Higgs searches at LHCb Lorenzo Sestini - INFN Padova

UK HEP Forum 2023: Completing the Higgs-saw puzzle - 21/11/2023

Istituto Nazionale di Fisica Nucleare

Not only flavour physics

- LHCb is well known for the excellent results on B physics •
- But we have also many measurements on electroweak and QCD physics! \bullet
- LHCb is now qualified as a general purpose detector in the forward region
- The goal of this talk is showing you the LHCb capabilities in Higgs physics ullet

21/11/2020

Z+c-jet measurement (intrinsic charm) Phys. Rev. Lett. 128 (2022) 082001

Why Higgs physics at LHCb?

- At first sight **LHCb** may not be seen as a detector for Higgs physics:
 - Reduced acceptance with respect to ATLAS ulletand CMS
 - Lower luminosity due to leveling •
- But there are also **strong points**: ullet
 - **Lower pile-up** means cleaner events •
 - Low energy/momentum threshold triggers lacksquare
 - **Excellent secondary vertex reconstruction** • performance is a plus for b- and c-jets tagging

Two main directions for Higgs research

Standard Model Higgs

- What is the LHCb sensitivity to the SM Higgs?
- Which are the best production/decay channels?
- Which kind of detector and reconstruction improvements are necessary for the Higgs observation?
- <u>Could LHCb be the third experiment for measuring</u> Higgs properties (and the first one in the forward region of p-p collisions)?

SM and BSM Higgs

Beyond Standard Model Higgs

- **Could we take profit of the unique phase space?**
- Which kind of Exotic Higgs decays?
- What is the mass range where we can search for low mass Higgses?
- Indirect searches? Higgs as portal to new physics?

LHCb detector

JINST 3 (2008) S08005

- LHCb is a spectrometer in the forward region ullet
- Track momentum resolution: 0.4% at 5 GeV and 0.6% at 100 GeV
- **Excellent vertex reconstruction system**: impact parameter resolution of $(15 + 29/p_T) \mu m$, p_T in GeV
- Muon ID efficiency: 97% with 1-3% $\mu \rightarrow \pi$ mis-identification
- Electron reconstruction with bremsstrahlung recovery

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Relative momentum resolution versus momentum for long tracks in data obtained using $J/\psi \rightarrow \mu\mu$ decays

Excellent muon performance from low to high momentum

Muons at LHCb

JHEP 07 (2022) 26

 $Z \rightarrow \mu \mu$ invariant mass peak

- The jet tagging system takes advantage of LHCb features \rightarrow precise vertex reconstruction
- Secondary vertices (SV) are reconstructed by using all the tracks in the events, not only those that belong to the jet
- In Run 1/2 the efficiency for tagging a b-(c-) jets is of about 60% (25%), with a light jet misidentification below 0.1%

Jet tagging at LHCb

JINST 10 (2015) P06013

21/11/2023

Jet tagging at LHCb

Beyond Standard Model Higgs

- Hints of flavour anomalies \bullet
- $b \rightarrow s$ transitions ullet
- Lepton flavour universality violation \bullet

Search for new physics

Quest for New Physics

Direct searches

Both approaches followed at LHCb

- Higgs-like resonances
- Dark photons
- Exotic Higgs decays \bullet

Direct searches: Exotic Higgs

decays

Higgs decay to Long Lived Particles

At LHCb we have mainly considered two benchmark models for LLP But results are available for re-interpretation

Lorenzo Sestini

Search for particles with long life-time, coming from the decay of the SM Higgs

jet sv jet PV

Signature: two b-jets associated to a displaced SV

Fit to the dijet invariant mass, in different intervals of displacement

LLP decaying to jets Eur. Phys. J. C77 (2017) 812

Upper limit to $\frac{\sigma(gg \rightarrow H)}{\sigma_{SM}(gg \rightarrow H)} \cdot BR(H \rightarrow \pi_{\nu}\pi_{\nu})$

LLP decaying semileptonically

Fit to the neutralino mass **Background from bb events** • Data LHCb — Fit: total $5.4\,{\rm fb}^{-1}$

Mass from 5 to 60 GeV

LLP decaying semileptonically

Lepton flavour violating LLP decay

Signature: electron-muon pair

Eur. Phys. J. C81 (2021) 261

Lepton flavour violating Higgs decays

Search for $H \rightarrow \mu \tau$

Tau reconstructed in different channels:

- muon
- electron
- hadron
- 3-hadron

Light Higgs bosons

- Since Run 2 we have dedicated trigger \bullet lines for dimuon searches
- We have used them to put the most stringent ulletconstraints on dark photons in the mass range [214, 740] MeV and [10.6, 30] GeV

Dimuon searches

PHYS. REV. LETT. 124 (2020) 041801

Higgs to dimuons

JHEP 10 (2020) 156

Inclusive Prompt

Displaced pointing

Prompt + b-jet

m(X) [GeV]

Inclusive prompt 90% CL upper limits

Prompt + b-jet 90% CL upper limits

Searches with B decays

Lorenzo Sestini

Hidden sector bosons

Standard Model Higgs

- LHCb has the potential to look for the • decay of the Higgs to bb and cc quarks:
 - Excellent jet reconstruction
 - Excellent SV reconstruction
 - Low p_T thresholds triggers (selecting SV-tagged jets with p_T>17 GeV)
 - Separation between b and c quarks
- The measurement of the Z→bb **process** is a a proof of LHCb capabilities

Dijet resonances

Phys. Lett. B776 (2018) 430

- LHCb searched for W/Z + H in Run 1 data (2) fb⁻¹ at 8 TeV), by looking at the dijet+lepton (muon or electron) final state
- The two jets are required to have p_T >20 GeV and SV-tagged
- One of the key aspects is that $H \rightarrow b\bar{b}$ is an irreducible background for $H \rightarrow c\bar{c}$.
- We can use the **BDT(b vs c)** to separate the two Higgs contributions
- The optimal cut on BDT(b vs c) on both jets • removes 90% of H→bb while keeping 62% of H→cō.

W/Z+H production

- The other backgrounds are W+bb/cc and top ullet
- A multivariate method (**uniform gradient boost, uGB**) ullethas been used to separate the backgrounds from the signal
- Inputs are 12 kinematic variables of jets and leptons \bullet
- Two uGBs are trained in order to be uncorrelated lacksquarewith the dijet invariant mass
- A transformation is applied in order to make the • distribution flat for the Higgs
- The upper limit is set by using the dijet invariant mass lacksquareand the two uGBs distributions

W/Z+H production

- 27.3 events expected \rightarrow 20 observed. \bullet
- $\sigma \times BR(H \rightarrow b\bar{b}) < 50$ times the SM expectation at 95% CL

W/Z+H production

- 2.6 events expected \rightarrow 0 observed.
- $\sigma \times BR(H \rightarrow c\bar{c}) < 6400$ times the SM expectation at 95% CL •

The upper limit on the charm Yukawa coupling is y^c<80 y^c_{SM} Cannot appear so good, but it is the starting point for our extrapolation

LHCb at HL-LHC

- The LHCb Collaboration has proposed an upgrade for the HL-LHC era
- The goal is to collect **300 fb⁻¹** of integrated luminosity with an **improved detector**

Prospects on H→ cc̄ search at HL-LHC

- With the **new Vertex Locator** the impact parameter resolution is expected to improve.
- An optimized selection for SV from c-hadron decays can be applied.
- In our estimation the c-jet SV-tagging efficiency improves roughly from 25% to 35%.

21/11/2023

Perfect detector, i.e. has true SV in kinematic fiducial region. **CERN-2019-007**

> Perfect IP resolution, but including RECO efficiency (assumed to be same as Run 1, which may not be true), etc.

Phase-II Scenario 2 Phase-II Scenario 1 Run 3 Run1 Solid: IP $X^2 > 16$ (as in Run 1) Dashed: IP $X^2 > 9$

$H \rightarrow c\bar{c}$ search with 300 fb⁻¹

- lacksquare
- Step-by-step we have the following improvements:
 - higher cross section and acceptance at 14 TeV and 300 fb⁻¹ \rightarrow 50 x SM; ullet
 - improved SV-tagging efficiency $\rightarrow 13x SM$;
 - improved electron reconstruction \rightarrow 9 x SM; \bullet
 - improved background removal $\rightarrow 6 \times SM$.
- A toy study with simulation leaded to a similar result \rightarrow 5-10 x SM. \bullet
- the General Purpose Detectors!

The starting point is the upper limit on the cross section set with 8 TeV data (2 fb⁻¹): 6400 x SM.

CERN-2019-007

This translates to an upper limit of y^c < 2-3 y^c_{SM} on the Hcc coupling: we may be the same game of

What about $H \rightarrow bb$ with 300 fb⁻¹?

- Let's start again from the $H \rightarrow b\bar{b}$ limit set with 8 TeV data (2 fb⁻¹): 50 x SM
- With just the statistical improvement: \bullet
 - higher cross section and acceptance at 14 TeV and 300 fb⁻¹ \rightarrow 1.5 x SM
- It does not include detector and reconstruction developments, and considers just VH
- • We may seriously try to measure the properties of $H \rightarrow b\bar{b}$ in the forward region!

Further improvements: jet substructure

Input features to the DNN

Exploiting the jet substructure: Deep Neural Network for jet flavour identification

Regression technique for improving the Higgs mass reconstruction

We are checking biases and systematics

- bb and cc cross section.
- are compatible with the expectations.
- analysis is on-going!

21/11/2023

Inclusive H→bb/H→ cc̄ search

The inclusive dataset with two SV-tagged jets (1.6 fb⁻¹ at 13 TeV) has been analyzed to measure the differential

The technique for disentangle the **bb** and **c**c processes has been demonstrated, and the the measured cross sections

This is an important step for the search for inclusive $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ (so mainly produced by gg fusion): the

Concusions

- Higgs physics at LHCb is possible!
- LHCb can search for BSM Higgs in a phase space complementary to other experiments
- With the LHCb Upgrade 2, LHCb could measure the SM Higgs in the forward region of pp collisions
- Excellent prospects on H→cc̄
- Many other improvements are expected!

• Exotic Higgs decays, light mass Higgses and indirect searches are on the table

Thanks for your attention!

