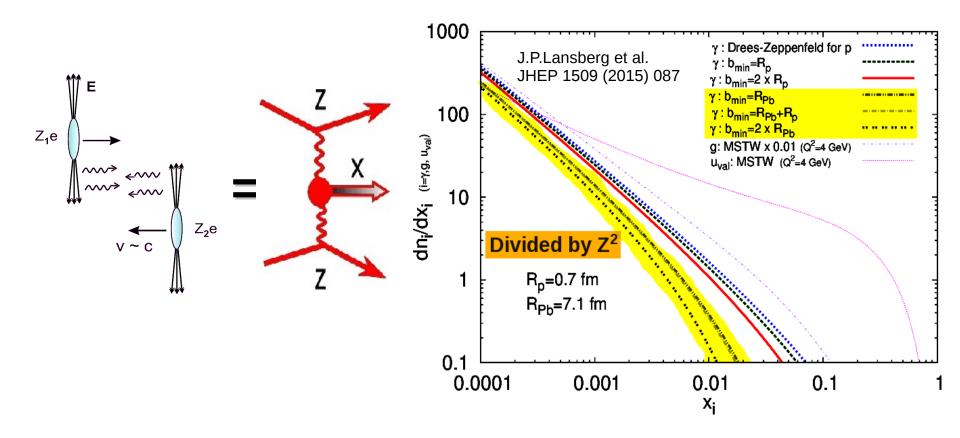
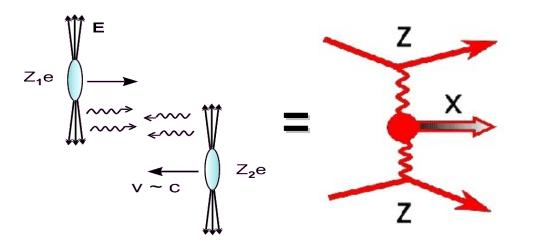

Photon-photon collisions with gamma-UPC

Workshop on the modeling of photon-induced processes Durham, 6th June 2023


David d'Enterria (CERN) & Hua-Sheng Shao (LPTHE)

gamma-UPC: https://arxiv.org/abs/2207.03012 [JHEP 09 (2022) 248] Plus: parametric uncertainties (with **N. Crepet**) & NLO-QED, to be submitted

Photon-photon collisions at the LHC


Electromagnetic ultra-peripheral colls. (UPC): b_{min} > R_A+R_B, hadrons survive
 EM field = Weizsäcker-Williams (Equivalent Photon Approx.) photon flux:

■ Quasi-real γ (coherent emission): Q ~ 1/R ~ 0.06 GeV (Pb), 0.28 GeV (p) ■ Maximum γ longitud. energies: $\omega < \omega_{max} \approx \frac{\gamma}{R} \sim 80$ GeV (Pb), ~ 2.5 TeV (p)

Photon-photon collisions at the LHC

Electromagnetic ultra-peripheral colls. (UPC): b_{min} > R_A+R_B, hadrons survive
 EM field = Weizsäcker-Williams (Equivalent Photon Approx.) photon flux:

 Huge photon fluxes: σ(γγ) ~ Z⁴ (~5·10⁷ for PbPb) times larger than p,e[±]

 Beam-energy dependence: Photon luminosities increase as ∞log³(√s)

Quasi-real γ (coherent emission): Q ~ 1/R ~ 0.06 GeV (Pb), 0.28 GeV (p)

Maximum γ longitud. energies: $\omega < \omega_{max} \approx \frac{\gamma}{R} \sim 80$ GeV (Pb), ~ 2.5 TeV (p)

System	$\sqrt{S_{ m NN}}$	\mathcal{L}_{int}	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{ m A}$	$E_{\gamma}^{ m max}$	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	$2.76+2.76\mathrm{TeV}$	2960	7.1 fm	80 GeV	160 GeV
p-Pb	8.8 TeV	1 pb ⁻¹	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
p-p	14 TeV	$150\mathrm{fb^{-1}}$	$7.0 + 7.0 \mathrm{TeV}$	7450	0.7 fm	2.45 TeV	4.5 TeV

Single X = C-even (spin 0,2) resonances only (Landau-Yang + C symmetry)

Rich & unique (B)SM γγ physics with UPCs at LHC

p, A	S ² Y Y TF	$ p, A $ $ \downarrow \gamma $ $ \ell^+, W^+, t $ $ \ell^-, W^-, \overline{t} $ $ p, A $	p, A FF	p, A	p, A .W ⁺ , Z , W ⁻ , Z p, A	S^2 γ γ γ γ γ γ γ γ	$(\overline{b})_{0,2}, (b\overline{b})_{0,2}, {\mathcal T}_0$ $a, \phi, {\mathcal M} {\mathcal M}, G$
System	$\sqrt{s_{_{ m NN}}}$	$\mathcal{L}_{\mathrm{int}}$	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{\rm A}$	E_{γ}^{\max}	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	2.76 + 2.76 TeV	2960	7.1 fm	80 GeV	160 GeV
p-Pb	8.8 TeV	1 pb ⁻¹	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
p-p	14 TeV	$150{\rm fb}^{-1}$	7.0 + 7.0 TeV	7450	0.7 fm	2.45 TeV	4.5 TeV
	Process			Physics	motivation		
	$\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$	- "St	andard candles" for proto	n/nucleus γ fluxes,]	EPA calculations,	and higher-order QED corre	ctions
	$\gamma\gamma \to \tau^+\tau^-$			Anomalous $ au$ lepton	e.m. moments [29	9–32]	
	$\gamma\gamma \to \gamma\gamma$		aQGC [25], ALPs [27]	, BI QED [<mark>28</mark>], non	commut. interactio	ons [36], extra dims. [37],	
	$\gamma\gamma ightarrow {\cal T}_0$		Ditauoni	ium properties (hea	viest QED bound s	state) [38, 39]	
	$\gamma\gamma \to (c\overline{c})_{0,2}, (b\overline{b})_{0,2}$	$(\bar{b})_{0,2}$	Properties o	of scalar and tensor	charmonia and bot	tomonia [40, 41]	
	$\gamma\gamma \to XYZ$		Propertie	es of spin-even XYZ	Z heavy-quark exo	tic states [42]	
	$\gamma\gamma \rightarrow VM VM$			$= \rho, \omega, \phi, J/\psi, \Upsilon$): H	-		
	$\gamma\gamma \rightarrow W^+W^-, Z$	Z, Z γ , · · ·	anor	nalous quartic gaug			
	$\gamma\gamma \to H$			Higgs- γ coupling,		-	
	$\gamma\gamma \rightarrow HH$			Higgs potential [51]			
	$\gamma\gamma \to t\bar{t}$			nomalous top-quark			_
	$\gamma\gamma \to \tilde{\ell}\tilde{\ell}, \tilde{\chi}^+\tilde{\chi}^-,$					harged Higgs bosons [11, 55].
	$\gamma\gamma \to a, \phi, \mathcal{MM}$., <i>G</i>	ALPs [27, 56]	, radions [57], mon	opoles [<mark>58–61</mark>], gr	avitons [62–64],	

Workshop on γ -induced processes, Durham June'23

Existing dedicated $\gamma\gamma$ MC event generators

So far dedicated MC event generators include only hard-coded γγ processes, LO QED/QCD only, no extra γ/gluon FSR, no generation of ("uninteresting") background processes,…

STARlight

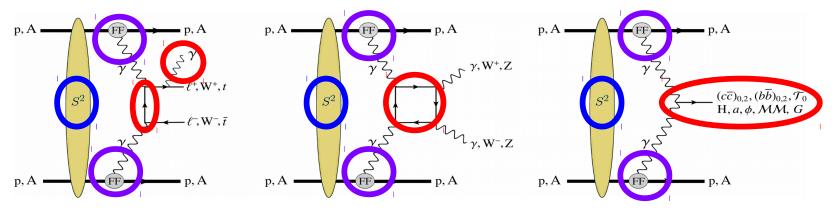
Su	perChic	

Two-Photon Channels	
Particle	Jetset ID
e ⁺ e ⁻ pair	11
$\mu^+\mu^-$ pair	13
τ ⁺ τ ⁻ pair	15
$\tau^+\tau^-$ pair, polarized decay	10015*
ρ ⁰ pair	33
a ₂ (1320) decayed by PYTHIA	115
η decayed by PYTHIA	221
f ₂ (1270) decayed by PYTHIA	225
η' decayed by PYTHIA	331
$f_2(1525) \rightarrow K^+K^-(50\%), K^0\bar{K}^0(50\%)$	335
η_c decayed by PYTHIA	441
f ₀ (980) decayed by PYTHIA	9010221

	Two-photon collisions
55	$W^+(\to \nu_l(8) + l^+(9)) + W^-(\to \overline{\nu}_l(10) + l^-(11))$
56	$e^+(6) + e^-(7)$
57	$\mu^+(6) + \mu^-(7)$
58	$\tau^+(6) + \tau^-(7)$
59	$\gamma(6) + \gamma(7)$
60	$H(5) \rightarrow b(6) + \overline{b}(6)$
68	$a(5) \rightarrow \gamma(6) + \gamma(7)$
69	$M(5) \rightarrow \gamma(6) + \gamma(7)$ (Dirac Coupling)
70	$M(5) \rightarrow \gamma(6) + \gamma(7) \ (\beta g \text{ Coupling})$
71	$m(6) + \overline{m}(7)$ (Dirac Coupling)
72	$m(6) + \overline{m}(7) \ (\beta g \text{ Coupling})$
73	$\tilde{\chi}^{-}(6)(\rightarrow \tilde{\chi}_{0}^{1}(8) + \mu^{-}(9) + \overline{\nu}_{\mu}(10)) + \tilde{\chi}^{+}(7)(\rightarrow \tilde{\chi}_{0}^{1}(11) + \mu^{+}(12) + \nu_{\mu}(13))$
74	$\tilde{\chi}^{-}(6)(\rightarrow \tilde{\chi}_{0}^{1}(8) + \overline{u}(9) + d(10)) + \tilde{\chi}^{+}(7)(\rightarrow \tilde{\chi}_{0}^{1}(11) + u(12) + \overline{d}(13))$
75	$\tilde{\chi}^{-}(6)(\rightarrow \tilde{\chi}_{0}^{1}(8) + \mu^{-}(9) + \overline{\nu}_{\mu}(10)) + \tilde{\chi}^{+}(7)(\rightarrow \tilde{\chi}_{0}^{1}(11) + u(12) + \overline{d}(13))$
76	$\tilde{l}^{-}(5))(\rightarrow \tilde{\chi}_{0}^{1}(8) + \mu^{-}(9)) + \tilde{l}^{+}(6)(\rightarrow \tilde{\chi}_{0}^{1}(10) + \mu^{+}(11))$
77	$\phi(5) \to \mu^+(6)\mu^-(7)$
78	$J/\psi(5) \to e^+(6)e^-(7)$
79	$\psi_{2S}(5) \to e^+(6)e^-(7)$

FPMC

Workshop on γ -induced processes, Durham June'23


IPROC	Description	anh the LIDC
16006	$\gamma\gamma \rightarrow ll$	only pp UPC
16010	$\gamma\gamma \rightarrow W^+W^-$	
16010	$\gamma\gamma \rightarrow W^+W^-$ h	beyond SM
16015	$\gamma \gamma \rightarrow ZZ$ beyon	nd SM

UPCgen, LPAIR/CepGen

$$\gamma\gamma \to \ell^+\ell^-$$

gamma-UPC yy MC event generator

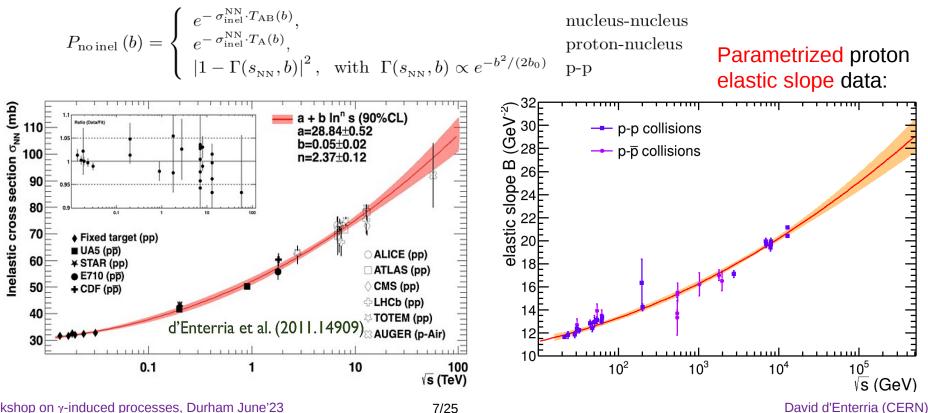
- So far existing MC event generators (StarLight, SuperChic, FPMC, UPCgen...) include only few hard-coded γγ processes, LO QED/QCD only, no extra γ/gluon FSR, no generation of ("uninteresting") background processes,...
- gamma-UPC changes this: Any arbitrary (B)SM & Quarkonia matrix elements with MG5@NLO & HelacOnia, N γ/gluon FSR out-of-the-box, extendable to NLO QCD/EW, LHE output, shower+hadroniz. via PS, different form factors (γ fluxes) coded, p-p,p-A,A-A (for any A) UPCs,...

gamma-UPC key properties:

- **1)** Matrix elements: MG5@NLO & HelacOnia (N γ/g FSR's, NLO QCD/EW)
- 2) p,A form factors: Charge (ChFF) (and Electric Dipole, EDFF) γ fluxes
- 3) p,A survival probability: Glauber-MC (and optical) based eikonal

$\gamma\gamma$ EPA cross sections & survival probability

Cross section:


$$\sigma(\mathbf{A} \to \mathbf{B} \xrightarrow{\gamma\gamma} \mathbf{A} X \to \mathbf{B}) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathbf{A} \to \mathbf{B})}}{\mathrm{d}E_{\gamma_1} \mathrm{d}E_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

$$\frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no}\,\mathrm{inel}}\left(|\boldsymbol{b}_1 - \boldsymbol{b}_2|\right) N_{\gamma_1/Z_1}(E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/Z_2}(E_{\gamma_2}, \boldsymbol{b}_2)$$

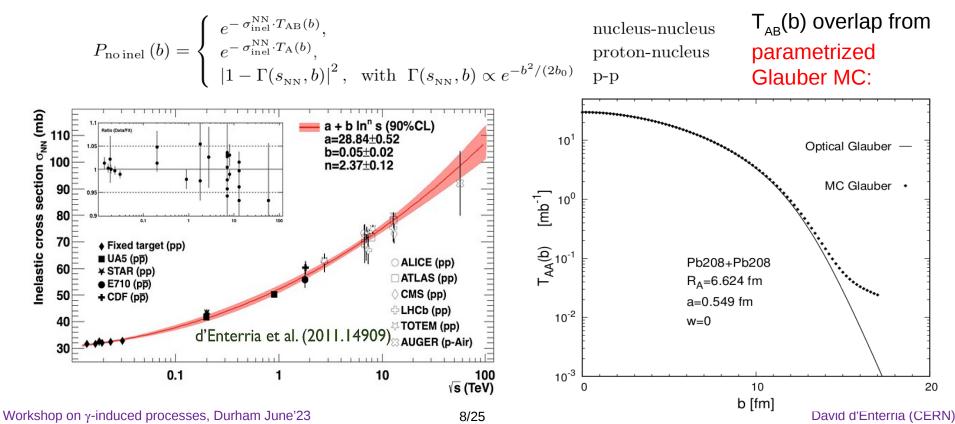
$$\times \theta(b_1 - \epsilon R_{\rm A})\theta(b_2 - \epsilon R_{\rm B})$$

No hadronic/inelastic interaction probability density:

Workshop on γ-induced processes, Durham June'23

γγ **EPA cross sections & survival probability**

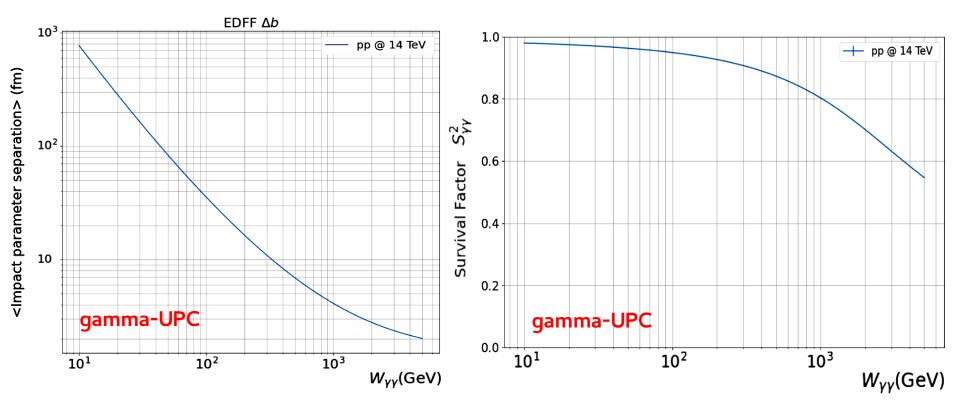
Cross section:


$$\sigma(A B \xrightarrow{\gamma\gamma} A X B) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{d^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(AB)}}{dE_{\gamma_1} dE_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

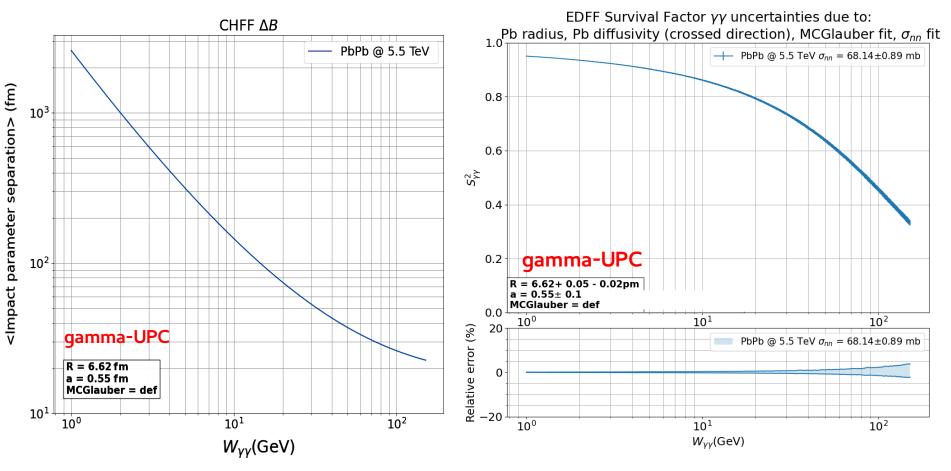
$$\frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no\,inel}} \left(|\boldsymbol{b}_1 - \boldsymbol{b}_2| \right) N_{\gamma_1/Z_1}(E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/Z_2}(E_{\gamma_2}, \boldsymbol{b}_2)$$

$$\times \theta(b_1 - \epsilon R_{\rm A})\theta(b_2 - \epsilon R_{\rm B})$$


No hadronic/inelastic interaction probability density:

How peripheral are p-p UPCs at the LHC?

• Average $|\vec{b}_1 - \vec{b}_2|$ vs. m_{yy}: m_{yy} <50 GeV: $\langle \Delta b \rangle > 100$ fm m_{yy} >1 TeV: $\langle \Delta b \rangle < 4$ fm


■ p-p survival probab. vs. m_{$\gamma\gamma$}: m_{$\gamma\gamma$}<10 GeV: $\langle P_{non-overlap} \rangle >95\%$ m_{$\gamma\gamma$}>1 TeV: $\langle P_{non-overlap} \rangle <80\%$

How peripheral are Pb-Pb UPCs at the LHC?

• Average $|\vec{b}_1 - \vec{b}_2|$ vs. m_{yy}: m_{yy}<5 GeV: $\langle \Delta b \rangle > 1000$ fm m_{yy}>100 GeV: $\langle \Delta b \rangle \sim 20$ fm

Pb-Pb survival probab. vs. $m_{\gamma\gamma}$: $m_{\gamma\gamma} < 5 \text{ GeV}: \langle P_{\text{non-overlap}} \rangle > 90\%$ $m_{\gamma\gamma} > 100 \text{ GeV}: \langle P_{\text{non-overlap}} \rangle < 40\%$

Workshop on γ -induced processes, Durham June'23

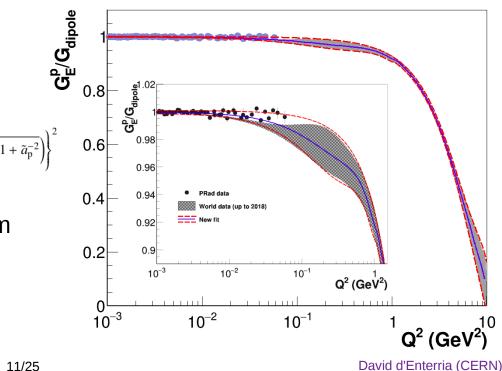
David d'Enterria (CERN)

Proton form factors & γ fluxes: ChFF, EDFF

Electric dipole form factor (EDFF)

Same as STARlight

$$N_{\gamma/Z}^{\rm EDFF}(E_{\gamma}, b) = \frac{Z^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left[K_1^2(\xi) + \frac{1}{\gamma_{\rm L}^2} K_0^2(\xi) \right] \qquad \xi = \frac{E_{\gamma} b}{\gamma_{\rm L}}$$


Charge form factor (ChFF)

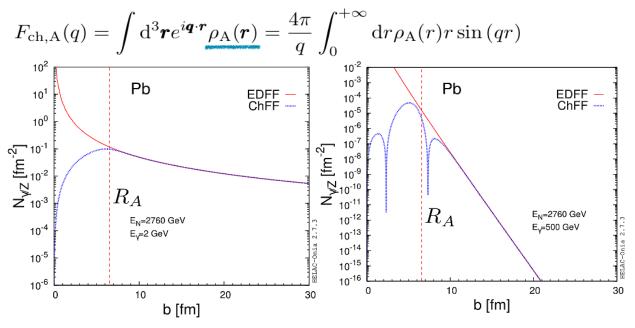
$$N_{\gamma/\mathbf{Z}}^{\mathrm{ChFF}}(E_{\gamma},b) = \frac{Z^{2}\alpha}{\pi^{2}} \left| \int_{0}^{+\infty} \frac{dk_{\perp}k_{\perp}^{2}}{k_{\perp}^{2} + E_{\gamma}^{2}/\gamma_{\mathrm{L}}^{2}} F_{\mathrm{ch},\mathrm{A}} \left(\sqrt{k_{\perp}^{2} + E_{\gamma}^{2}/\gamma_{\mathrm{L}}^{2}} \right) J_{1}\left(bk_{\perp}\right) \right|^{2}$$
$$F_{\mathrm{ch},\mathrm{A}}(q) = \int \mathrm{d}^{3}\boldsymbol{r} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \rho_{\mathrm{A}}(\boldsymbol{r}) = \frac{4\pi}{q} \int_{0}^{+\infty} \mathrm{d}r \rho_{\mathrm{A}}(r) r\sin\left(qr\right)$$

Proton dipole form-factor:

$$F_{\rm ch,p}(q) = \frac{1}{\left(1 + q^2 a_{\rm p}^2\right)^2} \quad \text{with } a_{\rm p}^{-2} = Q_0^2 = 0.71 \text{ GeV}^2$$
$$N_{\gamma/p}^{\rm ChFF}(E_{\gamma}, b) = \frac{\alpha}{\pi^2} \frac{\xi^2}{b^2} \left\{ \left[K_1(\xi) - \sqrt{1 + \tilde{a}_{\rm p}^{-2}} K_1\left(\xi\sqrt{1 + \tilde{a}_{\rm p}^{-2}}\right) \right] - \frac{\xi}{2\tilde{a}_{\rm p}^2} K_0\left(\xi\sqrt{1 + \tilde{a}_{\rm p}^{-2}}\right) \right\}$$

Updated proton elastic ChFF, from fit to latest A1+PRad data.

Heavy-ion form factors & γ fluxes: ChFF, EDFF

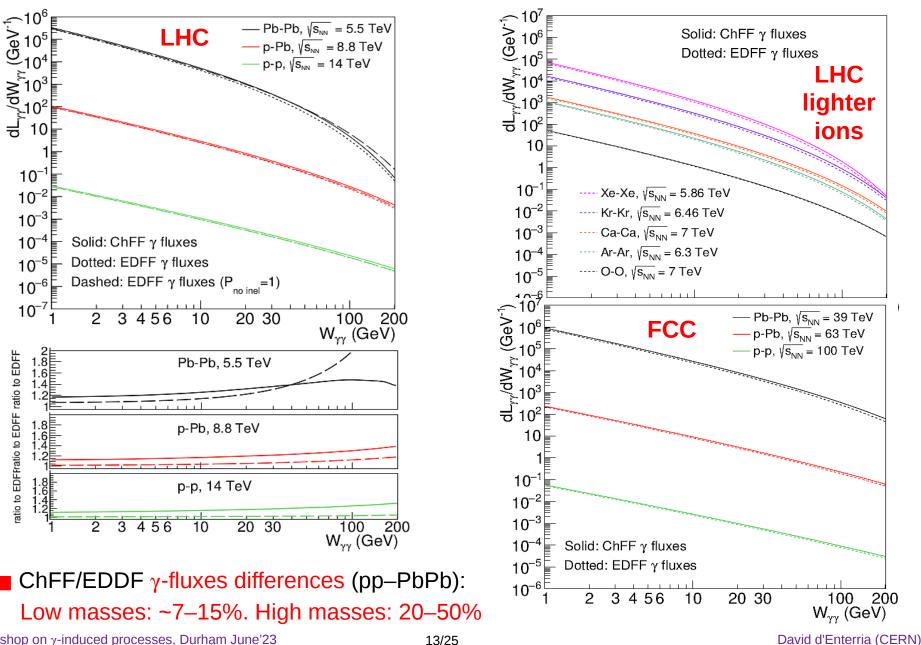

Electric dipole form factor (EDFF)

Same as STARlight

$$N_{\gamma/Z}^{\text{EDFF}}(E_{\gamma}, b) = \frac{Z^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left[K_1^2(\xi) + \frac{1}{\gamma_{\text{L}}^2} K_0^2(\xi) \right] \qquad \xi = \frac{E_{\gamma} b}{\gamma_{\text{L}}}$$

Charge form factor (ChFF)

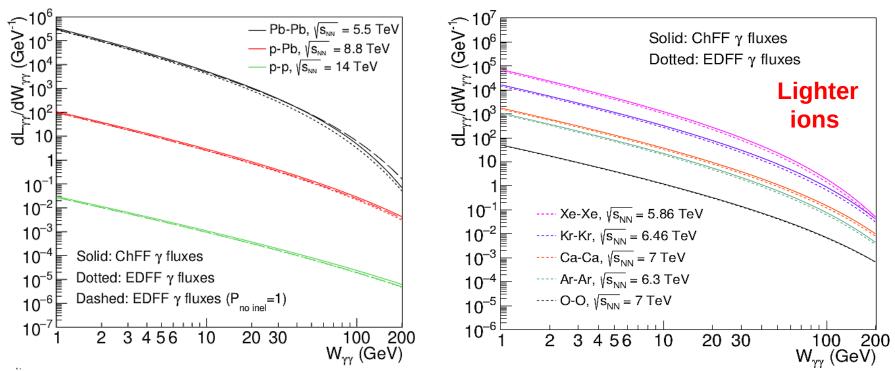
$$N_{\gamma/Z}^{\rm ChFF}(E_{\gamma},b) = \frac{Z^2 \alpha}{\pi^2} \left| \int_0^{+\infty} \frac{dk_{\perp} k_{\perp}^2}{k_{\perp}^2 + E_{\gamma}^2 / \gamma_{\rm L}^2} F_{\rm ch,A} \left(\sqrt{k_{\perp}^2 + E_{\gamma}^2 / \gamma_{\rm L}^2} \right) J_1(bk_{\perp}) \right|^2$$

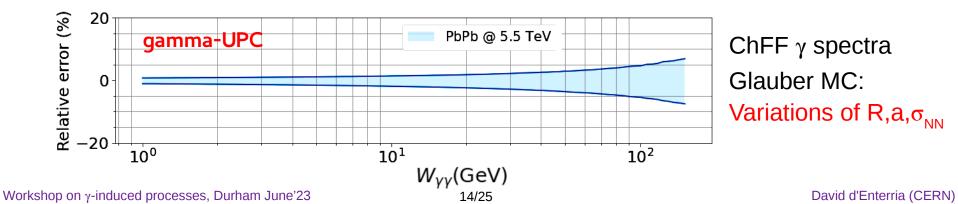

- Main difference comes from the $b < R_A$ regime
- + EDFF photon number density is divergent at b=0
 - Need a (arbitrary) cutoff when convoluting with ME

ChFF, much more realistic, preferred.

Workshop on γ -induced processes, Durham June'23

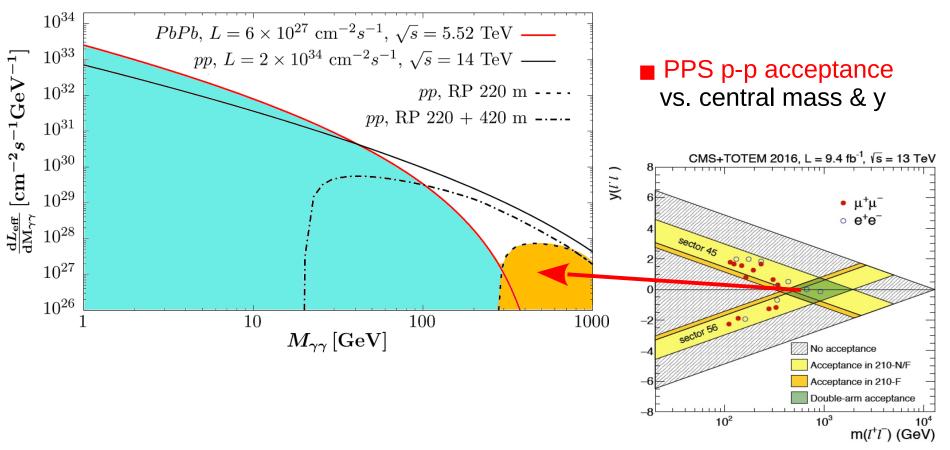
David d'Enterria (CERN)


Effective $\gamma\gamma$ luminosities (LHC/FCC)

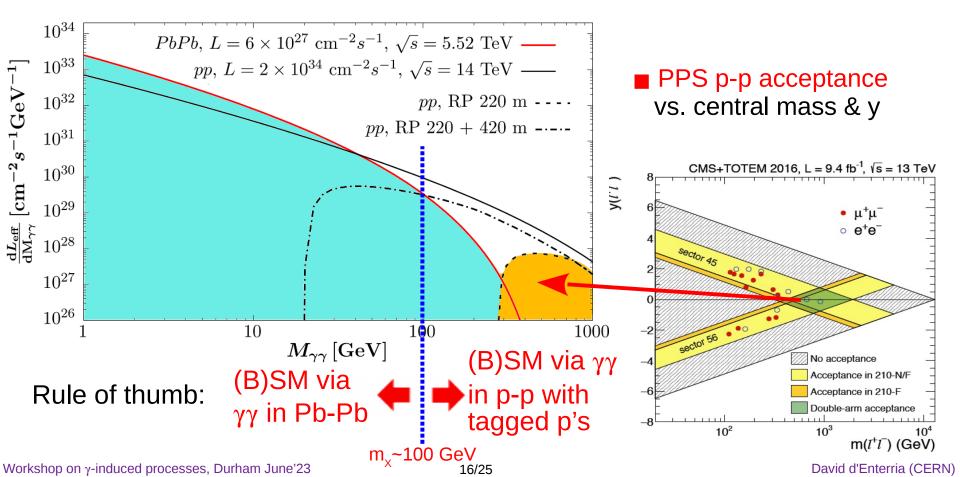

Workshop on γ-induced processes, Durham June'23

Effective $\gamma\gamma$ luminosities (LHC)

Thanks to Z^4 boost, A-A $\gamma\gamma$ lumis (per collision) well above p-p ones:

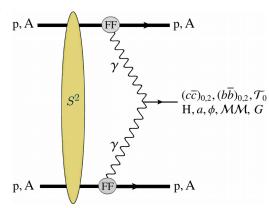


ChFF γγ luminosity uncertainties (PbPb): Low-mass: few %. High mass: <7%


Effective $\gamma\gamma$ luminosities (LHC): pp vs. PbPb

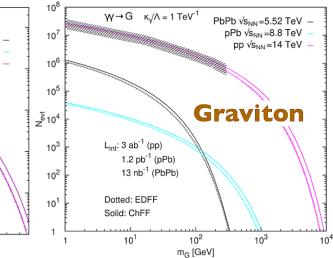
- Thanks to Z^4 boost, Pb-Pb $\gamma\gamma$ lumis (per collision) well above the p-p ones.
- Up to $W_{yy} \approx 30$ GeV, accounting for much larger p beam luminosity
- Up to $W_{\gamma\gamma} \approx 300 \text{ GeV}$ requiring double-arm p tagging at PPS (~220 m) (kinematic matching required to remove huge pp pileup):

Effective $\gamma\gamma$ luminosities (LHC): pp vs. PbPb


- Thanks to Z^4 boost, Pb-Pb $\gamma\gamma$ lumis (per collision) well above the p-p ones.
- Up to $W_{yy} \approx 30$ GeV, accounting for much larger p beam luminosity
- Up to $W_{\gamma\gamma} \approx 300 \text{ GeV}$ requiring double-arm p tagging at PPS (~220 m) (kinematic matching required to remove huge pp pileup):

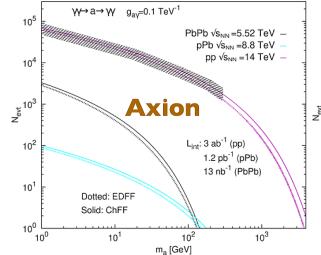
Example $\gamma\gamma$ cross sections (LHC)

C-even SM resonances (9 states of m~3–10 GeV, plus Higgs):


Colliding	Form				gam	ma-UPC	$\sigma(\gamma\gamma \rightarrow)$	()			
system	factor	$\eta_{\rm c}(1{\rm S})$	$\eta_{\rm c}(2S)$	Xc0	Xc2	$\eta_{\rm b}(1S)$	$\eta_{\rm b}(2S)$	Хю	Х b2	\mathcal{T}_0	Н
	pointlike	61 pb	13 pb	17 pb	19 pb	110 fb	44 fb	29 fb	8.9 fb	0.12 fb	0.17 fb
p-p, 14 TeV	$EDFF(S_{\gamma\gamma}^2 = 1)$	51 pb	11 pb	14 pb	15 pb	88 fb	35 fb	23 fb	7.1 fb	0.10 fb	0.12 fb
	EDFF	50 pb	11 pb	14 pb	15 pb	86 fb	35 fb	23 fb	7.0 fb	0.10 fb	0.11 fb
	ChFF	56 pb	12 pb	15 pb	17 pb	99 fb	40 fb	26 fb	8.0 fb	0.11 fb	0.14 fb
p-Pb, 8.8 TeV	EDFF	0.16 µb	33 nb	43 nb	46 nb	0.23 nb	92 pb	60 pb	18 pb	0.31 pb	0.11 pb
p-r0, 0.0 lev	ChFF	0.18 μb	38 nb	49 nb	53 nb	0.27 nb	106 pb	70 pb	21 pb	0.35 pb	0.14 pb
0-0, 7 TeV	EDFF	76 nb	16 nb	21 nb	23 nb	0.10 nb	42 pb	28 pb	8.5 pb	0.15 pb	31 fb
0-0, 7 10	ChFF	82 nb	17 nb	22 nb	24 nb	0.11 fb	44 pb	29 pb	9.0 pb	0.16 pb	32 fb
C. C. TT.V	EDFF	2.5 µb	0.50 µb	0.63 μb	0.70 µb	3.1 nb	1.2 nb	0.81 nb	0.25 nb	4.6 pb	0.48 pb
Ca-Ca, 7 TeV	ChFF	2.7 μb	0.58 µb	0.74 μb	0.81 µb	3.5 nb	1.4 nb	0.91 nb	0.29 nb	5.2 pb	0.62 pb
Ar-Ar, 6.3 TeV	EDFF	1.5 μb	0.31 μb	0.40 μb	0.42 μb	1.8 nb	0.73 nb	0.48 nb	0.15 nb	2.9 pb	0.25 pb
AI-AI, 0.5 Iev	ChFF	1.6 µb	0.34 µb	0.44 μb	0.49 μb	2.1 nb	0.83 nb	0.55 nb	0.17 nb	3.1 pb	0.31 pb
Kr-Kr. 6.46 TeV	EDFF	22 µb	4.4 µb	5.9 µb	6.3 μb	25 nb	10 nb	6.7 nb	1.9 nb	41 pb	2.5 pb
KI-KI, 0.40 Iev	ChFF	25 µb	5.1 µb	6.4 µb	7.0 μb	31 nb	12 nb	7.9 nb	2.3 nb	46 pb	3.4 pb
Va Va 5 96 T-V	EDFF	89 µb	18 µb	24 µb	26 µb	98 nb	38 nb	26 nb	7.7 nb	0.16 nb	4.8 pb
Xe-Xe, 5.86 TeV	ChFF	101 µb	21 µb	27 µb	29 µb	116 nb	46 nb	31 nb	9.2 nb	0.19 nb	6.2 pb
Pb-Pb, 5.52 TeV	EDFF	0.39 mb	79 µb	0.10 mb	0.11 mb	0.40 µb	0.15 μb	0.10 µb	31 nb	0.71 nb	9.3 pb
ru-ru, 5.52 lev	ChFF	0.46 mb	95 μb	0.12 mb	0.13 mb	0.50 µb	0.19 µb	0.13 µb	38 nb	0.86 nb	13 pb

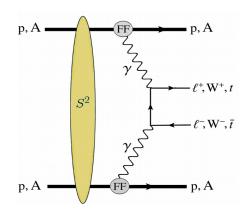
 Most low-mass resonances accessible in PbPb (pp without pileup) with low-p_T

ch.part PID & y reco.


– Higgs boson: no significance

C-even BSM resonances:

PbPb (pp with RPs) best limits below (above) m_{γγ}~100 GeV


Workshop on γ -induced processes, Durham June'23

Example $\gamma\gamma$ cross sections (LHC)

Double fermions, e.g. $\gamma\gamma \rightarrow$ ttbar (note <u>NLO</u> in QCD):

Process: $\gamma \gamma \rightarrow t\bar{t}$		gamma-UPC σ	NLO
Colliding system,	EDFF	ChFF	average
p-p at 14 TeV	0.198 ^{+0.004} _{-0.003} fb	0.287 ^{+0.005} _{-0.004} fb	$0.242^{+0.005}_{-0.004} \pm 0.045$ fb
p-Pb at 8.8 TeV	36.5 ^{+0.8} _{-0.7} fb	59.3 ^{+1.3} _{-1.1} fb	$48^{+1.0}_{-0.9} \pm 11$ fb
Pb-Pb at 5.52 TeV	$12.6^{+0.4}_{-0.3}$ fb	18.8 ^{+0.5} _{-0.4} fb	$15.7^{+0.5}_{-0.4} \pm 3.1 \text{ fb}$

Double quarkonia:

Double bosons (loop induced):

 γ, W^+, Z

 $\gamma_{\gamma, W}$

р. A

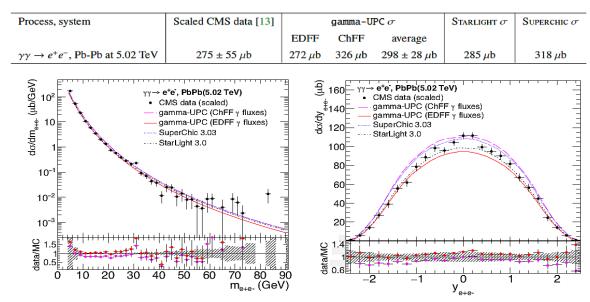
p, A

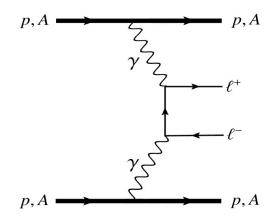
Process: $\gamma \gamma \rightarrow J/\psi J/\psi$	gamma-UPC σ				
Colliding system, c.m. energy	EDFF	ChFF	average		
p-p at 14 TeV	20^{+11}_{-6} fb	23 ⁺¹³ ₋₇ fb	$22^{+12}_{-7} \pm 2$ fb		
p-Pb at 8.8 TeV	55 ⁺³⁰ ₋₁₆ pb	64 ⁺³⁵ ₋₁₈ pb	$60^{+32}_{-17} \pm 4 \text{ pb}$		
Pb-Pb at 5.52 GeV	103 ⁺⁵⁷ ₋₂₉ nb	128 ⁺⁷¹ ₋₃₆ nb	$115^{+64}_{-32} \pm 12 \text{ nb}$		
	A				

Loop-induced rare processes in SM (BSM potential)

Process: $\gamma \gamma \rightarrow Z \gamma$		gamma-UP(σ
Colliding system, c.m. energy	EDFF	ChFF	average
p-p at 14 TeV	36.2 ab	44.7 ab	40.5 ± 4.3 ab
p-Pb at 8.8 TeV	10.3 fb	15.6 fb	$13.0 \pm 2.6 \text{ fb}$
Pb-Pb at 5.52 TeV	109 fb	152 fb	$130 \pm 22 \text{ fb}$
Process: $\gamma \gamma \rightarrow ZZ$		gamma-UPC	Ξσ
Colliding system, c.m. energy	EDFF	ChFF	average
p-p at 14 TeV	52.8 ab	78.4 ab	66 ± 13 ab
p-Pb at 8.8 TeV	12.3 fb	18.8 fb	15.5 ± 3.2 fb
Pb-Pb at 5.52 TeV	46.8 fb	63.2 fb	$55 \pm 8 \text{fb}$

L		$\frac{c_{WWW}}{\Lambda^2} \mathrm{Tr} \left[W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho} \right] \cdot$	σ =	$\sigma_{\rm SM}$ +	$\left(\frac{c_{WWW}}{\Lambda^2}\right)$	$< 1 \text{ TeV}^2$	σ_{WWW}
---	--	--	-----	---------------------	--	---------------------	----------------

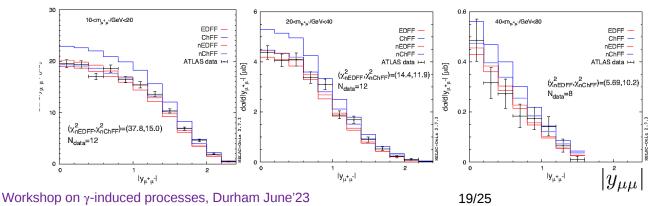

Process: $\gamma \gamma \rightarrow W^+W^-$	gamma-UPC average				
Colliding system, c.m. energy	$\sigma_{ m SM}$	σ_{WWW}			
p-p at 14 TeV	63 ± 11 fb	53 ± 8 ab			
p-Pb at 8.8 TeV	$26 \pm 5 \text{ pb}$	$28 \pm 5 \text{ fb}$			
Pb-Pb at 5.52 TeV	277 ± 44 pb	394 ± 64 fb			


p, A

 S^2

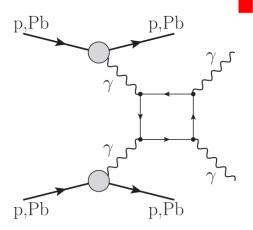
Exclusive dileptons: Data vs. gamma-UPC

Breit-Wheeler process $\gamma \gamma \rightarrow e^+e^-$:



Generic conclusions:

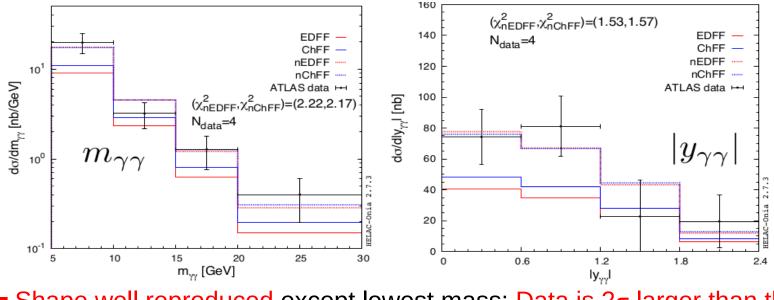
EDFF gamma-UPC~ Starlight ChFF gamma-UPC~ SuperChic


Exclusive dimuons $\gamma \gamma \rightarrow \mu^+ \mu^-$:

Process, system	ATLAS data [19]	gamma-UPC σ			Starlight σ	Superchic σ
		EDFF	ChFF	average		
$\gamma\gamma \rightarrow \mu^+\mu^-$, Pb-Pb at 5.02 TeV	$34.1 \pm 0.8 \mu b$	32.1 µb	40.4 µb	$36.2 \pm 4.2 \ \mu b$	32.1 µb	38.9 µb

Norm.: EDFF better than ChFF Shape: ChFF better than EDFF

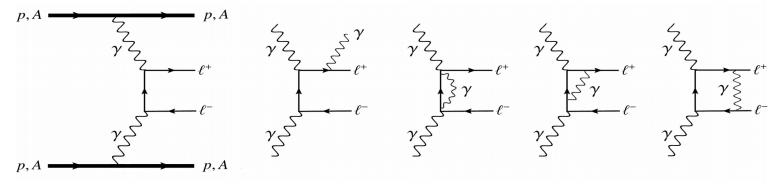
Light-by-light scattering: Data vs. gamma-UPC

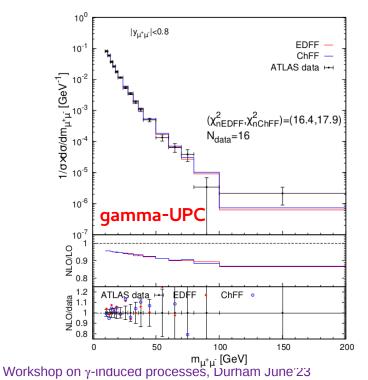


- LbL scattering $\gamma\gamma \rightarrow \gamma\gamma$ (1st proposed in PRL 111 (2013) 080405):
 - Integrated fiducial cross-section:
 - Measurement:

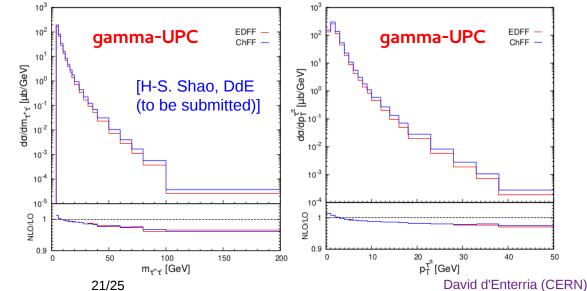
$$\sigma_{fid} = 120 \pm 17(stat.) \pm 13(syst.) \pm 4(lumi.) \text{ nb}$$

ATLAS data [15]	gamma-UPC σ			SUPERCHIC σ	
	EDFF	ChFF	average		
120 ± 22 nb	63 nb	76 nb	70 ± 7 nb	78 ± 8 nb	

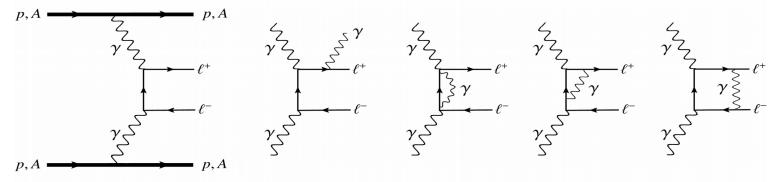

ATLAS: JHEP 03 (2021) 243 CMS: Phys. Lett. B 797 (2019) 134826


Shape well reproduced except lowest mass: Data is 2σ larger than theory
 Do we really control all (non)exclusive backgrounds at low masses?

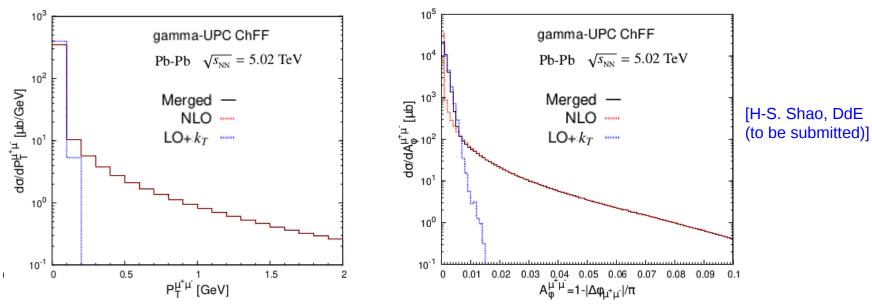
γγ collisions: NLO QED corrections


All calculations so far included only LO diagrams (plus FSR emission in some cases)...

Impact of virtual & real NLO QED corrections on exclusive dilepton production:



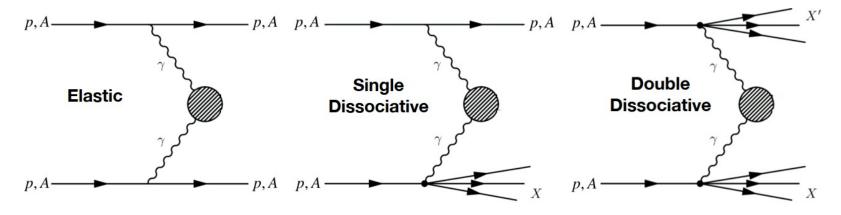
Dimuon: x-section reduced by up to ~10% at high mass Ditau: x-section increases/decreases by few % at low/high masses: Relevant for accurate (g-2) extractions!



γγ collisions: NLO QED corrections

All calculations so far included only LO diagrams (plus FSR emission in some cases)...

Impact of virtual & real NLO QED corrections on exclusive dilepton p_⊤(pair), Aco(pair):



NLO corrections increase the p_{τ} (pair), Aco(pair) tails:

Relevant for non-exclusive backgd removal when applyings cuts on both variables!

γγ collisions: el.-el., inel-el., inel.-inel.

Photons emitted coherently by p/A or incoherently by their constituent quarks/protons:

gamma-UPC codes only the fully coherent γ flux. For heavy-ions, the most important, by far, x-sections: el-el : inel-el : inel-inel = Z⁴ : Z² : Z = 1 : 1/6.7e3 : 1/45.e6 for PbPb

For proton-proton collisions:

- Cross section of **3** processes similar (depending on central system produced).
- Incoherent photon flux available via γ PDF: LuxQED, MMHT2015qed, CT18lux, NNPDF31lux-QED.
- Inel.-el: gamma-UPC+MG5 with ChFF (lpp2) + γ PDF (lpp1) in ppl. possible, but survival factor should be properly implemented.
- Inel-inel: One can always run MG5-standalone with p beams selecting lux-type γ PDF

Questions from the organizers

- What is the maintainability of gamma-UPC? Personpower? gamma-UPC is maintained by H.-S. Shao. http://cern.ch/hshao/gammaupc.html Currently, H-S Shao, DdE, N.Crepet testing/extending it. More help welcome :)
- Are there specific libraries/tools behind the choice of fortran? No specific fortran libs, just choice of leading programmer
- How do you see the code developing in the future? Extended gradually to keep up state-of-the-art. Photoproduction (γ-p,A), inelastic first, then exclusive, could be added.
- Did you consider the possibility of using LHAPDF? LHAPDF already for γ PDF. Elastic γ fluxes in LHAPDF not enough for UPCs: one needs survival factor S²
- Any information about when MG 3.5.0 is coming out? MG 3.5.0 contains only gamma-UPC v1.0, not latest additions. gamma-UPC is decoupled from MG. We'll provide gamma-UPC+MG5 3.X.Y

Currently only the elastic component is implemented, can you give more info about plans for modeling of the dissociative part? (See previous slide)
 What measurements would improve the modeling of the dissoc. component? Events w/ low pileup & 1-,2-proton tag, & reduced |P-induced final state helpful

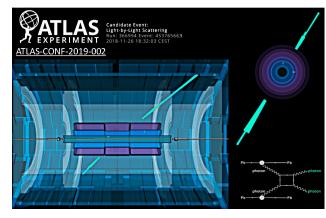
Workshop on γ -induced processes, Durham June'23

gamma-UPC outlook & summary

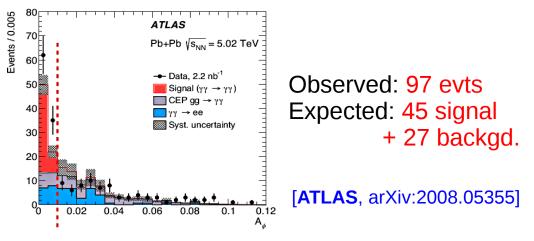
- UPCs at the LHC provide the largest x-sections ever studied for $\gamma\gamma$ colls. over
 - W_{yy} = 1–2000 GeV: Unique (B)SM physics open for study. Increasing number of precise measurements.
- gamma-UPC is a new versatile code to generate any γγ process in UPCs with protons & ions. Interfaced to MG5@NLO & HelacOnia.
- Recent developments (v1.0 \rightarrow v1.2 \rightarrow v1.3, in preparation):
 - Photon k_T smearing (lhe_ktsmearing_UPC.py script run on LHE file)
 - Proton kinematics for transport to & tagging at RPs spectrometers
 - NLO QED corrections
 - Parametric uncertainties
 - Non-exclusive collisions possible
- Future developments:
 - Semi-exclusive W/Z-photon processes
 - NLO EW corrections
 - UPCs for e-proton & e-ion collisions

• ...

Download it, test it, use it (or ask us to produce the LHE files) for your favourite γγ EXP/PH studies!

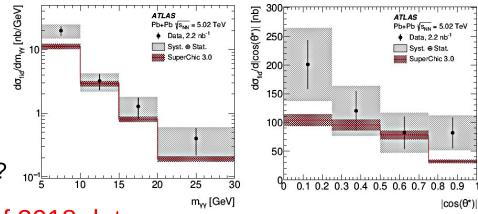

http://cern.ch/hshao/gammaupc.html

roduction				
heoretical gamma-				
a nma cross sections				
ffective photon-photon		\land /	× × 1	
	1\$\$ 1\$\$15	\$\$\$\$\$\$\$\ \$\$\$	\$\$\$\	
s set tions esuits	1 \$\$ \$\$ \$	\$\$/ \$\$ \$\$	\ \$\$	
A C-o' \\$\$ ≈ \∕ ces \$\$. \$\$ \$\$ \$	\$\$ \$\$1 \$\$	line in the second	
B Exclusiv \\$\$ ^{PSI} \$\$ \\$\$\$\$\$	1 \$\$ \$\$ \$	\$\$\$\$\$\$\$ I \$\$	I ^{B.}	Exclusive
IC gamma-ga\\$\$\$\$	\$\$/ \$\$ \$	سينے\$\$	production of a pair d J/ψ m	esons, be
I ^{W+W-} I \$\$	\\$\$ \$\$1 \$	\$\$ interest ∖\$\$ roce	ss \$\$ the study of BFLL-Pom	eron dyna
D gamma gamma is	\\$\$\$\$\$ \\$	S LHCb C SS	SSS [131] in p-p at $\sqrt{1} = 7$ a UPC setup, one can easily	nd 8 TeV
gamma to ZZ			UPCs at the LHC. The correspo	nding cro
Itabar A library for excl	usive photon-	-photon process	ses incertainties frpm scal	e variatio
I semmultraperipheral pr	oton and nucl	ear collision	D -PD luminosity of $\mathcal{L}_{int} = 10 \text{ nb}$	', one sh
G Axion-like particles			into account detector al ceptano	
, I ^{H Massi} By Hua-Sheng Shao	(IDTHE) and I	avid d'Enterr		
Differential photon-		TABLE VI: Total c	ross sections for $\gamma\gamma \rightarrow J/\psi J/\psi$ in U	PCs at the
ton cross section guits: Datase, gamma-	2207 02012		etric uncertainty is derived from the	e renormal
I Please cite arXiv:	2207.03012		Process: $\gamma \gamma \rightarrow J/\psi J/\psi$	
A Exclusive dielectrons				100
			Colliding system, c.m. energy	ED


Backup slides

Observation of $\gamma\gamma \rightarrow \gamma\gamma$ (PbPb, 5 TeV)

- Observation of light-by-light scattering in PbPb colls at 5 TeV (2.2 nb⁻¹): - 2 photons (E_{τ} >2.5 GeV, $|\eta|$ <2.4, m_{χ} >5 GeV) with no hadronic activity over $|\eta|$ <5
 - Photon pair: $p_T < 1$ GeV, Acoplanarity cut: A $\varphi < 0.01$ to remove backgds.



[ATLAS, PRL123 (2019) 052001]

Combination of ATLAS (2015+2018) data, compared to LbL prediction:

- LbL observation: Signif. = 8.8σ
- Fiduc. x-section $\sigma(\gamma\gamma \rightarrow \gamma\gamma) = 120\pm22$ nb is ~1.5 higher than theory (80±8 nb).
- Shape of differential distributions consistent with MC within uncertainties
- Control of (non)excl. backgds at low $m_{\gamma\gamma}$?

Ongoing detailed CMS analysis of 2018 data.

Workshop on γ-induced processes, Durham June'23

David d'Enterria (CERN)

ALPs searches via $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ (PbPb, 5 TeV)

Recasting exclusive $\gamma\gamma$ measurement as ALP search on top of LbL continuum:

Events / (1 GeV

1.2

0.8

0.6

0.4

0.2

0

Gel

9 GeV

14 GeV

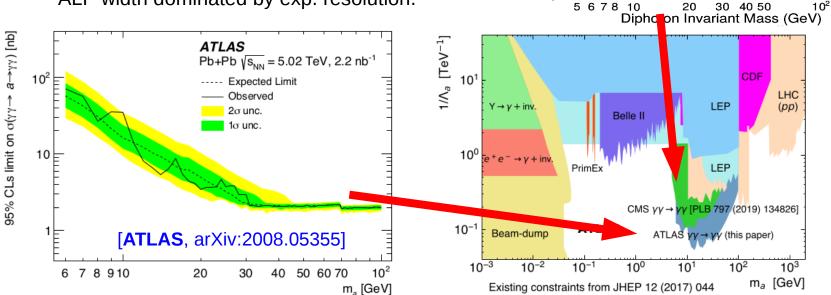
22 GeV

90 GeV

6 GeV

- 11 GeV

- 16 GeV


30 GeV

PbPb

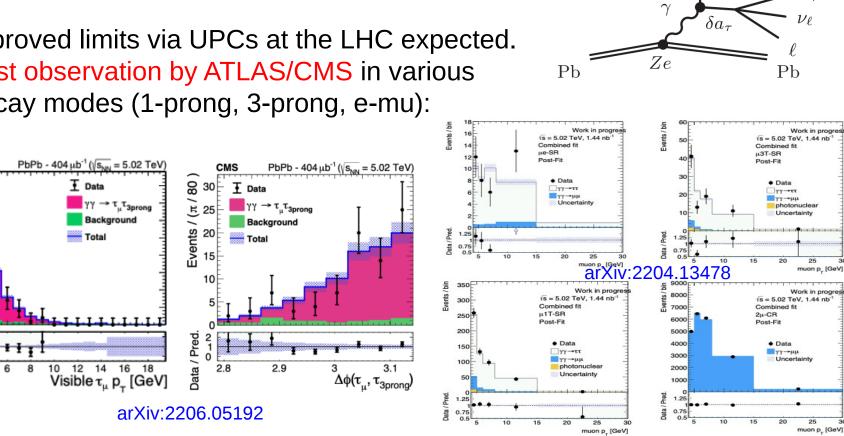
• ALP model:
$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_a^2}{2} a^2 - \frac{g_{a\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

- Limits on $\sigma_{\gamma\gamma
 ightarrow a
 ightarrow \gamma\gamma}$ extracted
 - Cast into limits on aγγ coupling (1/Λ_a) assuming BR(a→γγ)=1 [CMS, PLB797 (2019) 134826]

Reco effic.: ~20% (6 GeV), ~45% (>40 GeV).
 ALP width dominated by exp. resolution.

■ Most stringent limits to date on ALPs over $m_a = 5-100 \text{ GeV}$ ■ $\sigma(\gamma\gamma \rightarrow a \rightarrow \gamma\gamma) > 2-70 \text{ nb}$ excluded at 95% C.L. over that mass interval.

CMS


Simulation

 $\rightarrow \gamma \gamma \rightarrow a \rightarrow \gamma \gamma$ Starlight v2.76

Anomalous tau lepton $(g-2)_{\tau}$ via $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$

Anomalous tau-lepton magnetic moment only mildly constrained from $\gamma\gamma \rightarrow \tau\tau$ studies at LEP times: $(g-2)_{\tau} = -0.05 - 0.03$

Improved limits via UPCs at the LHC expected. First observation by ATLAS/CMS in various decay modes (1-prong, 3-prong, e-mu):

Pb

Ze

 γ

 τ

Ongoing extended CMS studies with Run-2 PbPb (and pp) data

CMS

∧a 9940

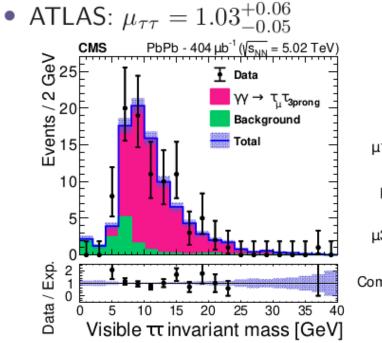
- 35

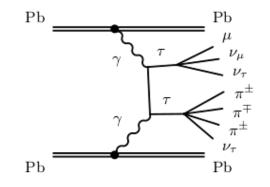
25 Events /

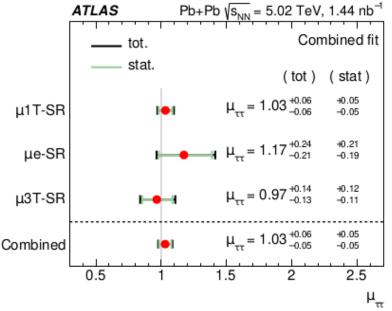
15

10

Data / Exp


Ph


Observation of $\gamma \gamma \rightarrow \tau \tau$ (PbPb, 5 TeV)


$\gamma\gamma\to\tau\tau$ production

ATLAS: CERN-EP-2022-079, CMS: CERN-EP-2022-098

- First observation of $\gamma\gamma \rightarrow \tau\tau$ production in hadron collisions by ATLAS and CMS.
- Targets μ +3prong (CMS) or μ +3prong, μ +1prong and μ +e (ATLAS) decays
- CMS: $\sigma_{fid} = 4.8 \pm 0.6(stat.) \pm 0.5(syst.)$ mb

30/25