The future of Heavy Flavour

07 Jul 2023

Dan Johnson

Today's patchwork quilt of flavour physics

CKM unitarity

- CKM angle γ (or ϕ_3) directly measured with \approx 3.5° precision
- Negligible theory uncertainty; clean NP probe
- Indirect determinations have reached 1° precision
 - Direct measurements must challenge them

Charm

- Indirect CP violation in SM 𝒪(10⁻⁴) or less
- Current precision few $\times 10^{-2}$
 - Measuring it likely beyond the reach of today's experiments

Electroweak penguins

• $B^0 \rightarrow \mu^+ \mu^- : B^0_s \rightarrow \mu^+ \mu^-$ a strong test of NP flavour structures

- Still dominated by expt. uncertainty at end of the decade

Today's patchwork quilt of flavour physics

CKM unitarity

- CKM angle γ (or ϕ_3) directly measured with \approx 3.5° precision
- Negligible theory uncertainty; clean NP probe
- Indirect determinations have reached 1° precision
 - Direct measurements must challenge them

Charm

- Indirect CP violation in SM 𝒪(10⁻⁴) or less
- Current precision few $\times 10^{-2}$
 - Measuring it likely beyond the reach of today's experiments

Electroweak penguins

• $B^0 \rightarrow \mu^+ \mu^- : B^0_s \rightarrow \mu^+ \mu^-$ a strong test of NP flavour structures

- Still dominated by expt. uncertainty at end of the decade

Not to mention: CPV in B_s^0 , B_c^+ , and baryons; LU/LFV (*RX*, *R*(*D**)); semileptonic asymmetries, spectroscopy

Pursuing precision

- Arguments to improve statistical precision in pursuit of theory uncertainty abound
- Even if they did not, the motivation to exploit our facilities to the utmost, in every domain, is hauntingly clear:

A special search at Dubna was carried out by E. Okonov and his group. They have not found a single $K_L^0 \to \pi^+\pi^-$ event among 600 decays of K_L^0 into charged particles [13] (Anikina et al., JETP, 1962). At that stage the search was terminated by administration of the Lab. The group was unlucky.

(L. Okun - 2001)

LHCb upgrades

- 2011 2018: 9 fb⁻¹
- 2022 2032: 50 fb⁻¹
- 2035 2041: 300 fb⁻¹

- U1 does not reach the theory uncertainty
- Where close, reasonable to anticipate theory advances

Observable	Current LHCb	Upgi	ade I	Upgrade II
	$(up to 9 fb^{-1})$	(23fb^{-1})	(50fb^{-1})	(300fb^{-1})
CKM tests				
$\gamma (B \rightarrow DK, etc.)$	4° 9,10	1.5°	1°	0.35°
$\phi_s (B_s^0 \rightarrow J/\psi \phi)$	32 mrad 8	$14\mathrm{mrad}$	$10 \mathrm{mrad}$	4 mrad
$ V_{ub} / V_{cb} $ ($\Lambda_b^0 \rightarrow p\mu^- \overline{\nu}_\mu$, etc.)	6% [29, 30]	3%	2%	1%
$a_{sl}^d (B^0 \rightarrow D^- \mu^+ \nu_\mu)$	36×10^{-4} 34	8×10^{-4}	5×10^{-4}	2×10^{-4}
$a_{sl}^s (B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu)$	33×10^{-4} [35]	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm				
ΔA_{CP} $(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	29×10^{-5} [5]	13×10^{-5}	8×10^{-5}	3.3×10^{-5}
A_{Γ} $(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	11×10^{-5} [38]	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x (D^0 \rightarrow K_s^0 \pi^+ \pi^-)$	18×10^{-5} 37	$6.3 imes 10^{-5}$	4.1×10^{-5}	1.6×10^{-5}
Rare Decays				
$\overline{B(B^0 \rightarrow \mu^+ \mu^-)}/B(B_s^0 \rightarrow \mu^+ \mu$	-) 69% [40, 41]	41%	27%	11%
$S_{\mu\mu}$ $(B_s^0 \rightarrow \mu^+ \mu^-)$				0.2
$A_T^{(2)}$ $(B^0 \rightarrow K^{*0}e^+e^-)$	0.10 52	0.060	0.043	0.016
A_T^{fm} $(B^0 \rightarrow K^{*0}e^+e^-)$	0.10 52	0.060	0.043	0.016
$A_{\phi\gamma}^{\overline{\Delta}\Gamma}(B_s^0 \rightarrow \phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	0.033
$S_{\phi\gamma}(B_s^0 \rightarrow \phi\gamma)$	0.32 51	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \rightarrow \Lambda \gamma)$	$^{+0.17}_{-0.29}$ 53	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \rightarrow K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
R_{K^*} $(B^0 \rightarrow K^{*0}\ell^+\ell^-)$	0.12 61	0.034	0.022	0.009
$R(D^*)$ $(B^0 \rightarrow D^{*-}\ell^+\nu_{\ell})$	0.026 62,64	0.007	0.005	0.002

LHCb Upgrade 2: the challenge of pileup

From 2 × 10³³ to 1.5 × 10³⁴ requires a revolution 3D \rightarrow 4D: vertexing

- 50 ps per hit
- Pixel pitch 55μm
- Extreme fluence $6 \times 10^{16} n_{eq}/cm^2$

UK groups leading sensor R&D, prototype 4D demonstrator,

high-rate read-out technologies

Ambitious detector development

- Tracking: a complete system. New large-area silicon detector (MAPS) downstream; major UK leadership
- PID: LHCb hallmark; enhance with new TOF detector

Interdependency

LHCb Upgrade 2 will challenge the SM as never before:

that requires both input from the lattice community...

...and from other experiments

BES-III

Hermetic detector at BEPCII ($\sqrt{s} = 2 - 4.6 \,\text{GeV}$)

- Central pillar of Chinese HEP programme
- Physics objectives span spectroscopy, charm measurements, study of correlated *D* mesons, semileptonic decays for CKM elements

BES-III

Strong phase parameters at $\psi(3770)$ a key target for UK participation

- Relate amplitude for D^0 and \overline{D}^0 decaying to same final state
- Phase determination requires a system with interference
- $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$: quantum-correlated D-meson pair

$$\psi(3770)$$
 $D_1 \rightarrow K_S^0 \pi^+ \pi^-$
 $D_2 \rightarrow CP$ eigenstate

Dalitz plot density: $|A|^2 + |\bar{A}|^2 - 2|A||\bar{A}|cos(\delta)$

BES-III...

These, and other, strong phases are crucial for LHCb and BELLE II:

- γ (ϕ_3) from variety of *B* decays, most involving $D^0/\overline{D^0}$
- BES-III inputs define D decay (w/o model dependence)
- UK participation in CLEO-c (0.8 fb⁻¹): breadth & precision of strong phase parameters. σ(γ) ≈ 2°
- UK instrumental to 20 fb⁻¹ at ψ (3770) at BES-III: $\sigma(\gamma) \approx 0.5^{\circ}$

BES-III...

These, and other, strong phases are crucial for LHCb and BELLE II:

- γ (ϕ_3) from variety of *B* decays, most involving $D^0/\bar{D^0}$
- BES-III inputs define D decay (w/o model dependence)
- UK participation in CLEO-c (0.8 fb⁻¹): breadth & precision of strong phase parameters. σ(γ) ≈ 2°
- UK instrumental to 20 fb⁻¹ at $\psi(3770)$ at BES-III: $\sigma(\gamma) \approx 0.5^{\circ}$

BES-III status at the ψ (3770):

- 2010-11: 3 fb⁻¹
- Last 18 months: another 14 fb⁻¹
- Smooth data-taking this year; restarts in November: anticipate full 20 fb⁻¹ next year
- 2 UK PIs since 2017: modest, but highly strategic, investment

BES-III... and STCF

These, and other, strong phases are crucial for LHCb and BELLE II:

- γ (ϕ_3) from variety of *B* decays, most involving $D^0/\bar{D^0}$
- BES-III inputs define D decay (w/o model dependence)
- UK participation in CLEO-c (0.8 fb⁻¹): breadth & precision of strong phase parameters. σ(γ) ≈ 2°
- UK instrumental to 20 fb⁻¹ at $\psi(3770)$ at BES-III: $\sigma(\gamma) \approx 0.5^{\circ}$

Super τ -charm Factory:

- Proposed e^+e^- collider in China: $\sqrt{s} = 2 \rightarrow 7 \,\text{GeV}$ and $\mathscr{L} = 5 \times 10^{34} \,\text{cm}^{-2} \text{s}^{-1}$
- Further opportunity for correlated D-pair studies
- UK signatories to CDR

Belle II

Radical development of KEKB e^+e^- collider:

Nano-beam scheme: 40 × larger luminosity

Belle II

Asymmetric collisions at $\sqrt{s} = m(\Upsilon(4S))$

- Kinematic constraints during reconstruction
- Novelty with respect to LHCb:
 - Advantages for final states with > $1\pi^0/\gamma$ or neutrinos
 - Wide programme to explore $e^+e^- \rightarrow \tau^+\tau^-$
- Commonality: CKM metrology; charm; spectroscopy; anomalies

Belle II

- Belle and BaBar: little under 1ab⁻¹
- Belle II target 50*ab*⁻¹

- Reached 428 fb⁻¹; luminosity record $\mathscr{L} = 4.7 \times 10^{34}$
- Restart data-taking end 2023
- UK groups making key contributions to data analysis and vertex detector upgrade: 5-layer DMAPS detector

An exciting future

- Despite all that LHCb hold in store, all key flavour measurements will be dominated by experimental uncertainty after Run 3/4
- LHCb U2 will allow to exploit HL-LHC facility fully
- Prolific UK leadership at all levels, past and future. Entering exciting R&D period
- Key HF observables rely on inputs from *τ*-charm facilities.
 Excellent ROI on modest BES-III investment; replicate at STCF
- Despite challenges of cutting-edge accelerator, **Belle II** will provide tools to keep LHCb honest, whilst providing a wealth of orthogonal physics opportunities.
- Further ahead, prospect of 5 × 10¹² Z⁰ decays at FCC-ee offers opportunities that in general exceed those available at Belle II, and complement LHC HF programme

The University of Manchester

Science & Technology Facilities Council Rutherford Appleton Laboratory

Muon Physics – PPAP

UK Muon Physics Experimental Overview

Anomalous magnetic dipole moment (g-2) •

Electric Dipole Moment (EDM)

BSM

Charged Lepton Flavour Violation (CLFV)

Magnetic Dipole Moment

Anomalous magnetic dipole moment

- Run-1 data: 460ppb precision, and 4.2σ tension with the theoretical prediction
- More data to analyse expect a factor 2 improvement for Run-2/3 analysis
- On course for ~140ppb total uncertainty

THEORY

- To get a_{μ}^{HLO} :
- Data from e⁺e⁻
 scattering
- Calculate on Lattice

Tension between the 2 methods! – needs resolving (muonE...)

Muon Physics – PPAP

MuonE – spacelike measurement of a_{μ}^{HLO}

Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

• Is a pure t-channel process at tree level

MuonE slides courtesy of R. Pilato, C.M. Carloni Calame, G. Abbiendi

Muon Physics – PPAP

- Scatter µ on e in low Z target, measure the scattering angle
- For E(beam) = 160 GeV (CERN SPS) phase space covers ~88% of integral
- Competitive precision 0.35-0.5% on a_{μ}^{HLO} will help solve g-2 puzzle! Data taking after LS3
- UK contribution:

CMS-2S detectors (ICL)

Tracker mechanics (Lpool, Leverhulme)

MuonE slides courtesy of R. Pilato, C.M. Carloni Calame, G. Abbiendi

Electric Dipole Moment

EDM Projected Limits @ FNAL

Current best limit is from BNL: $|d_{\mu}| < 1.9 \times 10^{-19} e.cm$ (95% C.L.)

- Precession plane tilts towards center of ring
- Vertical oscillation is 90° out of phase with the g-2 oscillation
- Run 1 analysis still blinded. Assuming zero signal expecting limit of:

|d_μ| < 2.0 × 10⁻¹⁹e.cm (95% C.L.)

- Comparable with current limit, but still statistically limited
- Expect factor of ~10 improvement for statistics accumulated so far, with tracking improvements can push towards

|d_μ| < 1.0 × 10⁻²⁰e.cm (95% C.L.)

G. W. Bennett et al. Phys. Rev. D 80, 052008

Frozen spin technique @ PSI

- Relativistic spin precession of a charged particle (Thomas-BMT equation)
- By applying an appropriate radial Efield to the muon we negate the g-2 term.

- Spin precession would be due to EDM.
- Advantage of frozen spin: Every e⁺ is useful!
- Phase I Demonstrate the frozen spin method
- Phase II Measure the muon EDM to ~10⁻²³e.cm
- Combined infrastructure proposal with Mu3e-II, based around ultra low mass HV-MAPS tracking

Frozen spin technique - Proton EDM

- BNL proposing a proton EDM measurement at 10⁻²⁹e.cm – under P5 review
- Protons at 'magic' momentum at 0.7 GeV/c
- 800m circumference storage ring in the AGS tunnel at BNL
- UK co-designing the electric bending dipoles, providing electric field of 4.5MV/m. These cover 600m of the 800m circumference
- Early Technologies Proposal in preparation to build demonstrator electric deflector

EDM Limits (e cm)

10⁻³⁷

SM

SM

Charged Lepton Flavour Violation

CLFV - COMET and Mu2e

	Best limits	Projected sensitivities (90%CL)
μ→еγ	< 4.3x10 ⁻¹³ MEG (PSI)	4x10 ⁻¹⁴ MEG II (PSI)
µ→еее	< 1.0x10 ⁻¹² SINDRUM (PSI)	4x10 ⁻¹⁵ Mu3e I (PSI) 1x10 ⁻¹⁶ Mu3e II (PSI)
µN→eN	< 7.0x10 ⁻¹³ SINDRUM II (PSI) µ Au → e Au	6x10 ⁻¹⁷ Mu2e (FNAL) 7x10 ⁻¹⁵ COMET I (J-PARC) 6x10 ⁻¹⁷ COMET II (J-PARC)

COMET: Strong UK involvement in planning and operations Mu2e: STM detector and readout provided by the UK

Both experiments start in next few years, upgrade through 2030

CLFV in muons with Mu3e @ PSI

- UK responsible for outer pixel layers detectors at Mu3e and Mu3e-II
- MUPIX low mass (~0.1% X₀) HV-MAPS tracking
- Vertex layer production started
- Outer layer production starts Autumn 2023
- Commissioning with full central tracker 2024

- Physics with complete detector systems in 2025
- **Phase I** $10^8 \,\mu/s BR(\mu \to eee) < 2 \times 10^{-15}$
- Phase II After HIMB upgrade BR(μ → eee) < 10⁻¹⁶ ~ 2030, as part of infrastructure proposal with MuEDM

Conclusions

 UK has grown a broad and internationally competitive muon programme with STFC support and other funding

Muon Anomalous magnetic moment:

g-2: data taking nearly complete, on course for design goal theory: New data and experiments to help solve tension

Electric dipole moment:

g-2: most sensitive measurement will be made with UK-built tracker MuEDM@PSI: frozen spin method 100 times more sensitive

Charged Lepton Flavour Violation:

COMET/Mu2e: data taking beginning in 2025, upgrades to follow Mu3e: tracking detectors built in UK

UK muon institutes: Brisol, Cockcroft, Imperial, Lancaster, Liverpool, Manchester, Oxford, RAL, UCL

Flavour Physics Questions

- Balance: Is there the right balance between funding for science exploitation of existing experiments and construction/R&D for future projects?
- **Breadth**: Is the current UK Flavour programme too broad/not broad enough?
 - Breadth of areas (quark flavour incl. strange/charm/beauty, charged lepton flavour) vs breadth of projects in one area
 (e.g. LHCb/Belle 2, tau-charm threshold, muon conversion/decay/anomalous moment, etc).
- International: International Strategic Consideration
 - Is UK well placed in all flavour areas it pursues?
 - How influential is it in international programme?
 - What are the key upcoming opportunities; risks of missing them?