UK HEP Forum 2023

21 November 2023

Precision Calculations of Higgs Production and Decay

Stephen Jones IPPP Durham / Royal Society URF

THE ROYAL SOCIETY

Higgs Discoveries

The Higgs sector continues to yield impressive fundamental discoveries

2018 (*tt***H):** First direct observation of top-quark Yukawa coupling

2020 ($H \rightarrow \mu\mu$): First direct evidence that Higgs field is responsible for mass of 2nd gen. leptons

CMS 2009.04363 / ATLAS 2007.07830

2022 ($H \rightarrow c\overline{c}$): First hints that Higgs field is responsible for mass of 2nd gen. quarks CMS 2205.05550 / ATLAS 2201.11428

2023 ($H \rightarrow Z\gamma$): First evidence of rare decay, sensitive to BSM loops CERN-EP-2023-157

Upcoming Experiments

HL-LHC construction underway ~10x integrated luminosity of LHC (LHC 0.3 ab⁻¹, HL-LHC: 3 ab⁻¹)

 Experimental projection is pessimistic considering current performance

2) Plot shown assumes reduction by factor 2 of today's theory uncertainties

Theory uncertainty is expected to dominate HL-LHC Higgs physics

Outline

Gluon Fusion

PDF theory uncertainties Signal-background interference

Vector Boson Fusion

Non-factorisable corrections Parton shower uncertainties

ZH Production

Gluon induced contribution

ttH Production

Approximate NNLO

HH Production

Background processes ($b\overline{b}H$) Electroweak corrections

*Too many interesting recent results, apologies for the very biased topic selection

Gluon Fusion

Theory Uncertainties

Perturbative theoretical predictions for gluon fusion are **remarkably advanced**

$$\delta\sigma_{PP \to H+X} = \left[\delta(\text{scale}) + \delta(\text{EWK}) + \delta(t, b, c) + \delta(m_t)\right] + \left[\delta(\text{PDF} + \alpha_s)\right] + \left[\delta(\text{PDF} - \text{TH})\right]$$

PDF Uncertainties

Many sources of uncertainty relevant, including PDF/Missing Higher Orders

$\sqrt{s} [\text{TeV}]$	$M_{\rm H}[{\rm GeV}]$	$\sigma[{ m pb}]$	δ (theory)	$\delta(\text{scale})$	$\delta(\text{EWK})$	$\delta({ m t,b,c})$	$\delta(1/m_{ m t})$	$\delta(\text{PDF} + \alpha_s)$	$\delta(\mathrm{PDF})$	$\delta(lpha_s)$	$\delta(\text{PDF} - \text{TH})$
13.6	125.09	52.07	$^{+3.11}_{-5.31}\%$	$^{+0.28}_{-2.48}\%$	$\pm 1.00\%$	$\pm 0.83\%$	$\pm 1.00\%$	$^{+2.67}_{-2.25}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.10}_{-1.54}\%$	$\pm 1.18\%$

PDFs are only fully known at NNLO

- \hookrightarrow Mismatch between coefficient function $\hat{\sigma}^{(3)}(x_a, x_b)$ and PDFs $f^{(2)}(x, Q^2)$ –
- ↔ Recently, approximate N3LO PDFs became available McGowan, Cridge, Harland-Lang, Thorne 22 NNPDF Collaboration (work in progress)

The aN3LO PDFs lead to a decrease in the total cross section prediction (current estimate ~2-4%)

Active benchmarking study ongoing

Gluon Fusion: PDF Uncertainties

Higher order theory input can help us...

Maria Ubiali (20th LHCHWG Meeting)

But differences also depend on the choice of Q_0^2 scale and methodology

New/Anticipated Theory Results

Splitting functions for N3LO PDFs

Singlet (moments): Falcioni, Herzog, Moch, Vogt 23 Singlet (N_f^2 , $N_f C_F^3$): Gehrmann, von Manteuffel, Sotnikov, Yang 23, 23;

Maria Ubiali (20th LHCHWG Meeting)

Towards N4LO Higgs Production

Das, Moch, Vogt 20; Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22, 23;

Virtuals known @ N^4LO RVs still considerable work for full XS Soft-Virtual Approx: +0.2 - 2.7%

Signal-background Interference

Signal-background interference can be used in $H \rightarrow \gamma \gamma$ to place model-dependent bounds on Γ_H by lifting degeneracy on couplings and width

$$\left|\mathcal{M}_{gg\to\gamma\gamma}\right|^{2} = |S|^{2} + |B|^{2} + \frac{2m_{\gamma\gamma}^{2}}{(m_{\gamma\gamma}^{2} - m_{H}^{2})^{2} + \Gamma_{H}^{2}m_{H}^{2}} \left[(m_{\gamma\gamma}^{2} - m_{H}^{2})\operatorname{Re} I + (\Gamma_{H}m_{H}\operatorname{Im} I) \right]$$

Mass Shift (Re I)

$$\Delta M_{\gamma\gamma} \propto \sqrt{\frac{\Gamma_H}{\Gamma_H^{\rm SM}}}$$

Martin 12; Dixon, Li 13;

Destructive Interference (Im *I***)**

$$\sigma = \sigma_{\rm sig} \left(1 + \sqrt{\frac{\Gamma_H}{\Gamma_H^{\rm SM}}} \frac{\sigma_{\rm int}^{\rm SM}}{\sigma_{\rm sig}^{\rm SM}} \right)$$

Campbell, Carena, Harnik, Liu 17

Signal-background Interference

Thanks to a recent calculation of $gg \rightarrow \gamma\gamma$ @ NNLO (3-loops) now possible to compute interference @ NNLO Bargiela, Caola, von Manteuffel, Tancredi 21 + Buccioni, Devoto 22

NNLO corrections sizeable

- \hookrightarrow Mass shift less pronounced
- \hookrightarrow Destructive interference enhanced,
- -1.7% decrease of total cross section

$\Delta m_{\gamma\gamma} [{ m MeV}]$	7 TeV	8 TeV	13.6 TeV
LO	$ -77.2^{+0.8\%}_{-1.0\%}$	$ -79.5^{+0.6\%}_{-0.8\%}$	$-83.1^{+0\%}_{-0.3\%}$
NLO	$-56.2^{+13\%}_{-15\%}$	$ -56.8^{+13\%}_{-14\%}$	$-55.2^{+12\%}_{-12\%}$
NNLOsv	$-46.3^{+15\%}_{-17\%}$	$ -47.0^{+14\%}_{-16\%}$	$ -46.0^{+11\%}_{-12\%}$
NNLOsv'	$ -39.5^{+20\%}_{-24\%}$	$ -39.7^{+19\%}_{-22\%}$	$-39.4^{+16\%}_{-17\%}$

Vector Boson Fusion (VBF)

Non-Factorisable Corrections (II)

Factorisable contributions are known to N3LO inclusive/ NNLO differential

Dreyer, Karlberg 16; Bolzoni, Maltoni, Moch, Zaro 10, 12; Cacciari, Dreyer, Karlberg, Salam, Zanderighi 15; Cruz-Martinez, Gehrmann, Glover, Huss 18; Asteriadis, Caola, Melnikov, Röntsch 22, 23

Non-factorisable contributions are **colour suppressed**

However, (soft/eikonal approximation) it was found they are π^2 enhanced Liu, Melnikov, Penin 19

Figures: Ming-Ming Long (20th LHCHWG Meeting)

Non-Factorisable Corrections (III)

NNLO non-factorisable contribution computed beyond the eikonal approximation Brønnum-Hansen, Long, Melnikov, Juvin-Quarroz 23, 23;

Used expansion-by-regions in forward limit, $\mathbf{p}_{3,\perp}^2/s \sim \mathbf{p}_{4,\perp}^2/s \sim \lambda$

$k = \alpha \mathbf{p} + \beta \mathbf{p} + k$	$d^d k_1$	$s \mathrm{d}lpha_1 \mathrm{d}eta_1 \mathrm{d}^{d-2}\mathbf{k}_{1,\perp}$
$\mathbf{n}_1 - \alpha_1 \mathbf{p}_1 + \rho_1 \mathbf{p}_2 + \mathbf{n}_{1,\perp},$	$(2\pi)^{d}$ –	$\overline{2} \overline{2\pi i} \overline{2\pi i} \overline{2\pi i} \overline{(2\pi)^{d-2}}$

	α_1	β_1	$\bm{k}_{1,\perp}$	\mathcal{M}_1
G	λ	λ	$\sqrt{\lambda}$	-2
G-S	λ	$\sqrt{\lambda}$	$\sqrt{\lambda}$	-3/2
S	$\sqrt{\lambda}$	$\sqrt{\lambda}$	$\sqrt{\lambda}$	-1
С	1	λ	$\sqrt{\lambda}$	0
Н	1	1	1	0

+

Only Glauber/ Mixed @ next-toleading power

Sub-eikonal correction about 20% of eikonal correction

Result: NNLO non-factorisable contribution similar in size to N3LO correction

	$\sigma^{(extsf{13 TeV})}$ [pb]	$\sigma^{(extsf{14 TeV})}$ [pb]	$\sigma^{(m 100~TeV)}$ [pb]
LO	$4.099 {}^{+0.051}_{-0.067}$	$4.647^{+0.037}_{-0.058}$	$77.17 {}^{+6.45}_{-7.29}$
NLO	$3.970^{+0.025}_{-0.023}$	$4.497^{+0.032}_{-0.027}$	$73.90 {}^{+1.73}_{-1.94}$
NNLO	$3.932 {}^{+0.015}_{-0.010}$	$4.452^{+0.018}_{-0.012}$	$72.44 {}^{+0.53}_{-0.40}$
N3LO	$3.928 {}^{+0.005}_{-0.001}$	$4.448^{+0.006}_{-0.001}$	$72.34 {}^{+0.11}_{-0.02}$

$$\sigma_{\text{LO}}^{\text{non-fac}} = -2.97^{+0.52}_{-0.69} \text{ fb}$$

$$\sigma_{\text{NLO}}^{\text{non-fac}} = -3.20^{+0.14}_{-0.01} \text{ fb}$$

Figures/Tables: Ming-Ming Long (20th LHCHWG Meeting)

VBF Parton Shower Uncertainties

Parton shower uncertainties dominate the theory uncertainty for VBF

- \hookrightarrow Currently ±15% on inclusive measurement, will limit interpretation in Run 3
- ↔ Not clear if Pythia dipole vs Herwig 7 captures true uncertainty

Several studies completed & ongoing:

NNLO QCD vs NLO+PS

Good agreement theoretically Less so for experimental PS studies (underlying event? hadronisation? tuning vs recoil scheme?) Buckley et al. 21

NLL PanScales showers

LL vs NLL differ by ~15% for 3rd jet (within scale var.) van Beekveld, Ferrario Ravasio 23

NLO EW+PS recently available

Jäger, Scheller 22

ZH Production

$pp \rightarrow ZH$: Role of gg Channel

Drell-Yan-like contribution recently computed @ N³LO Baglio, Duhr, Mistlberger, Szafron 22

Gluon channel contributes to

- $pp \rightarrow ZH @ NNLO$
- ~10% of the total cross section at LHC (due to large gluon luminosity)
- 2) Has large uncertainty >100%
- 3) A dominant TH uncertainty on ZH analyses

This motivates calculating ggZH @ NLO (2-loop)

$gg \rightarrow ZH$: Results

Putting all pieces together (Born + reals + virtual) can obtain full NLO results

Wang, Xu, Xu, Yang 21; Chen, Davies, Heinrich, SPJ, Kerner, Mishima, Schlenk, Steinhauser 22; Degrassi, Gröber, Vitti, Zhao 22

Total Cross-section

\sqrt{S}	LO [fb]	NLO [fb]
$13 { m TeV}$	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)^{+16.4\%}_{-13.9\%}$
$13.6 { m TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)^{+16.2\%}_{-13.7\%}$
$14 { m TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)^{+16.1\%}_{-13.6\%}$

Invariant Mass

NNPDF31_nlo_pdfas

$$m_t^{OS} = 173.21 \text{ GeV}$$

 $\mu = m_{ZH}$
 $\mu_{R,F} \in \left[\frac{\mu}{2}, 2\mu\right] \quad (7 - \text{point})$

NLO corrections are large and lie outside the usual LO scale uncertainties

NLO/LO somewhat* flat except at production & top thresholds

*Starts to rise above ~1 TeV (also depends on what real diagrams are included)

$gg \rightarrow ZH$: Transverse Momentum

Z Transverse Momentum

H Transverse Momentum

Z p_T : Large NLO corrections, rising sharply at large $p_{T,Z}$ H p_T : Extremely large NLO corrections, rising very sharply at large $p_{T,H}$

Placing cuts on soft Z or H emission slightly tames growth

Radiating an additional jet opens up an important new region of phase-space Very important to include higher order corrections in this region

ttH Production

Soft-Higgs Approximation

The 2-loop virtual matrix elements for $t\bar{t}H$ are extremely challenging to compute: $\hookrightarrow 2 \to 3$ process involving two additional scales (m_t , m_h)

Idea:

Soft-Higgs boson emission from on-shell top quarks gives soft singularity

$$\lim_{k \to 0} \left[(p+k)^2 - m_t^2 \right]^{-1} \to \left[(p^2 - m_t^2) \right]^{-1}, \quad p^2 = m_t^2$$

Can derive **factorisation formula** from eikonal approx/low energy theorem (emission from highly off-shell propagators not captured)

Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini 22

⁻igure: Simone Devoto (QCD@LHC 2023)

ttH@Approximate NNLO

Use $c\overline{c} \rightarrow t\overline{t}$ (c = q, g) amplitudes + $Q\overline{Q}F$ generalisation of q_T subtraction

σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$
$\sigma_{ m LO}$	$0.3910^{+31.3\%}_{-22.2\%}$	$25.38^{+21.1\%}_{-16.0\%}$
$\sigma_{ m NLO}$	$0.4875^{+5.6\%}_{-9.1\%}$	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070(31)^{+0.9\%}_{-3.0\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$

Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini 22

NNLO +4% @ 13 TeV

Significant reduction of scale uncertainties

Soft approximation uncertainty estimated to be significantly smaller than scale uncertainty (using NLO)

HH Production

$$\sigma(pp \to HH) \sim \frac{\sigma(pp \to H)}{1000}$$

bbH Background

HH production known @ NLO (full), N3LO (HTL)

Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert Zirke 16, 16; Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher 18, 20; Chen, Li, Shao, Wang 19;

Small signal means we need excellent control of the backgrounds Higgs production in association with $b\overline{b}$ is a **background** to $H(\rightarrow b\overline{b})H(\rightarrow X)$

Improves cross-section limits by 2-20% (depending on channel LHC/HL-LHC)

Electroweak Corrections

It is also interesting to explore the impact of EW corrections (in single Higgs for off-shell Higgs have $\pm 5\%$ impact) Actis, Passarino, Sturm, Uccirati 08

Richer structure in the SM and much richer structure in the context of EFT

Partial 2-loop EW corrections known:

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 18

Leading top-Yukawa contributions

(Small m_T) Davies, Mishima, Schönwald, Steinhauser, Zhang 22 + (EFT approach) Mühlleitner, Schlenk, Spira 22

Complete EW corrections will modify distributions and bounds in the SM & EFT frameworks

Electroweak Corrections (Partial)

Would be desirable to have complete EW corrections

← First step: both self-coupling/Yukawa corrections with exact mass dependence

 \hookrightarrow 2-loop 4-point fully massive amplitudes w/ 4 scales ($s, t, m_h, m_t + d = 4 - 2\epsilon$) WIP: Gudrun Heinrich, SJ, Matthias Kerner, Tom Stone, Augustin Vestner

Workflow:

- 1. Reduce amplitude to "master integrals" $\mathcal{O}(1k) \rightarrow 494$ (8.5 GB symbolic expression!)
- 2. Evaluate master integrals
 + Numerically (pySecDec) ✓
 + Series solution (DiffExp) (✓)
- 3. Compute counter-term amplitude/renormalization

→ See Talk: Tom Stone

	{"s": 6392./1000., 't': -1038./1000.}
	AMPgs2ghh3ght@1=
	+eps^-1*(-8.0501/61/609928/4e-01-3.884/96/242213449e-01])
	±eps^-1*(+6.4683122144165918e-18+6.090/61836490/0/9e-18])
	+eps^0*(-2.89/24335080/4156e+00+1.089/854394801396e+01])
	±eps^0*(+3.643534/34/21/201e-0/+3.459801/999/5/325e-0/])
	AMPgs2gnngnngnt@1=
	+eps^-1*(-1.4596999451695023e+01-7.0441161054046244e+00])
	$\pm eps^{-1*}(+1.1/286811843391/8e-16+1.104408/1408033/8e-16])$
	+eps^0*(+8.590882/45/094041e+00-2.3032424593432/40e+01])
	±eps^0*(+2.13/9/93495/686/2e-06+2.030/809283694008e-06j)
	AmpgS2gnnngnl2@1=
	+eps^0*(-2.9328689251200672e+01+6.2777695560284613e+01])
	±eps^v*(+4.2325534//38953/2e-05+4./0599802/05/4143e-05j)
	$A^{(1)}_{1}$ A^{(1)}_{2}
	$+eps^{-1*}(+1.0/954356/7340/200+01-1.56276503020935360+01))$
	$\pm cps^{0} + (\pm 1) 24042070711075690 \pm 01 + 0.20/174504017/0506 \pm 07)$
	$+eps 0^{(+1.2434307071137300e+01-1.3334130033224320e+01])$
	$\Delta MPgc 2gh + 1@1 =$
	$+ ans^{-1*}(+8) 9965909545780738a+07+7 0179450771915367a+07i)$
	$+ ens^{-1*}(+3, 1141667895359773e_07+3, 9765570889843676e_07i)$
	$\pm e_{PS} = 1 (3.1141002055552756-0775.57055200050450200-075)$ $\pm e_{PS} - 0 * (-3.2569582999240259e+02+7.4212291343799063e+02i)$
	$+ \exp^{-5}(0) (-3.230330233240233040233040233134373300304023)$ $+ \exp^{-6}(+1.2062357017861179e-05+1.3260886643334515e-05i)$
	AMPgs/ghh/ght/a/=
\succ	+eps^0*(+2,1302729928389130e-01-9,6264790690184143e-01i)
í m	+eps^0*(+6.4890537787570324e-06+7.3624383819487271e-06i)
	AMPgs2ghh2ght2@1=
\triangleleft	+eps^0*(+5.9931726494394134e+01-2.7172796094458263e+01i)
$\overline{\mathbf{Z}}$	+eps^0*(+7,2171240278777598e-06+8,0229678514775212e-06i)
	AMPgs2ghhght3@2=
	+eps^0*(-1.1864410715837595e+01-1.3059830877762900e+01i)
\leq	±eps^0*(+5.2242846406267860e-05+5.2540153789084503e-05i)
	AMPgs2ghhght3@1=
	+eps [×] -1 [*] (-1.9193038568999327e+01+2.3085101431300473e+01i)
	±eps^-1*(+1.2444914353984587e-11+1.1939919132080516e-11i)
Ш	+eps^0*(-5.6920823777757072e+01-1.4139018713494380e+02i)
	±eps^0*(+2.3643191708284244e-05+1.9217507136723785e-05j)

Electroweak Corrections (HTL)

Very recently, complete EW results were obtained in the large- m_t limit (HTL) Davies, Steinhauser, Schönwald, Zhang 23

Complete EW corrections are **somewhat complicated**...

Figure: Kai Schönwald (20th LHCHWG Meeting)

Electroweak Corrections (HTL)

In the large- m_t limit ($m_t^2 \gg \xi_W m_W^2$, $\xi_Z m_Z^2 \gg s$, t, m_H^2 , m_W^2 , m_Z^2) \hookrightarrow LO expansion converges up to $\sqrt{s} \sim 2m_t$

 \hookrightarrow However, NLO expansion does not converge well above $H\!H$ threshold

Traced to configurations with cut through W-t-b line ($m_T + m_W + m_b \sim 250 {\rm GeV}$)

Summary

The last few years has seen impressive theory progress

Uncertainties beyond scale variations are becoming increasingly relevant, e.g. full understanding of massive corrections are important (SCET, beyond LP, fully massive results)

A lot of pQCD knowledge can be transferred to the computation of EW processes, starting to happen in a significant way (mixed QCD-EW)

> Still plenty to do! _____ Les Houches Wishlist 21

Thank you for listening

process	known	desired
$pp \rightarrow H$	$\begin{array}{l} \mathrm{N}^{3}\mathrm{LO}_{\mathrm{HTL}} \\ \mathrm{NNLO}_{\mathrm{QCD}}^{(t)} \\ \mathrm{N}^{(1,1)}\mathrm{LO}_{\mathrm{QCD}\otimes\mathrm{EW}}^{(\mathrm{HTL})} \\ \mathrm{NLO}_{\mathrm{QCD}} \end{array}$	$N^{4}LO_{HTL}$ (incl.) NNLO ^(b,c) _{QCD}
$pp \rightarrow H + j$	$\mathrm{NNLO}_{\mathrm{HTL}}$ $\mathrm{NLO}_{\mathrm{QCD}}$ $\mathrm{N}^{(1,1)}\mathrm{LO}_{\mathrm{QCD}\otimes\mathrm{EW}}$	$\mathrm{NNLO}_{\mathrm{HTL}} \otimes \mathrm{NLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$
$pp \rightarrow H + 2j$	$\begin{split} & \text{NLO}_{\text{HTL}} \otimes \text{LO}_{\text{QCD}} \\ & \text{N}^3 \text{LO}_{\text{QCD}}^{(\text{VBF}^*)} \text{ (incl.)} \\ & \text{NNLO}_{\text{QCD}}^{(\text{VBF}^*)} \\ & \text{NLO}_{\text{EW}}^{(\text{VBF})} \end{split}$	$\begin{split} & \text{NNLO}_{\text{HTL}} \otimes \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \\ & \text{N}^3 \text{LO}_{\text{QCD}}^{(\text{VBF}^*)} \\ & \text{NNLO}_{\text{QCD}}^{(\text{VBF})} \end{split}$
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF)	$\rm NLO_{QCD} + \rm NLO_{EW}$
$pp \rightarrow VH$	$\frac{\text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}{\text{NLO}_{gg \to HZ}^{(t,b)}}$	
$pp \rightarrow VH + j$	$\frac{\text{NNLO}_{\text{QCD}}}{\text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}$	$NNLO_{QCD} + NLO_{EW}$
$pp \rightarrow HH$	$\rm N^{3}LO_{HTL} \otimes \rm NLO_{QCD}$	NLO _{EW}
$pp \rightarrow HH + 2j$	${f N}^3 {f LO}_{QCD}^{(VBF^*)}$ (incl.) ${f NNLO}_{QCD}^{(VBF^*)}$ ${f NLO}_{EW}^{(VBF)}$	
$pp \rightarrow HHH$	NNLO _{HTL}	
$pp \rightarrow H + t\bar{t}$	$NLO_{QCD} + NLO_{EW}$ $NNLO_{QCD}$ (off-diag.)	NNLO _{QCD}
$pp \to H + t/\bar{t}$	$\rm NLO_{QCD} + \rm NLO_{EW}$	NNLO _{QCD}

Backup

Non-Factorisable Corrections

VBF is usually computed in the **structure function approach**

Approximations & Precision

Known to N3LO in the structure function / DIS approximation

NLO: **non-factorisable** virtual contribution vanishes due to colour conservation

NNLO: get colour suppressed **non-factorisable** contribution

Inclusion of NNLO $m_{\rm t}$

iHixs:
$$\hat{\sigma}_{ij} = \operatorname{R}_{\operatorname{LO}} C^2 \left[\sigma_{ij}^{\operatorname{LO, EFT}} + \sigma_{ij}^{\operatorname{NLO, EFT}} + \sigma_{ij}^{\operatorname{NNLO, EFT}} + \sigma_{ij}^{\operatorname{N^3LO, EFT}} \right] + \delta \sigma_{ij}^{\operatorname{LO, (t,b,c)}} + \delta \sigma_{ij}^{\operatorname{NLO, (t,b,c)}} + \delta \sigma_{ij}^{\operatorname{NNLO, (t)}} + \operatorname{R}_{\operatorname{LO}} C^2 \delta \sigma_{ij}^{\operatorname{Res}}.$$

- start with iHixs prediction and systematically incorporate new results
- exact top mass at NNLO Czakon, Harlander, Klappert, Niggetiedt 21

$$\delta\sigma_{ij}^{\text{NNLO, (t)}} = \sigma_{ij}^{\text{NNLO, approx.}} - \left[C_{\text{QCD}}^2 R_{\text{LO}} \sigma_{ij}^{\text{EFT}}\right]_{\alpha_S^4} \quad \text{for} \quad (ij) \in \{(gg), (gq)\}$$

iHixs gives access to each part:

 \hookrightarrow substitution $\sigma_{ij}^{\text{NNLO, approx}} \rightarrow \sigma_{ij}^{\text{NNLO, exact}}$ straightforward (computation of "exact" already as a difference to EFT \rightsquigarrow compatibility checks)

Gluon Fusion: NNLO with Full top-quark Mass

Decreases $\sigma_{\rm tot}$ by -0.26% @ 13 TeV compared to heavy top limit (HTL)

Intricate interplay between mass effects gg (+0.62%), qg (-16%), qq (-15%) Complete NNLO results obtained using STRIPPER framework

Inclusion of mixed QCD-EW

iHixs:
$$\hat{\sigma}_{ij} = \operatorname{R}_{\operatorname{LO}} C^2 \left[\sigma_{ij}^{\operatorname{LO, EFT}} + \sigma_{ij}^{\operatorname{NLO, EFT}} + \sigma_{ij}^{\operatorname{NNLO, EFT}} + \sigma_{ij}^{\operatorname{N^3LO, EFT}} \right] + \delta \sigma_{ij}^{\operatorname{LO, (t,b,c)}} + \delta \sigma_{ij}^{\operatorname{NLO, (t,b,c)}} + \delta \sigma_{ij}^{\operatorname{NNLO, (t)}} + \operatorname{R}_{\operatorname{LO}} C^2 \delta \sigma_{ij}^{\operatorname{Res}}.$$

- start with iHixs prediction and systematically incorporate new results
- inclusion of EW corrections by Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer 20 iHixs formula based on *factorization hypothesis*:

$$C = C_{\text{QCD}} + \lambda_{\text{EWK}} (1 + \frac{\alpha_S}{\pi} C_{1w} + \dots).$$

- \hookrightarrow iHixs uses $C_{1w} = 7/6$ as estimated from the $M_V \to \infty$ limit
- ← full result gives: $C_{1w} = -1.7 \ (\mu_R = M_H/2) \ C_{1w} = -2.1 \ (\mu_R = M_H)$ **but note:** $\delta(\text{EW}) \sim \pm 1 \% \iff \text{vary } C_{1w}$ by factor in range [-3, 6]

Initial proposal: incorporate new result with an additional correction term (1st step)

$$\delta \sigma_{ij}^{\rm EW} = \sigma_{ij}^{\rm EW} - \left[C^2 R_{\rm LO} \sigma_{ij}^{\rm EFT} \right]_{\alpha_s^3 \alpha^2}$$

and define error estimates on correction factor (beyond light quarks, gg channel, ...)

Gluon Fusion: Mixed QCD-EW Corrections

Increases σ_{tot} by +5.1 % @ 13 TeV, reduces residual uncertainty $\delta(EW) \sim 0.6$ % Favouring factorisation of EW corrections: $\sigma = \sigma_{LO} (1 + \delta_{OCD}) \times (1 + \delta_{EWK})$

Compatible with previous estimates:

Soft approx: +5.4%, $M_H \ll M_V$: +5.2%, $M_H \gg M_V$: +5.4%

Bonetti, Melnikov, Tancredi 18;

Anastasiou, Boughezal, Petriello 09:

Anastasiou, Del Duca, Furlan, Mistlberger, Moriello, Schweitzer, Specchia 19

HH: Mass Scheme Uncertainty

Combination of scale (μ_R , μ_F) and top mass scheme (OS / MS) studied Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 20

If we wish to take the **envelope** of the predictions as the uncertainty, then the two uncertainties should be added **linearly** (validated at NLO)

Scale (μ_R, μ_F)

$\kappa_{\lambda} = -10: \quad \sigma_{tot} = 1680^{+3.0\%}_{-7.7\%} \text{ fb}, \qquad \kappa_{\lambda} = -10: \quad \sigma_{tot} = 1438(1)^{+10\%}_{-6\%} \text{ fb},$ $\kappa_{\lambda} = -5: \quad \sigma_{tot} = 598.9^{+2.7\%}_{-7.5\%} \text{ fb}, \qquad \kappa_{\lambda} = -5: \quad \sigma_{tot} = 512.8(3)^{+10\%}_{-7\%} \text{ fb},$ $\kappa_{\lambda} = -1: \quad \sigma_{tot} = 131.9^{+2.5\%}_{-6.7\%} \text{ fb}, \qquad \kappa_{\lambda} = -1: \quad \sigma_{tot} = 113.66(7)^{+8\%}_{-9\%} \text{ fb},$ $\kappa_{\lambda} = 2.4: \quad \sigma_{tot} = 13.10^{+2.3\%}_{-5.1\%} \text{ fb}, \qquad \kappa_{\lambda} = 2.4: \quad \sigma_{tot} = 12.7(1)^{+4\%}_{-22\%} \text{ fb},$ $\kappa_{\lambda} = 3: \quad \sigma_{tot} = 18.67^{+2.7\%}_{-7.3\%} \text{ fb}, \qquad \kappa_{\lambda} = 3: \quad \sigma_{tot} = 17.6(1)^{+9\%}_{-15\%} \text{ fb},$ $\kappa_{\lambda} = 5: \quad \sigma_{tot} = 94.82^{+4.9\%}_{-8.8\%} \text{ fb}, \qquad \kappa_{\lambda} = 5: \quad \sigma_{tot} = 83.2(3)^{+13\%}_{-4\%} \text{ fb},$

NLO Mass Scheme Unc.

 $\kappa_{\lambda} = 0: \quad \sigma_{tot} = 70.38^{+2.4\%}_{-6.1\%} \text{ fb}, \qquad \kappa_{\lambda} = 0: \quad \sigma_{tot} = 61.22(6)^{+6\%}_{-12\%} \text{ fb},$ $\begin{aligned} \kappa_{\lambda} &= 1: \quad \sigma_{tot} &= 31.05^{+2.2\%}_{-5.0\%} \text{ b}, \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} &= 13.81^{+2.1\%}_{-4.9\%} \text{ fb}, \end{aligned} \qquad \textbf{+} \qquad \begin{aligned} \kappa_{\lambda} &= 1: \quad \sigma_{tot} &= 27.73(7^{+4\%}_{-18\%} \text{ fb}, \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} &= 13.2(1)^{+1\%}_{-23\%} \text{ fb}, \end{aligned}$ $\kappa_{\lambda} = 10: \quad \sigma_{tot} = 672.2^{+4.2\%}_{-8.5\%} \text{ fb} \qquad \kappa_{\lambda} = 10: \quad \sigma_{tot} = 579(1)^{+12\%}_{-4\%} \text{ fb}$

Proposed Combination

$\kappa_{\lambda} = -10$:	σ_{tot}	=	$1680^{+13\%}_{-14\%}$ fb,
$\kappa_{\lambda} = -5:$	σ_{tot}	=	$598.9^{+13\%}_{-15\%}$ fb,
$\kappa_{\lambda} = -1:$	σ_{tot}	=	$131.9^{+11\%}_{-16\%}$ fb,
$\kappa_{\lambda} = 0$:	σ_{tot}	=	$70.38^{+8\%}_{-18\%}$ fb,
$\kappa_{\lambda} = 1$:	σ_{tot}	=	$31.05_{-23\%}^{+6\%}$ b,
$\kappa_{\lambda} = 2$:	σ_{tot}	=	$13.81_{-28\%}^{+3\%}$ fb,
$\kappa_{\lambda} = 2.4$:	σ_{tot}	=	$13.10^{+6\%}_{-27\%}$ fb,
$\kappa_{\lambda} = 3$:	σ_{tot}	=	$18.67^{+12\%}_{-22\%}$ fb,
$\kappa_{\lambda} = 5$:	σ_{tot}	=	94.82 ^{+18%} _{-13%} fb,
$\kappa_{\lambda} = 10$:	σ_{tot}	=	$672.2^{+16\%}_{-13\%}$ fb

@13 TeV

Tackling Mass Scheme Uncertainties

Low invariant mass:

expand in $1/m_t^2$ known to NNLO Grigo, Hoff, Steinhauser 15;

Around Peak: threshold expansion Gröber, Maier, Rauh 17

High energy:

small-*m*_t expansion known at NLO Davies, Mishima, Steinhauser, Wellmann 18, 19

Options:

1) Try to understand structure of mass logarithms

- 2) Keep calculating
- 3) Other ideas (?)

$gg \rightarrow ZH$: Z vs H

The different behaviour of $p_{T,Z}$ and $p_{T,H}$ was observed previously in $gg \rightarrow ZH + j$ Hespel, Maltoni, Vryonidou 15; Les Houches 19

Traced to configurations where Higgs recoils against a hard jet, with a soft Z

 $p \cdot p_Z$

One observation

Maltoni et al. attributed this to *t*-channel gluon exchange

If we apply an eikonal approximation to such diagrams, the enhancement of soft Z bosons can be understood (Soft Z emission): $\frac{p^{\mu}}{f_{z}}$, \hat{f}_{μ}

(Soft *H* emission): $\frac{m_t}{p \cdot p_H}$ p'Ratio for large radiator (transverse) momentum $\sim p_T/m_t \gg 1$

