

Large-Scale Computing

Recent research challenges in large-scale computing at Durham

T. Weinzierl

May 2, 2023

Large-scale computing as tool

Large-scale computing infrastructure (kit and people behind it) is **the** tool behind a lot of our research. However...

- programming is something every PhD student and PDRA does anyway;
- our code is so complex and powerful that only experts can maintain and extend it;
- we have to deliver new science not code.

"Before the great discovery was the creation of a new tool!"

[C. Johnson (SCI): "The Golden Age of Computing"]

Creating the infrastructure (software and hardware) is research topic of its own*

- Scientific codes are no byproduct (anymore)
 (traditional "by domain science"-approach has navigated lots of codes into dead end)
- ► Focus on tool is timely and urgent research (traditional codes do not become faster anymore)

^{*} Cmp. UKRI's ExCALIBUR initiative, US ECP initiative, Europe's EuroHPC initiative and The President's Information Technology Advisory Committee (PITAC)

The two facets of "better tools"

- Left: Machine (hardware) capabilities grow exponentially (www.top500.org, 2019-09-07)
- Right: New algorithms, numerics, algorithms contribute exponential capabilities (Ulrich R\u00fcde, Karen Willcox, Lois Curfman McInnes, Hans De Sterck: Research and Education in Computational Science and Engineering SIAM Rev. 60-3 (2018), pp. 707-754)
- ► Third dimension of growth within application domains (not shown)
- ⇒ Facets used to team up

Efficiency vs. effectiveness

- * Leland et al: Performance, Efficiency, and Effectiveness of Supercomputers. SANDIA report SAND2016-3730
- LinPack (matrix calculations) and similar mathematical core routines use 80-90% of machine potential
- Well-tuned scientific computing codes use 10–15% on average (HPCG only 2%, FFT only 1%)
- ► Most codes use way below 1% (includes ML)

"There is substantial and well-founded concern that this trend [invariant achieved peak per machine generation] is now at risk due to the erosion of Moore's Law." *

- ⇒ Rethink algorithms for each new hardware generation
- ⇒ Tune codes

The ethical dimension

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
NLP pipeline (parsing, SRL)	39
NLP pipeline (parsing, SRL) w/ tuning & experimentation	39 78,468

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

- * Emma Strubell, Ananya Ganesh, Andrew McCallum: Energy and Policy Considerations for Deep Learning in NLP. 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019
 - ► Electricity bill exceeds procurement cost
 - Training an AI model has CO₂ impact of small car
 - We waste more and more energy of more and more requested energy
- \Rightarrow Compute/train only what's necessary
- ⇒ Reduce machine power envelope; done by others but ...
- ⇒ Improve efficiency

Example: Binary black hole mergers

Joint work with Han Zhang and Baojiu Li (ICC).

- ► Code is too complex (memory layout, IEEE precision, map onto MPI, ...)
- ► Hardware heterogeneity (GPGPUs and Intelligent NICs)
- \Rightarrow Implementation challenges
- ► Time step sizes constrain switch to finer resolution
- Many shots for UQ (off-topic here)
- ▶ ...
- ⇒ Algorithmic challenges

Code complexity


```
struct peano4::grid::AutomatonState {
  public:
    AutomatonState();
  void flipEvenFlags(int index);

    [[clang::map_mpi_datatype]]
    static MPI_Datatype getForkDatatype();
  private:
    [[clang::pack_range(0,63)]]
    int _level;

    [[clang::truncate_mantissa(23)]]
    double _x[Dimensions];
};
```

- Extend existing language
 (no introduction of new language, no rewrite, semantics-preserving)
- Language reduced to what to do (augmentation describes how to realise things)
- Migrate performance engineering to compiler

Heterogeneity

Tasks are automatically migrated between various nodes through NVIDIA BlueField NICs (joint work with NVIDIA and A. Basden, DiRAC)

- Phrase algorithm in tasks (state-of-the-art paradigm nowadays)
- Identify tasks that fit to particular machine types (declarative rather than re-writes for machine parts)
- Write algorithms which handle task placement (GPUs via OpenMP with NVIDIA; GPUs via SYCL with Intel; SmartNICs with NVIDIA Networking)
- Optimise scheduling (on-the-fly vs. offline)

Time step sizes

- Optimistic time stepping (bring tasks forward and hope that it turns out that they were valid)
- Implicit time stepping plus multigrid
- \Rightarrow t.b.h. we don't know yet what to do

The root of all evil: von Neumann

- Machine is dominated by calculations
- ► We just scale up the machine or
- ▶ We just make machine faster
- ⇒ Model is wrong

(always has been wrong, but that did not bother us previously)

Modern machines

- Speed depends on where the data sits
- Data movements are costly (time and electricity)

Irony: We use a machine to model more precisely and correctly. Our model of that machine however is fundamentally inappropriate and even wrong.

Showstoppers and open problems—my summary

- Right training (C and/or Fortran) has disappeared thanks to data science hype (both in CS, Maths and domain sciences)
- 2. Computer scientists solve toy problems, domain scientists stick to outdated algorithms
 - (interdisciplinary often only sales pitch)
- 3. Hardware heterogeneity not solved but pushed due to machine learning success (pressure to migrate had historically not been high enough)
- 4. Some hard fundamental problems (time step sizes, many-parameter runs (UQ), ...)

Showstoppers and open problems—my summary

- Right training (C and/or Fortran) has disappeared thanks to data science hype (both in CS, Maths and domain sciences)
- 2. Computer scientists solve toy problems, domain scientists stick to outdated algorithms
 - (interdisciplinary often only sales pitch)
- 3. Hardware heterogeneity not solved but pushed due to machine learning success (pressure to migrate had historically not been high enough)
- 4. Some hard fundamental problems (time step sizes, many-parameter runs (UQ), ...)
- 1. Introduce correct (professional) training and make PIs send their PhDs and PostDocs to it
- \Rightarrow 4. ???
- ⇒ 2.–3. Establish better cost models for calculations

PR

Master in Scientific Computing and Data Analysis (MISCADA)

(CS, Maths and Physics + Earth Sciences + Business School (Finances) + CS (Robotics) + ...)

- ► More than "just" data science (apply stats or ML models, e.g.)
- ► For people with "right" background ⇒ PhDs, not converts
- Led by experts

https://miscada.webspace.durham.ac.uk/

- ▶ Durham HPC Days—Spring 2023
 - (IDAS, ARC, Rockport, Dell, CS, ...)
 - Dan Stanzione (TACC): energy issue
 - David E. Keyes (KAUST): algorithm's role and co-design
 - ExCALIBUR projects: heterogeneous hardware

https://tobiasweinzierl.webspace.durham.ac.uk/research/workshops/durham-hpc-days-spring-2023/

► Performance Analysis Workshop series

(CS, ARC and DiRAC)

https://zenodo.org/record/5155503.ZFE9yY3MLmg