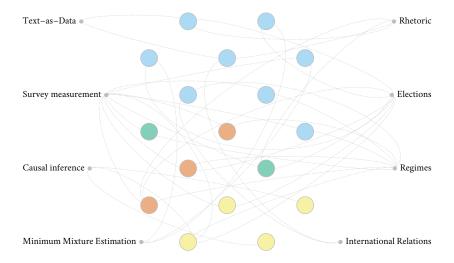
Minimum Mixture Estimation

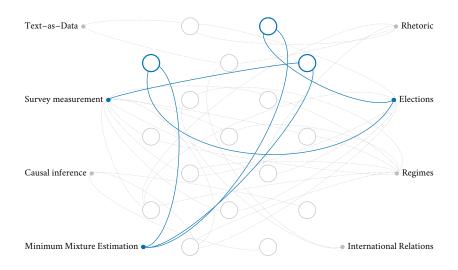
Juraj Medzihorsky

SGIA & RMC

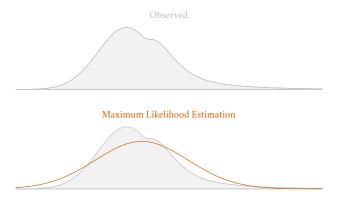
4 May 2023

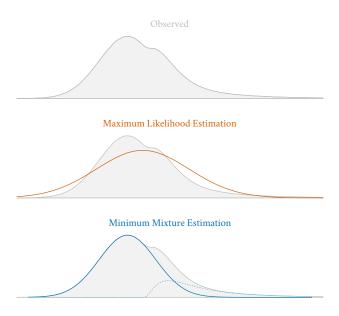
ABOUT ME

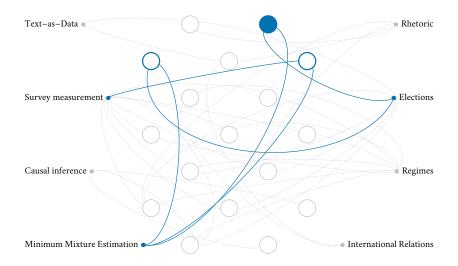


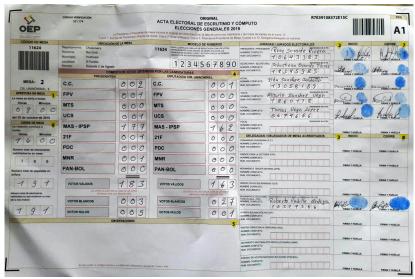


Leaf Cutter Ants by Jon Pinder

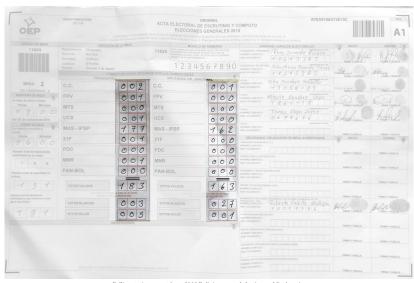






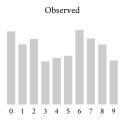


Polling station report from 2019 Bolivian general election, public domain.

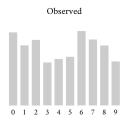


Polling station report from 2019 Bolivian general election, public domain.

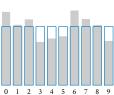
MME: FORENSIC APPLICATION

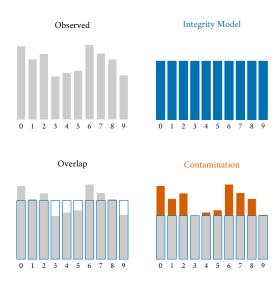






Integrity Model





MME: FEATURES

General framework that can integrate any parametric model [1-2].

It rests on *always true assumptions*, as any model will always contain between 0% and 100% of the population [1-3].

Holds *automatic robustness* of validity by insensitivity to contamination [3].

Directly interpretable residuals [4].

[1]

[2]

[3]

[4]

MME: OBJECTIVE

Minimize the fraction of the observations that lie outside of the model, known as the *mixture index of fit*,

$$\pi^*(O,\mathcal{M}) = \inf\{\pi \colon O = (1-\pi) \: M + \pi \: R, \: M \in \mathcal{M}, \: R \text{ residual}, \: \pi \in [0,1]\},$$

where O is the observed density, M an element from model \mathcal{M} , and R an unspecified residual density.

Minimum α -Divergence Estimation

α-MDE minimizes Rényi divergence

$$D_{\alpha}(O||M) = \frac{1}{\alpha - 1} \log \left(\sum_{i} \frac{o_{i}^{\alpha}}{m_{i}^{\alpha - 1}} \right)$$

and under $\alpha \to -\infty$ equals MME.

For fixed normalized *P* and *Q* there is a factor

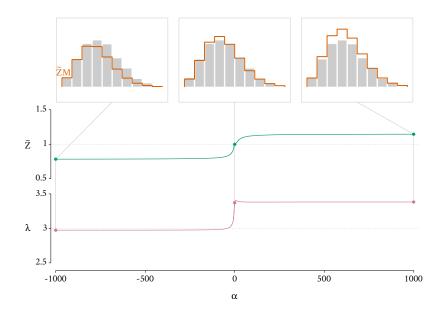
$$\tilde{Z}_{\delta} := \underset{Z}{\operatorname{arg \, min}} A_{\delta} (P||ZQ) = \left(\sum_{i} p_{i}^{\delta} q_{i}^{1-\delta} \right)^{1/\delta}$$

non-decreasing in δ (Minka 2005). Since $D_{\alpha}(O||M) = A_{(1+\alpha)/2}(O||M)$,

$$\lim_{\alpha \to -\infty} 1 - \tilde{Z}_{(1+\alpha)/2}(O, \mathcal{M}) = \pi^*(O, \mathcal{M})^-$$

giving an estimator of π^* with negative bias vanishing in decreasing α .

α -MDE: Illustration



α-MDE: FEATURES

Generalizes

Minimum Mixture Estimation $\alpha \to -\infty$ Maximum Likelihood Estimation $\alpha \to 1$ Minimum Envelope Estimation $\alpha \to \infty$ Others

Enables

- Approximate MME
- Penalized MME
- Bayesian MME

αMDE: Generative Models?

Simulating from the model under arbitrary $\alpha \neq 1$

Rényi entropy
$$H_{\alpha} = \frac{1}{1-\alpha}\log\left(\sum_{i}p_{i}^{\alpha}\right) = \frac{\alpha}{1-\alpha}\log(\|P\|_{\alpha})$$

Non i.i.d. regimes?

Two-stage regimes: population process $\alpha \neq 1$, sampling $\alpha = 1$?

Bootstrap and jackknife under $\alpha \neq 1$?

 α -generalizations of common distributions?

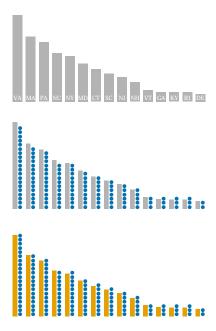
Tsallis statistics? A *q*-Multinomial RNG that works would be a good start.

α MDE: Apportionment

Congress Hall (Philadelphia)

Source: U.S. National Park Service

MME: Adams' Method



Thank you!