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Oil reservoirs An oil reservoir simulator is used to manage assets associated

with the reservoir, in order to develop efficient production schedules, etc.

Natural Hazards Floods, volcanoes, and so forth, are all studied by large

computer simulators.

Climate change Large scale climate simulators are constructed to assess

likely effects of human intervention upon future climate behaviour.

Galaxy formation The study of the development of the Universe is carried out

by using a Galaxy formation simulator.

Disease modelling Agent based models are used to study interventions to

control infectious diseases.

Energy planning Simulators of future energy demand and provision are key

components of planning for energy investment.

The science in each of these applications is completely different. However, the

underlying methodology for handling uncertainty is the same.
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One input, x, one output f(x). Function shown as pink line.

Observation of value of f(x) (black line) made with error (dotted lines).

Uncertainty in the measurement of f(x) leads to uncertainty in the inferred

values of x.

Hence we see a range (green/yellow) of possible values of x consistent with

the measurements, with all the implausible values of x in red.
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(i) We can’t draw the curve on the graph

(because our model is expensive to evaluate for any choice of inputs).

(ii) Even if we could draw the curve, we wouldn’t be able to do the inversion

(because the model has many inputs and many outputs, linked by complex

curves)

(iii) Even if we could do the inversion, this would only tell us about future

performance of the model, not the real world

(because the model is not the same as the world)

Different physical models vary in many aspects, but the approaches for

addressing these problems are very similar

(which is why there is a common underlying methodology).



General Sources of Uncertainty

(i) parametric uncertainty (each model requires a, typically high dimensional,

parametric specification)

(ii) measurement uncertainty (as the model is calibrated against system data

all of which is measured with error),

(iii) condition uncertainty (uncertainty as to boundary conditions, initial

conditions, and forcing functions),

(iv) functional uncertainty (model evaluations take a long time, so the

function is unknown almost everywhere),

(v) solution uncertainty (as the system equations can only be solved to some

necessary level of approximation),

(vi) stochastic uncertainty (either the model is stochastic, or it should be),

(vii) structural uncertainty (model only approximates the physical system).

(viii) multi-model uncertainty(typically, several models for the physical

system)

(ix) Decision uncertainty (mismatch between model and real world decisions)
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In this approach, all probabilities are the subjective judgements of individuals

so, not the probability that we will achieve the project target, but Anne’s

probability or Bob’s probability (which may differ) for this outcome.

The Bayesian approach unifies and synthesises all of the different sources of

uncertainty into an overall judgement of uncertainty. It has many excellent tools

to help Anne and Bob to create careful, well founded and clearly documented

uncertainty judgements, and, if they do differ, to explore the underlying reasons

for such disagreemnt and to suggest possible resolutions.

The Bayesian approach for studying uncertainty in computer models is well

established and successful. It feeds naturally into decision analysis for

identifying and validating good choices for system optimisation.

There are good pragmatic methods for simplifying and streamlining the

uncertainty analysis for large and complex problems.

For my preferred flavour of Bayes see M. Goldstein, D.A. Wooff (2007) “Bayes

Linear Statistics: Theory and Methods” Wiley
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Uncertainty analysis, for high dimensional problems, is particularly challenging

if f(x) is expensive, in time and computational resources, to evaluate for any

choice of x.

In such cases, f must be treated as uncertain for all input choices except the

small subset for which an actual evaluation has been made.

Therefore, we must construct a description of the uncertainty about the value of

f(x) for each x. Such a representation is often termed an emulator of the

simulator.

The emulator both contains

(i) an approximation to the simulator and

(ii) an assessment of the likely magnitude of the error of the approximation.

Unlike the original simulator, the emulator is fast to evaluate for any choice of

inputs. This allows us to explore model behaviour for all physically meaningful

input specifications.
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Form of the emulator

We may represent beliefs about component fi of f , using an emulator:

fi(x) =
∑

j βijgij(x) + ui(x)

Global Variation

{βij} are unknown scalars,

gij are known deterministic functions of x, (for example, polynomials)

Local Variation

ui(x) is a second order stationary stochastic process, with (for example)

correlation function

Corr(ui(x), ui(x
′)) = exp(−(‖x−x′‖

θi
)2)



Emulating the Model: 1D Example

Suppose that we do not have the analytic solution of f(x).

Instead we only have five evaluations of the model.

Therefore we emulate the function.



The emulator can be used to represent our beliefs about the behaviour of the

model at untested values of x, and is fast to evaluate.

It gives both the expected value of f(x) (the blue line) along with a credible

interval for f(x) (the red lines) representing the uncertainty about the model’s

behaviour.



Comparing the emulator to the observed measurement we again identify the

set of x values currently consistent with this data.

The uncertainty on x now includes uncertainty coming from the emulator.
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We fit the emulators using our favourite statistical tools - generalised least

squares, maximum likelihood, Bayes - with a generous helping of expert

judgement.

We use efficient space filling designs to generate the set of simulator

evaluations to carry out in order to fit the emulators.

Make an assessment of the scientific plausibility of each emulator. Use careful

diagnostics to test the validity of our emulators, for example, assessing the

reliability of the emulator for predicting the simulator at new evaluations - paying

particular attention to extrapolation.

If the simulator is very slow to evaluate, then we may create a fast

approximation to the simulator to support building the emulator.
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Simulator calibration aims to identify the best choices of input parameters x∗,

based on matching data z to the corresponding simulator outputs fh(x).
However

(i) we may not believe in a unique true input value for the simulator;

(because the parameters are not real things - they only exist inside the model -

and different choices may be good for fitting different outputs)

(ii) we may be unsure whether there are any good choices of input parameters

(because there may be serious problems with our simulator)

(iii) full probabilistic calibration analysis may be very difficult/non-robust for

complex simulators.

(because the likelihood surface is complicated and multi-modal, and the Bayes

answer often depends on features of the prior distribution which are hard to

specify meaningfully)
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A conceptually simple procedure is “history matching”.

This means finding the collection, C(z), of all input choices x for which the

simulator output is consistent with the observed data, z, taking into account all

of the uncertainties in the problem.

If the data is informative for the parameter space, then C(z) will typically form

a tiny percentage of the original parameter space.

[C(z) might be empty - suggesting problems with the simulator or data.]

We use an ‘implausibility measure’ I(x) based on a probabilistic metric such as

I(x) =
(z − E(fh(x)))

2

Var(z − E(fh(x)))

(where the variance in the denominator is the sum of variance terms e.g.

measurement error, emulator error, discrepancy error and so forth.)

History matching is an iterative global search procedure.



Comparing the emulator to the observed measurement we have identified the

set of x values (the green values) which match the observed history, when we

take into account all of the uncertainties (here, measurement and emulator

error).



We now remove all of the implausible x values (the red values).

We perform a 2nd iteration or wave of evaluations in the green region to

improve emulator accuracy.
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Now the emulator is more accurate than the observation, and we can identify

the set of all x values of interest.

Note that we only need accurate emulation of the simulator in the region close

to the output match.

(And the first few waves of history matching typically involve only those outputs

which are relatively straightforward to emulate.)
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This case study was based on a research project that explored HIV

transmission in Uganda.

The simulator used, Mukwano, is a dynamic, stochastic, individual based

computer model that simulates the life histories of hypothetical individuals

(births, deaths, sexual partnership formation and dissolution and HIV

transmission, modelled using time-dependent rates).

Each individual is represented by a number of characteristics, such as gender,

date of birth, HIV status, level of sexual activity, concurrency level.

The behavioural inputs take different values in each of three calendar time

periods. This enables sexual behaviour to vary over time.

Twenty behavioural and two epidemiologic inputs were varied for this study.
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The empirical data were collected from a rural general population cohort in

South-West Uganda. The cohort was established in 1989 and currently

consists of the residents of 25 villages.

Every year, demographic information on the cohort is updated, the population is

tested for HIV, and a behavioural questionnaire is conducted.

In this study, there are 18 simulator outputs with calibration targets and limits

for what constitutes an acceptable match.

These include male and female population sizes,

male and female HIV prevalences at three time points.

outputs that check that the behavioural features of the model matched the

empirical data.

The run time for a single simulation for the study varies between 10 minutes

and 3 hours.
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Ioannis Andrianakis , Ian R. Vernon, Nicky McCreesh, Trevelyan J. McKinley,

Jeremy E. Oakley, Rebecca N. Nsubuga, Michael Goldstein, Richard G. White

(2015) Bayesian History Matching of Complex Infectious Disease Models Using

Emulation: A Tutorial and a Case Study on HIV in Uganda,

PLOS Computational Biology.

More careful and detailed treatment in

Ioannis Andrianakis , Ian R. Vernon, Nicky McCreesh, Trevelyan J. McKinley,

Jeremy E. Oakley, Rebecca N. Nsubuga, Michael Goldstein, Richard G. White

(2017) Efficient history matching of a high dimensional individual based HIV

transmission model”

in SIAM/ASA Journal on Uncertainty Quantification.

which applies a development of the same ideas to a much larger version of the

model (96 inputs, 50 outputs).
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Emulation 220 point maximin Latin hypercube (100 replications at each point

to average out stochasticity) 20 point Latin hypercube for validation set.

Logit transforms for outputs in [0,1].

Global fit used a cubic polynomial in the inputs.

All emulators validated in first wave except for 2 (HIV prevalence, male and

female, 2007) which were emulated in later waves.

History matching 5.5× 108 points were drawn from a 22 dimensional uniform

distribution in [0,1] and the implausibility was evaluated for each one of them.

Initial implausibility criterion was the maximum implausibility

Evaluation was done on a 240 node cluster, completed in less than 5 minutes.

Only 21644 passed the implausibility test, implying that the volume of

non-implausible space at this wave is of size 4× 10−5 of the original input

space.

This process was repeated through 10 waves.



History matching for the case study
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After 10 waves, we have reduced the space to about 10−11 of original space.

Around 65% of the simulator evaluations in the final space give runs with

acceptable matches to the historical data.
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collaboration, with Wellcome Trust funding, between

Andrew Iskauskas, Michael Goldstein, Ian Vernon (Durham)

Nicky McCreesh, Danny Scarponi, Richard White (LSHTM)

TJ McKinley (Exeter)

building on a previous collaboration funded by MRC.

The package is customised for epidemic models, but the underlying

methodology is fully general.



The HMER package

The package is available from CRAN.

You can find detailed documentation at

https://github.com/andy-iskauskas/hmer



The HMER package

The package is available from CRAN.

You can find detailed documentation at

https://github.com/andy-iskauskas/hmer

The project web-page, which has lots of support material is at

https://hmer-package.github.io/website/



The HMER package

The package is available from CRAN.

You can find detailed documentation at

https://github.com/andy-iskauskas/hmer

The project web-page, which has lots of support material is at

https://hmer-package.github.io/website/

The programme has been extensively tested.



The HMER package

The package is available from CRAN.

You can find detailed documentation at

https://github.com/andy-iskauskas/hmer

The project web-page, which has lots of support material is at

https://hmer-package.github.io/website/

The programme has been extensively tested.

For example history matching a complex deterministic model for the

country-level implementation of tuberculosis vaccines to 114 countries, fitting to

9–13 target measures, by varying 19–22 input parameters.



The HMER package

The package is available from CRAN.

You can find detailed documentation at

https://github.com/andy-iskauskas/hmer

The project web-page, which has lots of support material is at

https://hmer-package.github.io/website/

The programme has been extensively tested.

For example history matching a complex deterministic model for the

country-level implementation of tuberculosis vaccines to 114 countries, fitting to

9–13 target measures, by varying 19–22 input parameters.

105 countries were successfully matched (i.e. producing many parameter

choices which match history)

The remaining 9 countries revealed evidence of model or data misspecification.
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A physical model is a description of the way in which

system properties (the inputs to the model)

affect system behaviour (the output of the model).

This description involves two basic types of simplification.

(i) we approximate the properties of the system (as these properties are too

complicated to describe fully and anyway we don’t know them)

(ii) we approximate the rules for finding system behaviour given system

properties (because of necessary mathematical and numerical simplifications,

and because we do not fully understand the relationships which govern the

process).

Neither of these approximations invalidates the modelling process.

Problems only arise when we forget these simplifications and confuse the

analysis of the model with the corresponding analysis for the physical system

itself.
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Structural uncertainty assessessment should form a central part of the problem

analysis. We may distinguish two types of model discrepancy.

(i) Internal discrepancy

Any aspect of discrepancy we can assess by direct experiments on the

computer simulator.

For example,

we may vary parameters/forcing functions held fixed in the standard analysis,

we may add random noise to the state vector which the model propagates,

we may allow parameters to vary over time/space.

We assess internal discrepancy by

(i) carrying out detailed experiments to determine discrepancy variances and

correlations for certain input choices,

(ii) using emulation to extend these assessments over the input space.
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(ii) External discrepancy

This arises from the inherent limitations of the modelling process embodied in

the simulator.

It is determined by a combination of expert judgements and statistical

estimation.

The simplest way to incorporate external discrepancy is to add an extra

component of uncertainty to the simulator outputs. For example we may add,

say, 10% additional error to account for structural discrepancy.

Better is to consider what we know about the limitations of the model, and build

a probabilistic representation of additional features of the relationship between

system properties and behaviour.

Sometimes, this is called reification,

(from reify - to treat an abstract concept as if it was real).

We cannot evaluate the reified simulator, but we can emulate it.
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Adding structural discrepancy to forecasts

We represent the physical system as the combination of the simulator forecast

and the structural discrepancy.

From this we can derive the joint distribution of the past and the future and

therefore make inferences about the future, given the past and our control

choices. There are straightforward ways to do this.

Careful discrepancy assessment will

(i) correct our overconfidence in our projections

(by adding appropriate levels of additional uncertainty)

(ii) increase our forecast accuracy

(by correcting for systematic biases in our simulator).

(iii) help us to make reliable control choices for future outcomes.

(by recognising the real world risks of our various control choices).
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Concluding comments

There is a general Bayes, and Bayes linear, methodology for performing

detailed uncertainty analyses for complex real world phenomena which are

modelled by computer simulators.

Key features of this methodology are

(i) simulator emulation, to allow us to explore the full range of outputs of the

simulator

(ii) structural discrepancy modelling, to make reliable uncertainty statements

about the real world

(iii) history matching to identify all input choices consistent with historical data

(iv) system forecasting and optimisation to identify real world decisions

which are appropriate and robust across all conditions consistent with historical

outcomes (using emulation and decision analysis)

Simulators should be constructed in ways which support these tasks.
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