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Motivation

• Dynamical systems are fundamental models in many fields, including

physics, engineering, biology, and economics.

• Often, we have data from these systems but not their underlying

equations, which hinders our ability to understand and predict their

behaviour.

• Traditional modelling methods can be time-consuming and may

require prior knowledge of the system.

• Can we automatically infer the governing equations of dynamical

systems from data? This is the problem we aim to tackle.
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Modeling systems of ODEs with linear regression

• We are interested in systems of ODEs:

d

dt
xj (t) = ẋj (t) = fj (x(t)) j = 1, . . . ,m, (1)

where

• x = x(t) = (x1(t) x2(t) · · · xm(t))
T ∈ Rm represents the state

space with m dimensions.

• f (x(t)) : Rm → Rm describes the system’s evolution in time.

• Approximate ẋ symbolically by

ẋj ≈ θTF (x)βj , j = 1, . . . ,m, (2)

where

• θF(x) is a feature vector containing p symbolic functions, each

representing an ansatz that we can use to describe the dynamics.

• βj ∈ Rp is a sparse coefficient vector with elements representing the

system’s parameters.
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Modeling systems of ODEs with linear regression

• Create a state matrix X̃ ∈ Rn×m from measurements x(t) taken at

times t1, t2, ..., tn.

• Apply the Savitzky-Golay filter to smooth each column xj = SG (x̃j)

and calculate the derivative ẋj .

• Consolidate X and Ẋ.

• Build the block design matrix Θ(X) ∈ Rn×p:

Θ(X) =

1 X X[2] · · · X[d ] Φ(X)

 , (3)

where

• X[i ] for i = 1, . . . , d is a matrix whose column vectors denote all

possible monomials of order i in x(t).

• Φ(X) can contain nonlinear functions such as trigonometric,

logarithmic, or exponential.

4



Modeling systems of ODEs with linear regression

• Derive a linear regression:

Ẋ = Θ(X)B+ E, (4)

where

• X, Ẋ ∈ Rn×m.

• Θ(X) ∈ Rn×p.

• B ∈ Rp×m is the matrix of coefficients.

• E ∈ Rn×m are the residuals.

for

• n: # observations.

• m: dimension of state space.

• p: # candidate functions.
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Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine learning with nonlinear dynamical systems to discover
governing equations from noisy measurement data. The only as-
sumption about the structure of themodel is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regression to determine the fewest terms in the dynamic
governing equations required to accurately represent the data. This
results in parsimonious models that balance accuracy with model
complexity to avoid overfitting. We demonstrate the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear oscillators and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

Advances in machine learning (1) and data science (2) have
promised a renaissance in the analysis and understanding of

complex data, extracting patterns in vast multimodal data that are
beyond the ability of humans to grasp. However, despite the rapid
development of tools to understand static data based on statistical
relationships, there has been slow progress in distilling physical
models of dynamic processes from big data. This has limited the
ability of data science models to extrapolate the dynamics beyond
the attractor where they were sampled and constructed.
An analogy may be drawn with the discoveries of Kepler and

Newton. Kepler, equipped with the most extensive and accurate
planetary data of the era, developed a data-driven model for plan-
etary motion, resulting in his famous elliptic orbits. However, this
was an attractor-based view of the world, and it did not explain the
fundamental dynamic relationships that give rise to planetary orbits,
or provide a model for how these bodies react when perturbed.
Newton, in contrast, discovered a dynamic relationship between
momentum and energy that described the underlying processes re-
sponsible for these elliptic orbits. This dynamic model may be
generalized to predict behavior in regimes where no data were
collected. Newton’s model has proven remarkably robust for engi-
neering design, making it possible to land a spacecraft on the moon,
which would not have been possible using Kepler’s model alone.
A seminal breakthrough by Bongard and Lipson (3) and Schmidt

and Lipson (4) has resulted in a new approach to determine the
underlying structure of a nonlinear dynamical system from data.
This method uses symbolic regression [i.e., genetic programming
(5)] to find nonlinear differential equations, and it balances com-
plexity of the model, measured in the number of terms, with model
accuracy. The resulting model identification realizes a long-sought
goal of the physics and engineering communities to discover

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11–13); ref. 12 provides an excellent review.

Sparse Identification of Nonlinear Dynamics (SINDy)
In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14–16) and
compressed sensing (17–22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23–30).
Here, we consider dynamical systems (31) of the form

d
dt
xðtÞ= fðxðtÞÞ. [1]

The vector xðtÞ∈Rn denotes the state of a system at time t, and
the function fðxðtÞÞ represents the dynamic constraints that de-
fine the equations of motion of the system, such as Newton’s
second law. Later, the dynamics will be generalized to include
parameterization, time dependence, and forcing.
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facilitated rapid development of knowledge and enabled
technology, including aircraft, combustion engines, satellites,
and electrical power. This work develops a novel framework to
discover governing equations underlying a dynamical system
simply from data measurements, leveraging advances in spar-
sity techniques and machine learning. The resulting models are
parsimonious, balancing model complexity with descriptive
ability while avoiding overfitting. There are many critical data-
driven problems, such as understanding cognition from neural
recordings, inferring climate patterns, determining stability of
financial markets, predicting and suppressing the spread of
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Identifying the Lorenz Equations

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.
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Sparse Identification of Nonlinear Dynamics (SINDy)

Sequential thresholded least-squares algorithm

• Start with a least-squares solution for Ξ and then threshold all

coefficients that are smaller than some cutoff value λSINDy .

• Once the indices of the remaining non-zero coefficients are

identified, we obtain another least-squares solution for Ξ onto

the remaining indices.

• These new coefficients are again thresholded using λSINDy , and

the procedure continues until the non-zero coefficients

converge.
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Automatic regression for governing equations (ARGOS)

• Combines Savitzky-Golay filter, sparse regression, and bootstrap

sampling.

• Effectively addresses the inverse problem of inferring underlying

dynamics from observational data.

• Outperforms the established SINDy with AIC, especially in

three-dimensional systems.
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The Savitzky-Golay filter

Figure 1: Representation of a 7-point moving polynomial smooth (from Savitzky and

Golay, 1964).

• Applies local polynomial regression to smooth the data and

approximate the derivatives.

• Build a grid of window lengths l with polynomial order o = 4.

• For each column of X̃, find optimal l∗ corresponding to the minimum

MSE between the noisy x̃j and its corresponding smoothed signal xj .
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Ridge, Lasso and Adaptive Lasso for variable selection

argmin
β


n∑

i=1

(
ẋi − β0 −

p∑
k=1

θ(X)i,kβk

)2

+ λ

p∑
k=1

wk |βk |q
 . (5)

• All weights wk = 1 for k = 1, . . . , p:

• Lasso: q = 1 (sparse but unstable estimates when predictors are

collinear).

• Ridge regression: q = 2 (not sparse but stable when predictors are

collinear).

• Adaptive lasso (oracle property): q = 1.

• first stage: pilot estimates β̃.

• second stage: wk = 1/|β̃k |ν (ν = 1)

The weighted penalty in the adaptive lasso can be interpreted as an

approximation of the ℓp penalties with p = 1− ν.
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Bootstrap Sampling for Confidence Interval Estimation

• Generates multiple datasets by resampling original data with

replacement.

• Computes empirical distribution of estimates for robust coefficient

estimation.

• Eliminates spurious terms and selects the ones that best represent

underlying equations.
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Sparse regression

• Extract each column of Ẋ and B from Eq. (4):

ẋj = Θ(X)βj + ϵj , j = 1, . . . ,m, (6)

• Variable selection with either the lasso or the adaptive lasso (glmnet with CV).

• Upon determining an initial estimate of βj in Eq. (6), trim Θ to contain only

monomial terms up to that estimate’s highest-order variable with a nonzero

coefficient.

• New round of variable selection with lasso/adaptive lasso on the trimmed design

matrix. Apply a grid of thresholded values to the identified coefficients.

• Perform OLS on each subset of selected variables to identify unbiased estimates

for each model.

• Model selection with BIC.

• Use the trimmed design matrix to bootstrap this process and obtain 2000 sample

estimates.

• Construct 95% bootstrap confidence intervals with the sample estimates and

identify a final model consisting of variables whose confidence intervals do not

contain zero and whose point estimates fall within their confidence intervals.
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Automatic regression for governing equations (ARGOS)

e  Bootstrap confidence intervals f  Identified model

a  Noisy data 

b  Trim design matrix

c  Point estimate

d  Bootstrap resampling

. .
 . . .
 .
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Automatic regression for governing equations (ARGOS)

Figure 2: Hermes slaying Argus Panoptes, Athenian red-figure vase C5th B.C

(credit:Theoi.com) 15

https://www.theoi.com/


Assessing ARGOS systematically: linear systems

a Two−dimensional linear
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Figure 3: Success rate (prob. of identifying the true terms) for the

identification of linear systems with 100 random initial conditions. (left)

Increasing size of the time series n. (right) Increasing signal-to-noise ratio

(SNR). 16



Assessing ARGOS systematically: non-linear systems

c Two−dimensional cubic
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Figure 4: (left) Increasing size of the time series n. (right) Increasing

signal-to-noise ratio (SNR).
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Assessing ARGOS systematically: non-linear systems (cont.)

e Rossler
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Assessing ARGOS systematically: non-linear systems (cont.)

g Van der Pol
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Figure 6: (left) Increasing size of the time series n. (right) Increasing

signal-to-noise ratio (SNR).
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Identified variables for the Lorenz (SNR = 49)
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Figure 7: We fill the boxes for correctly identified variables with color, and any

incorrectly selected variables with white, providing labels for each term when

possible. The size of the time-series n increases for (SNR = 49).
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Identified variables for the Lorenz (SNR = 49 and n = 5000)
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Discussion

• ARGOS contributes to the search for elusive laws governing complex

systems.

• We applied ARGOS to diverse trajectories and systems of ODEs.

• ARGOS is a robust identification method for several first- and

second-order nonlinear systems (e.g., Lorenz and Van der Pol).

• Our method identifies systems of ODEs in three dimensions.

• When data are noiseless, multicollinearity in the design matrix

impacts how ℓ1 regularization methods perform variable selection,

leading to selecting one collinear term and ignoring the rest.

• Better performance with low levels of noise in data.

• Confidence intervals (built with the boostrap) help to perform

variable selection.
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