Precision HH predictions: QCD and EW corrections

IPPP Seminar, Durham

J. Davies

18th May, 2023

	lfoounling			
●000	00000000000000	00000000	0	0
Introduction	QCD Corrections	EW Corrections	Conclusion	Backup

Higgs self coupling

Standard Model Higgs potential:

$$\mathcal{V}(H) = rac{1}{2}m_H^2H^2 + \lambda vH^3 + rac{\lambda}{4}H^4,$$

where $\lambda = m_H^2/(2v^2) \approx 0.13$.

VBF

Want to measure λ , to determine if V(H) is consistent with nature.

• Challenging! Cross-section $\approx 10^{-3} \times H$ prod.

$$\blacktriangleright$$
 -3.3 < λ/λ_{SM} < 8.5

 λ appears in various production channels:

► H-strahlung

[CMS '21]

Introduction	QCD Corrections	EW Corrections	Conclusion o	Backup o

Gluon Fusion

Leading order (1 loop) partonic amplitude:

 $\mathcal{M}^{\mu\nu} \sim \mathcal{A}_1^{\mu\nu}(\mathcal{F}_{\textit{tri}} + \mathcal{F}_{\textit{box1}}) + \mathcal{A}_2^{\mu\nu}(\mathcal{F}_{\textit{box2}})$

• \mathcal{F}_{tri} contains the dependence on λ at LO

Form factors:

LO: known exactly

[Glover, van der Bij '88]

- Beyond LO... no fully-exact (analytic) results to date
 - QCD: numerical evaluation, expansion in various kinematic limits
 - EW: first steps: HE expansion
 - (see also HTL considerations)

[Mühlleitner,Schlenk,Spira '22]

[Davies, Mishima, Schönwald, Steinhauser, Zhang '22]

gg ightarrow HH Beyond LO QCD

NLO QCD:

- ► large-*m*t
- numeric
- large-m_t + threshold exp. Padé
- high-energy expansion
- ▶ small-*p*_T expansion
- small-t expansion
- NNLO QCD:
 - ► large-m_t virtuals [de Florian, Mazzitelli '13] [Grigo, Hoff, Steinhauser '15][Davies, Steinhauser '19]
 - ► HTL+numeric real ("FTapprox") [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli 18]
 - ► large-m_t reals
 - small-t expansion ?
- N3LO QCD:
 - ► Wilson coefficient C_{HH}
 - HTL

[Dawson,Dittmaier,Spira '98] [Grigo,Hoff,Melnikov,Steinhauser '13]

[Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke '16] [Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '19]

[Gröber, Maier, Rauh '17]

[Davies, Mishima, Steinhauser, Wellmann '18,'19]

[Bonciani, Degrassi, Giardino, Gröber '18]

[Davies, Mishima, Schönwald, Steinhauser '23]

[Davies, Herren, Mishima, Steinhauser '19 '21]

[work in progress: Davies, Schönwald, Steinhauser]

[Spira '16][Gerlach, Herren, Steinhauser '18]

Introduction	QCD Corrections •ooooooooooooooo	EW Corrections	Conclusion o	Backup o		
QCD Corrections						

Example diagrams at LO, NLO, NNLO:

Diagrams depend on ϵ , s, t, m_t , m_H :

- analytic result very complicated
- simplify: expand in certain kinematic limits

Here we consider two expansions:

- high-energy: description for larger p_T values
- small-t: description for smaller p_T values

 $egin{aligned} s, |t| > m_t^2 > m_H^2 \ s, m_t^2 > |t|, m_H^2 \end{aligned}$

High-energy expansion

Seek an expansion where $s, |t| > m_t^2 > m_H^2$: [Davies,Mishima,Steinhauser,Wellmann '18,'19]

- 1. FFs in terms of Feynman integrals: $I(m_H^2, m_t^2, s, t, \epsilon)$,
- 2. Taylor expand for $m_H^2 \rightarrow 0$ (with LiteRed):

 $I(m_H^2,\ldots)=I(0,\ldots)+m_H^2I'(0,\ldots)+\cdots,$

- 3. IBP reduce to Master Integrals: $J(0, m_t^2, s, t, \epsilon)$ (FIRE, Kira),
- 4. Determine MIs as an expansion around $m_t^2 \rightarrow 0$:

$$J(0, m_t^2, s, t, \epsilon) = \sum_{i,j,k} C_{ijk}(s, t) \epsilon^i (m_t^2)^j \log(m_t^2)^k$$

• Diff. eq. for MIs w.r.t $m_t^2 \rightarrow$ linear equations for C_{ijk} .

Boundary conditions: leading exp. terms from Expansion-by-Regions

Result: power series in m_t^2 and $\log(m_t^2)$.

► coefficients: func. of *s*, *t* written in terms of Harmonic Polylogarithms

[Lee '14]

Introduction	QCD Corrections	EW Corrections	Conclusion	Backup
0000	0000000000000	0000000	0	0

High-energy expansion

High-energy expansion: Padé approximants

The expansion diverges for \sqrt{s} below \sim 750GeV.

The convergence can be improved by making use of Padé approximants:

approximate a function using a rational polynomial,

$$f(x) \approx [n/m](x) = rac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{1 + b_1 x + b_2 x^2 + \dots + b_m x^m},$$

where a_i , b_j coefficients are fixed by the series coefficients of f(x).

Compute a set of approximants (various choices of n, m):

- combine to give central value and error estimate
- deeper expansion \rightarrow larger $n + m \rightarrow$ smaller error
- expansion to m_t^{120} allows for very high-order approximants

High-energy expansion: Padé approximants

- interpolation grid of 6320 points evaluated by pySecDec
- grid points normalized to hhgrid vals., function of p_t:

Comparison with hhgrid:

[https://github.com/mppmu/hhgrid]

- interpolation grid of 6320 points evaluated by pySecDec
- grid points normalized to hhgrid vals., function of p_t:

Comparison with hhgrid:

[https://github.com/mppmu/hhgrid]

- interpolation grid of 6320 points evaluated by pySecDec
- grid points normalized to hhgrid vals., function of p_t:

	_			
0000	000000000000000	00000000	0	0
Introduction	QCD Corrections	EW Corrections	Conclusion	Backup

Small-*t* expansion

As for HE, first expand around $m_H \rightarrow 0$. Then, two approaches (which give the same result):

- ▶ take the IBP-reduced amplitude of the HE expansion
 - expand around $t \rightarrow 0$ instead of $m_t \rightarrow 0$
- expand un-reduced amplitude around $q_3 \rightarrow -q_1$ ($t \rightarrow 0$)
 - ► IBP reduce integrals which depend only on e, s, mt
 - can be applied at NNLO

Introduction	QCD Corrections	EW Corrections	Conclusion	Backup
0000	0000000000000	0000000	0	0

Small-*t* expansion: "expand and match" MIs

"Semi-analytic" determination of the $t \rightarrow 0$ MIs: [Fael,Lange,Schönwald,Steinhauser '21]

- 1. establish system of DEs for the MIs, w.r.t. $\hat{s} = s/m_t^2$
- 2. expand around $\hat{s} = 0$:
 - insert ansatz into DE: $J(\epsilon, \hat{s} = 0) = \sum_{i,i} c_{ij} \epsilon^i \hat{s}^j$
 - determine minimal set of c_{ij} (Kira+FireFly)
 - evaluate minimal boundary constants analytically (LME)
- 3. expand around a new point $\hat{s} = \hat{s}_0$ (repeat the above, modify ansatz)
- 4. match expansions (numerically) at a point where they both converge

Here we have such "semi-analytic" expansions for the MIs at:

 $\hat{\boldsymbol{s}} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 25, 30, 40, 50, \infty\}$

Introduction	QCD Corrections	EW Corrections	Conclusion	Backup
0000	000000000000000	0000000	0	0

HE and $t \rightarrow 0$ combination: "*V*_{fin}"

Comparison with hhgrid:

[https://github.com/mppmu/hhgrid]

• merge both results, switch at $p_T = 175$ GeV.

Introduction	QCD Corrections	EW Corrections	Conclusion o	Backup ⊙
"ggxy"				

<code>C++</code> library implementing the $gg \rightarrow HH$ form factors, currently including:

- exact leading-order expressions
- $t \rightarrow 0$ expansion
- high-energy expansion, incl. Padé approximants

Computes the 6320 phase-space points of hhgrid at avg 0.002s/point.

TODO:

- m_t scheme and scale variation
- ▶ include known results for $gg \rightarrow ZH$, $gg \rightarrow ZZ$, $gg \rightarrow \gamma\gamma$
- make public!

Small-t expansion: NNLO?

We would like to understand $gg \rightarrow HH$ at NNLO, due to the large NLO, and uncertainty from the top quark mass scheme and scale choice.

First steps: diagrams with light fermion loop, expand to $m_H^0 t^0$

[work in progress: Davies, Schönwald, Steinhauser]

► done: IBP reduction: 176 MIs. Compute with "expand-and-match".

Next steps:

- diagrams with light-fermion loop: attempt $m_H^2 t^0$?
- all remaining diagrams, first to $m_H^0 t^0$

Introduction	QCD Corrections	EW Corrections	Conclusion o	Backup o

EW Corrections

Since we look at NNLO QCD, we should also look at 2L EW corrections.

This is a much more difficult computation:

- 2L QCD: 118 Feynman diagrams
- 2L EW: 3810 Feynman diagrams

There are also more scales to deal with, compared to the QCD.

- **•** start with $\alpha_s \alpha_t^2$ " y_t^4 " diagrams with internally propagating Higgs
 - expansion parameter $\alpha_t = \alpha m_t^2 / (2s_W^2 m_W^2) \sim \alpha_s / 2$
 - Only planar integrals in this subset [Davies, Mishima, Schönwald, Steinhauser, Zhang '22]

EW Corrections: High-energy expansion

Again, full diagrams depend on many variables:

 $\blacktriangleright \epsilon, s, t, m_t, m_H$

As for QCD, Taylor expand around $m_H^{ext} = 0$:

expand integrals with LiteRed

Unlike the QCD case, m_{H}^{int} remains in the propagator:

complicates IBP reduction, MIs with extra scale are difficult

Expand in m_H^{int} also, propose two ways to do it:

• "A":
$$s, |t| \gg m_t^2 \gg m_H^{int^2} \sim m_H^{ext^2}$$
,
• "B": $s, |t| \gg m_t^2 \sim m_H^{int^2} \gg m_H^{ext^2}$.

High-Energy Expansion "A"

Option A: asymptotic expansion around $m_H^{int} = 0$. Exp.-by-subgraph:

The two-loop subgraph is a Taylor expansion of the Higgs propagator:

- ▶ results in integrals with a massless internal line, scales s, t, m_t .
- ► IBP reduce with FIRE and Kira [Smirnov '15] [Klappert,Lange,Maierhöfer,Usovitsch '21]
- these coincide with the QCD Master Integrals reuse the old results [Davies,Mishima,Steinhauser,Wellmann '18,'19]

The massive tadpoles are easily computed by MATAD. [Steinhauser '00]

The asymp. expansion procedure is done by exp and FORM [Harlander,Seidelsticker,Steinhauser '97] [Ruijl,Ueda,Vermaseren '17]

We expand to quartic order: $(m_H^{int})^a (m_H^{ext})^b, \ 0 \le (a+b) \le 4.$

High-Energy Expansion "A": convergence

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "A" Padé (to $(m_H^2)^{\{0,1,2\}}$):

• $(m_H^2)^1$ and $(m_H^2)^2$ terms differ by at most 5% for $\sqrt{s} \ge 400 {
m GeV}$

High-energy Expansion "B"

Option B: expand around $m_H^{int} \approx m_t$,

simple Taylor expansion, easy to implement

- Write Higgs propagator as: $\frac{1}{p^2 m_H^2} = \frac{1}{p^2 m_t^2(1 [2 \delta]\delta)}$
 - expand around $\delta \rightarrow 0$ where $\delta = 1 m_H/m_t \approx 0.28$.

This yields new integral families compared to the QCD computation:

- all lines have the mass m_t ,
- ► IBP reduce and compute the MIs in the high-energy limit

Expand to $(m_H^{ext})^4$ and δ^3 .

High-energy Expansion "B": convergence

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "B" Padé (to $(m_H^2)^2 \delta^{\{0,1,2,3\}}$):

 $\blacktriangleright~\delta^2$ and δ^3 terms differ by at most 0.5% for $\sqrt{s} \geq$ 400GeV

High-energy Expansion: "A", "B" comparison

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, best "A" and "B" Padé

- "A", "B" differ by at most 2% for $\sqrt{s} \ge 400$ GeV,
- 0.1% for $\sqrt{s} \ge 500 \text{GeV}$

Introduction	QCD Corrections	EW Corrections	Conclusion	Backup
0000	0000000000000	0000000	0	0

EW Corrections: next steps

High-energy: same idea, for remaining diagram classes:

Diagrams with more internal Higgs:

- "B" expansion and IBP reduction done
- new topologies: non-planar with all lines massive
- in progress: compute master integrals
- Diagrams with charged goldstone exchange:
 - new topologies: massive loop doesn't close
 - in progress: compute master integrals

Large mass expansion of all dias: done, to understand renormalization

• not very useful: diagrams with *tWb* cuts: $m_t + m_W \approx 2m_H$

Small-t expansion: not yet studied.

Introduction	QCD Corrections	EW Corrections	Conclusion	Backup o

Conclusion

Multi-scale multi-loop integrals are hard.

expand!

Expansions give a good description for HH at NLO QCD:

- high-energy + small-t covers whole phase space
- implemented in C++: to be made public

First steps:

- ▶ NNLO QCD: small-*t* expansion of light-fermion diagrams
 - to come: remaining diagrams
 - deeper expansion? Challenging IBP reduction.
- EW: high-energy expansion of y_t^4 diagrams
 - to come: remaining diagrams
 - small-t expansion

Introduction	QCD Corrections	EW Corrections	Conclusion o	Backup ●

Padé Approximants in C++

Determine a_i , b_i s.t. upon series expansion,

$$\frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{1 + b_1 x + b_2 x^2 + \dots + b_m x^m} = \sum_{i=0}^{n+m} t_i x^i .$$

Solve (explicit n = 4, m = 3 example):

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -t_0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -t_1 & -t_0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -t_2 & -t_1 & -t_0 \\ 0 & 0 & 0 & 0 & 1 & -t_3 & -t_2 & -t_1 \\ 0 & 0 & 0 & 0 & 0 & -t_4 & -t_3 & -t_2 \\ 0 & 0 & 0 & 0 & 0 & -t_5 & -t_4 & -t_3 \\ 0 & 0 & 0 & 0 & 0 & -t_6 & -t_5 & -t_4 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \\ t_7 \end{pmatrix}$$

Easy to solve for numerical values of t_i using, e.g. Eigen library. Also in quad precision using boost::multiprecision.