



# **Experimental Overview**

#### - Photon induced processes-

 Workshop on the Modeling of Photon Induced Processes – June 5, 2023

Aleksandra Dimitrievska

Lawrence Berkeley National Laboratory

#### Heavy-ion collisions

p-p collisions



- Light-by-light scattering <u>http://dx.doi.org/10.1103/</u> <u>PhysRevLett.123.052001</u>
- g-2 measurement <u>https://arxiv.org/abs/</u> <u>2204.13478</u>.
- Photon luminosity scales with Z<sup>4</sup>

- Photon-induced di-lepton production <u>https://journals.aps.org/prl/abstract/</u> <u>10.1103/PhysRevLett.125.261801</u>
- Observation of photon-induced WW production <u>https://www.sciencedirect.com/</u> <u>science/article/pii/S0370269321001301</u>
- better for EW scale and higher

• Mechanism (in p-p):



• Single-dissociative is dominant

- Two ways for detection
  - Tagging the protons in the forward detector



• Using the information in the central detector only



- Two ways for detection
  - Tagging the protons in the forward detector
    - Higher purity (S/B)
    - Smaller Acceptance and Efficiency
  - Using the information in the central detector only
    - More background: lower purity (S/B)
    - Higher Acceptance and Efficiency
    - Challenge: Background modeling
    - Challenge: Pile-up

• Ultimately we should do both and create regions with different purity

- Recent publications:
  - Light-by-light scattering <u>http://dx.doi.org/10.1103/PhysRevLett.123.052001</u> <u>https://arxiv.org/abs/1810.04602</u>
  - ✓ g-2 measurement <u>https://arxiv.org/abs/2204.13478</u> <u>https://arxiv.org/abs/2206.05192</u>
  - Photon-induced di-lepton production <u>https://journals.aps.org/prl/abstract/10.1103/</u> <u>PhysRevLett.125.261801</u> <u>https://arxiv.org/abs/2009.14537</u> <u>https://arxiv.org/pdf/1803.04496.pdf</u>
  - ✓ Observation of photon-induced WW production <u>https://www.sciencedirect.com/science/article/pii/</u> <u>S0370269321001301</u>
  - ✓ Photon-induced WW and ZZ in hadronic final states <u>https://cds.cern.ch/record/2803716</u>
  - ✓ Photon-induced tt <u>https://cds.cern.ch/record/2803843</u>
  - ✓ Generic search is presented for associated production of a Z boson or a photon with an additional unspecified massive particle X <u>https://arxiv.org/abs/2303.04596</u>



- Available data at the LHC
  - Run-1 (2011-2012, 7 and 8 TeV, 25 fb<sup>-1</sup>)
  - Run-2 (2015-2018, 13 TeV, 140 fb<sup>-1</sup>)
    - Available data with fwd detectors
  - Run-3 (2022-2025, 13.6 TeV, ~300 fb<sup>-1</sup>)
    - Collecting data with fwd detectors
  - Run-4-6 (2029-2041, ~14TeV, ~3000 fb<sup>-1</sup>)
    - Detectors Upgrade: |eta| < 4



Mean Number of Interactions per Crossing





#### J.Liu slides

• Plenty of opportunities



**Jets** ATLAS PHYS-PUB-2015-003 CMS 2002.12146

**Electrons/muons** 

CMS+TOTEM 1803.04496

ATLAS 2009.14537

SM sQCD



**Quarkonia** Harland-Lang et al 1508.02718 Goncalves et al 1912.02720



**Gauge bosons** Tizchang & Etesami 2004.12203 Baldenegro et al 2009.08331





HION

**Heavy ions** Oppedisano Elba Wkshp 2016 Chwastowski et al 2011.00872



**Top quarks** Goncalves et al 2007.04565 Howarth 2008.04249

p

HIGG

**Higgs boson** Cox et al 0709.3035 Heinemeyer et al 0708.3052



**Sleptons & neutralinos** 

Beresford & JL 1811.06465 Harland-Lang et al 1812.04886





Axion-like particles Fichet et al 1312.5153 Baldenegro et al 1803.10835





Fuks et al 1912.08975

**HDBS** 

8



• Why is photon-induced WW interesting?



- Measure self-interaction of EW gauge bosons
  - Sensitive to triple (yWW) and quartic (yyWW) gauge coupling
  - Clean signature with very little central activity beside the products of the photon interaction
- Experimental signature:
  - one electron and one muon oppositely charged
  - no other particles around the production vertex

- Challenges:
  - pile-up



- Challenges:
  - modeling of the underlying event



- number of charged particles is measured in Drell-Yan events

- Challenges:
  - modeling of the underlying event
  - Correction derived from Drell-Yan events as a function of Nch and p<sub>T</sub>(II)



- Challenges:
  - modeling of the underlying event
  - Correction applied to  $qq \rightarrow WW$  function of Nch and p<sub>T</sub>(VV)
  - Pythia8, Herwig7 and Sherpa parton-shower models agree within 1% except for Ntrk = 0



- Challenges:
  - modeling of the proton fragmentation



- Available MC Samples (at the time of the publication)

#### • $\gamma\gamma \rightarrow ll$

- Elastic:
  - Herwig 7.1.5 interfaced with the BudnevQED photon flux
  - MadGraph 2.6.7 interfaced to Pythia 8.243
- Single-dissociative:
  - LPAIR 4.0
  - MadGraph 2.6.7 interfaced to Pythia 8.243
- Double-dissociative
  - Pythia 8.240 using the NNPDF3.1NLOluxQED PDF
  - MadGraph 2.6.7 interfaced to Pythia 8.243
- $\gamma\gamma \to WW$ 
  - Elastic:
    - Herwig 7.1.5 interfaced with the BudnevQED photon flux
    - MadGraph 2.6.7 interfaced to Pythia 8.243
  - Single-dissociative:
    - MadGraph 2.6.7 interfaced to Pythia 8.243 (re-weighted to LPAIR)
  - Double-dissociative
    - MadGraph 2.6.7 interfaced to Pythia 8.243

- Challenges:
  - modeling of the proton fragmentation



- LPAIR (only di-lepton) describes the data the best
- More generators available now!
- MadGraph (EL, SD and DD), SuperChic (EL and SD) (recently added  $\gamma\gamma \rightarrow WW$  process)
  - Modeling of the ptll and acomplanarity  $(1 \Delta \Phi_{\parallel} / \pi)$  distribution at the same time
  - Extra: dissociative EFT modeling

- Data-driven scaling of elastic yy->WW derived from yy->ll when mll>160 GeV
- Scale factor: EL/(EL+SD+DS) =  $3.59 \pm 0.15$
- Study from L. Harland-Lang <u>https://</u> arxiv.org/pdf/2201.08403.pdf:
  - Transfer factor between  $\gamma\gamma \rightarrow WW$  and  $\gamma\gamma \rightarrow ll$



#### • PLB 816 (2021) 136190

•  $\gamma\gamma \rightarrow WW$  is observed with significance of 8.4 (6.7) sigma



• Measured fiducial cross section:

 $\sigma_{\rm meas} = 3.13 \pm 0.31 \, ({\rm stat.}) \pm 0.28 \, ({\rm syst.}) \, {\rm fb}$ 

- **Anomalous Triple and Quartic Gauge Coupling** 
  - Models fully available within MadGraph (using SMEFT)
  - Run-1 ATLAS and CMS limits:



arxiv:1612.09256

## Summary

- Identification of photon-induced process
  - With proton tagging
  - Using the central detector information only
- Lots of challenges
- Plenty of data is waiting to be analyzed!!!
  - In future precision measurements
- Better modeling of the dissociative part
  - di-lepton transverse momentum
  - acomplanarity
- Great time to ramp-up the discussion how to model photon-induced processes more accurately!!!

BACKUP

• di-lepton invariant mass



• di-lepton transverse momentum

