\sigma < 2.6 \text{ pb}$ @ 95% CL
- matrix element: $\sigma = 2.7^{+1.5}_{-1.3}$ pb (2.3 σ)

but: use same data selection correlation among analyses is 60-70%

→ 1.2% compatibility of all analyses (common pseudo experiments)

Boosted Decision Trees Event Charcteristics

Boosted Decision Tree s+t observed results

Outline

Top Pair Production Cross Section Top Mass **Searches in Top Decays** cross section ratios branching fractions - W helicity **Outlook: Top Physics at LHC**

Search for new physics in top decays

Measurement of Branching Fractions

Standard Model:

$$R_{SM} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = |V_{tb}|^2 = 1$$

unitarity of CKM matrix

beyond SM:

07/01/2008

we assume: $B(t \rightarrow Wq) = 1$ e.g. decay into 4^{th} generation quark: R<1 sensitive to b disappearance

MANCHESTER

R changes fractions of b-tagged jets:

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

DØ Runll Preliminary

Binned Likelihood fit in $e,\mu+jets$ channels

= 3 jets

 \geq 4 jets

Binned Likelihood fit in $e,\mu+jets$ channels

= 3 jets

 \geq 4 jets

Maximize total Likelihood function simultaneously for branching ratio R and top pair production cross section

MANCHESTER 07/01/2008 Top Quark Physics at the Tevatron – Christian Sci

Lepton+jets cross section in SM

$$R = 1$$

$$M_{top} = 175 \text{ GeV}$$

$$\sigma_{tt} = 8.08^{+0.85}_{-0.82} \text{ (stat+syst)} \pm 0.49 \text{ (lumi) pb} \qquad 12\%$$

$$L=900 \text{ pb}^{-1}$$

$$\sigma_{tt} = 8.2 \pm 0.5 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.5 \text{ (lumi) pb} \quad 13\%$$

$$L=1120 \text{ pb}^{-1}$$

\Rightarrow combine results

Simultaneous Measurement of σ and R

Lower limit to branching fraction R

- Christian Schwanenberger -

07/01/2008

MANCHESTER

Outline

Top Pair Production Cross Section Top Mass **Searches in Top Decays** cross section ratios branching fractions - W helicity **Outlook: Top Physics at LHC**

Helicity of the W in ttbar Events

Helicity of the W in ttbar Events

Event Selection in Lepton+Jets

Event Selection in Lepton+Jets

Top anti-top signatures

Top anti-top signatures

What are we measuring in mass analyses?

different methods: templates, matrix element, ideogram...
 calibration curve (e+jets with b-tagging)

Measurement of PMASS(6,1) using a data set of 4fb⁻¹ at the Tevatron

All Hadronic Channel

2D-template analysis (m_{top}, JES):

- signal template from matrix element calculations
- background templates inspired by data

 $m_{top} = 171.1 \pm 3.7(stat.+JES) \pm 1.9(syst.)$ GeV

MANCHESTER

07/01/2008

- Christian Schwanenberger -

Cross section in dilepton channel

Cross section in dilepton channel

Search for resonances

Search for tr Production via New Resonances

Harris, Hill, Parke, hep-ph/9911288

- no resonance production in ttbar system is expected in SM
- some models predict ttbar bound states: large top mass can be generated through dynamical ttbar condensate X formed by new strong gauge force coupling to 3rd generation
- e.g. topcolor assisted technicolor predicts leptophobic Z' with strong 3rd generation coupling
- experimental check: search for bumps in ttbar reconstructed mass spectrum
- sufficiently narrow so that width is dominated by detector effects

Reconstruction of tt invariant mass

Event Selection in Lepton+Jets

Results for e, μ + jets combined

⇒ e, µ + jets combined: 197 events, 187 expected ⇒ binned Likelihood fit to get upper limit

MANCHESTER 07/01/2008

Top Quark Physics at the Tevatron

- Christian Schwanenberger -

YETI 2008, Durham 117

Limits for e, μ + jets combined

07/01/2008 Top Quark Physics at the Tevatron MANCHESTER

- Christian Schwanenberger -

YETI 2008, Durham

Mass dependence of resonance

Error dependence on resonance limit

MSSM parameters

- $\tan \beta = 20, \mu = 225 \text{ GeV}, M_A = 800 \text{ GeV}, M_1 = 53 \text{ GeV}, M_3 = 500 \text{ GeV},$
- Trilinear couplings $A_b = A_\tau = 200 \text{ GeV}$,
- Scalar lepton masses $M_{\tilde{l}_L} = M_{\tilde{l}_R} = M_{\tilde{\tau}_L} = M_{\tilde{\tau}_R} = 200$ GeV,
- Scalar quark masses $M_{\tilde{q}_L} = M_{\tilde{q}_R} = M_{\tilde{b}_R} = M_{\tilde{t}_R} = 250$ GeV.

First measurement of charge asymmetry

Forward backward asymmetry

Charge asymmetry in SM

- no asymmetry in $O(\alpha_s^2)$
- asymmetry in $O(\alpha_s^3)$
- interference between:

interference between:

124

Measurement of charge asymmetry

Top pair reconstruction

Top pair reconstruction

Charge asymmetry in SM

 acceptance effects can be approximated by simple parton level cuts without changing asymmetry by more than 2%

Event Selection in Lepton+Jets

Asymmetry Reconstruction

<u>misreconstruction of Δy dilutes observed asymmetry:</u>

misreconstruction of event geometry
 misidentification of lepton charge

How good are we?

P: is probability to reconstruct correct sign of Δy

$$\Delta y \equiv y_t - y_{\bar{t}}$$

$$A_{fb} = \frac{N^{\Delta y > 0} - N^{\Delta y < 0}}{N^{\Delta y > 0} + N^{\Delta y < 0}}$$

Top anti-top signatures

Asymmetry extraction

maximum Likelihood fit: extract sample composition and asymmetry simultaneously

$\Delta y \equiv y_t - y_{ar t}$ >	C))
------------------------------------	---	---	---

top pair production cross sections consistent
asymmetry in W+jets enriched sample consistent

$$A_{fb} = (12 \pm 8 \text{ (stat)} \pm 1 \text{ (syst)})\%$$

consistent with prediction in NLO QCD

132

Asymmetry due to leptophobic Z'

F: fraction of top pair events produced via Z' resonance

e.g. M_{z'} = 750 GeV:

Search for stop pair production

Supersymmetry

Name	Spin	Superpartner	Spin
Electron	1/2	Selectron	0
Muon	1/2	Smuon	0
Tau	1/2	Stau	0
Neutrino	1/2	Sneutrino	0
Quark	1/2	Squark	0

Name	Spin	Superpartner	Spin
Graviton	2	Gravitino	3/2
Photon	1	Photino	1/2
Gluon	1	Gluino	1/2
W ^{+,-}	1	Wino ^{+,-}	1/2
Z ⁰	1	Zino	1/2
Higgs	0	Higgsino	1/2

Supersymmetry

- large top quark mass: large mixing between left- and righthanded superpartners
- t, can be lightest squark, lighter than top quark
- electroweak baryogenesis possible in such a scenario
- we haven't looked at it before...

stop quark

Name	Spin	Superpartner	Spin	
Graviton	2	Gravitino	3/2	
Photon	1	Photino	1/2	
Gluon	1	Gluino	1/2	
W++-	1	Wino ^{+,-}	1/2	- 1
z ^o	1	Zino	1/2	- >
Higgs	0	Higgsino	1/2	

Stop pair production vs. top pair production

- 2 light jets
- 2 b jets
- one charged lepton
- missing transverse energy

Event Selection in Lepton+Jets

Stop pair production vs. top pair production

r – YETI 2008, Durham

Stop pair production vs. top pair production

07/01/2008 MANCHESTER

Likelihood discriminant in e+jets channel

no indication for stop pair production

Cross section limits for e,µ+jets combined

use Likelihood discriminant to calculate limits (Bayesian approach)

\Rightarrow limits are factor \approx 7–12 above MSSM prediction

MANCHESTER 07/01/2008 Top (

Helicity of the W in ttbar Events

MANCHESTER

07/01/2008

YETI 2008, Durham 143