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e Dynamical systems are fundamental models in many fields, including
physics, engineering, biology, and economics.

e Often, we have data from these systems but not their underlying
equations, which hinders our ability to understand and predict their
behaviour.

e Traditional modelling methods can be time-consuming and may
require prior knowledge of the system.

e Can we automatically infer the governing equations of dynamical
systems from data? This is the problem we aim to tackle.



e We are interested in systems of ODEs:

[ g0 =50=6x(0)  j=1,....m, 1) ]

where
o x=x(t) = (x(t) x(t) --- xm(t))" € R™ represents the state
space with m dimensions.
e f(x(t)) : R™ — R"™ describes the system’s evolution in time.
e Approximate x symbolically by

[ X ~0f(x)8,  j=1,...,m, (2)}

where
e 0r(x) is a feature vector containing p symbolic functions, each
representing an ansatz that we can use to describe the dynamics.
e [3; € R” is a sparse coefficient vector with elements representing the
system’s parameters.



Modeling systems of ODEs with linear regression

e Create a state matrix X € R™"™ from measurements x(t) taken at
times ty, to, ..., ty.

o Apply the Savitzky-Golay filter to smooth each column x; = SG(X;)
and calculate the derivative ;.

e Consolidate X and X.

e Build the block design matrix @(X) € R"*”:

OX)=|[1 x xB ... xld oX)]|, (3)

where
e X1 for i=1,..., dis a matrix whose column vectors denote all
possible monomials of order i in x(t).
e ®(X) can contain nonlinear functions such as trigonometric,
logarithmic, or exponential.



Modeling systems of ODEs with linear regression

e Derive a linear regression:

[ X = ©(X)B +E, (4) }

where
e X, X € R™™.
O(X) € R™*P.
e B € RP*™ is the matrix of coefficients.
e E € R"™™ are the residuals.

for
e n: # observations.
e m: dimension of state space.
e p: # candidate functions.



Identifying Dynamical Systems

@CrossMark

Discovering governing equations from data by sparse
identification of nonlinear dynamical systems

Steven L. Brunton®, Joshua L. Proctor®, and J. Nathan Kutz®

D,

University of

of eattle, WA 98195; Pinstitute for Disease Modeling, Bellevue, WA 98005;
and “Department of Apphed Mathematics, University of Washmg(on Seattic, WA 98155

Edited by William Bialek, Princeton University, Princeton, NJ, and approved March 1, 2016 (received for review August 31, 2015)

Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine leaming with nonlinear dynamical systems to discover
from noisy data. The only as-
sumption about the structure of the model is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regression to determine the fewest terms in the dynamic
ttions required to y represent the data. This
results |n parslmonlous models that balance accuracy with model
to avoid We the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear oscillators and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

dvances in machine learning (1) and data science (2) have
promised a renaissance in the analysis and understanding of
comblex data extractine natterns in vast multimodal data that are

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11-13); ref. 12 provldes an excellent review.

Sparse of i (SINDy)

In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14-16) and
compressed sensing (17-22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23-30).
Here, we consider dynamical systems (31) of the form

X0 =1(x(0)).

The vector x(r) €R" denotes the state of a system at time ¢, and
the function f(x(f)) represents the dynamic constraints that de-
fine the equations of motion of the system, such as Newton’s
Later, the dynamics will be generalized to include
tion, time dependence, and forcing.
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Identifying the Lorenz Equations
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II. Sparse Regression to Solve for Active Terms in the Dynamics
Fig. 1. Schematic of the SINDy algorithm, on the Lorenz equations. Data are collected from the system, including a time history of the states X

and derivatives X; the assumption of having X is relaxed later. Next, a library of nonlinear functions of the states, ©(X), is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy X=©(X)=. The few entries in the vectors of &, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are o= 10, =8/3,p=28, (X0, ¥o,20)’ =(~8,7,27)". The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.



Sparse ldentification of Nonlinear Dynamics (SINDy)

e ) ; B
Sequential thresholded least-squares algorithm
e Start with a least-squares solution for = and then threshold all
coefficients that are smaller than some cutoff value Aspy .
e Once the indices of the remaining non-zero coefficients are
identified, we obtain another least-squares solution for = onto
the remaining indices.
e These new coefficients are again thresholded using Asjnpy, and
the procedure continues until the non-zero coefficients
converge.
§ 2 J




Automatic regression for governing equations (ARGOS)

e Combines Savitzky-Golay filter, sparse regression, and bootstrap
sampling.

e Effectively addresses the inverse problem of inferring underlying
dynamics from observational data.

e Outperforms the established SINDy with AIC, especially in
three-dimensional systems.



The Savitzky-Golay filter
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Figure 1: Representation of a 7-point moving polynomial smooth (from Savitzky and
Golay, 1964).

e Applies local polynomial regression to smooth the data and
approximate the derivatives.

e Build a grid of window lengths / with polynomial order o = 4.

e For each column of X, find optimal /* corresponding to the minimum
MSE between the noisy X; and its corresponding smoothed signal x;. 10



Ridge, Lasso and Adaptive Lasso for variable selection

n P g 2
arg;nin Z (Xi — Bo — Ze(x)i,kﬁk> I AZ wi|Bk|7 p . (5)

i=1 k=1 k=1

o All weights wy =1for k=1,...,p:
e Lasso: g =1 (sparse but unstable estimates when predictors are
collinear).
e Ridge regression: g = 2 (not sparse but stable when predictors are
collinear).
e Adaptive lasso (oracle property): g = 1.
e first stage: pilot estimates B
e second stage: wx = 1/|Bx|" (v =1)
The weighted penalty in the adaptive lasso can be interpreted as an
approximation of the ¢, penalties with p =1 —v.
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Bootstrap Sampling for Confidence Interval Estimation

e Generates multiple datasets by resampling original data with
replacement.

e Computes empirical distribution of estimates for robust coefficient
estimation.

e Eliminates spurious terms and selects the ones that best represent
underlying equations.
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Sparse regression

e Extract each column of X and B from Eq. (4):

[ X =0(X)Bi+e, j=1,....,m, (6) }

e Variable selection with either the lasso or the adaptive lasso (glmnet with CV).

e Upon determining an initial estimate of 3; in Eq. (6), trim © to contain only
monomial terms up to that estimate’s highest-order variable with a nonzero
coefficient.

e New round of variable selection with lasso/adaptive lasso on the trimmed design
matrix. Apply a grid of thresholded values to the identified coefficients.

e Perform OLS on each subset of selected variables to identify unbiased estimates
for each model.

e Model selection with BIC.

e Use the trimmed design matrix to bootstrap this process and obtain 2000 sample
estimates.

e Construct 95% bootstrap confidence intervals with the sample estimates and
identify a final model consisting of variables whose confidence intervals do not
contain zero and whose point estimates fall within their confidence intervals.

13



Automatic regression for governing equations (ARGOS)

b Trim design matrix
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Automatic regression for governing equations (ARGOS)

Figure 2: Hermes slaying Argus Panoptes, Athenian red-figure vase C5th B.C
(credit: Theoi.com) 15
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Assessing ARGOS systematically: linear systems
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C  Two-dimensional cubic
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Assessing ARGOS systematically: non-linear systems
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Figure 4: (left) Increasing size of the time series n. (right) Increasing
signal-to-noise ratio (SNR).
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Assessing ARGOS systematically: non-linear systems (cont.)
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Assessing ARGOS systematically: non-linear systems (cont.)
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Identified variables for the Lorenz (SNR = 49)

ARGOS-Adaptive Lasso
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Identified variables for the Lorenz (SNR = 49 and n = 5000)

ARGOS-Lasso ARGOS-Lasso

2004 3 3 -
e e = [ =] X 20 o o e o o o &
O PSS— | T | N | NI | T | T £ [PR— = | T | S | —— |
> =
5 iZi’ £ X £ &0
2100 L | e | T | e -2 .o | .0
8] — == oo | | i E= | o | |
2]
. <00
2] x
T | 7 o 2009 x| [
EHEHE i —— ||
n = . 7 k3 % ki b & B
0 10 0 SnR(oB)
ARGOS-Adaptive Lasso ARGOS-Adaptive Lasso
—_—— 4001

3004

e
| =] | T | I | | ——

bx

201 % % =
ng— % X X *
ol N —
3 4004
| I ||

. B o L PP ¥
o] X X i X bl E o] _—szﬁx:' Em || —7— | —— |
g ==

o

P e e ] & 2 5
== -z--:- ¢ W R
P w )
SINDy with AIC SINDy with AIC

o

Frequency

£x

21

Equations []



Discussion

e ARGOS contributes to the search for elusive laws governing complex
systems.

e We applied ARGOS to diverse trajectories and systems of ODEs.

e ARGOS is a robust identification method for several first- and
second-order nonlinear systems (e.g., Lorenz and Van der Pol).

e Our method identifies systems of ODEs in three dimensions.

e When data are noiseless, multicollinearity in the design matrix
impacts how /7 regularization methods perform variable selection,
leading to selecting one collinear term and ignoring the rest.

e Better performance with low levels of noise in data.

e Confidence intervals (built with the boostrap) help to perform
variable selection.
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