

The University of Manchester

Higgs boson prospects at future ee, pp and ep colliders

Andy Pilkington, University of Manchester

Completing the Higgs-saw, UK-HEP Forum, 22nd November 2023

Outline:

- 1) Future colliders of the circular variety
- 2) The core physics case: Higgs boson cross sections, couplings and total width
- 4) Beyond the core: Lorentz structures of Higgs boson interactions.

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

*European Strategy for Particle Physics Update (2020): https://cds.cern.ch/record/2721370/

Future Circular Collider (FCC): integrated programme (I)

Based on the successful LEP-LHC programmes at CERN

- complementary physics, common civil engineering and technical infrastructures
- building on, and reusing, CERN's existing infrastructure
- allows seamless continuation of collider-HEP after HL-LHC

- FCC-ee: electron-positron collider operating at √s = 90, 160, 240, 365 GeV
- FCC-hh: proton-proton collider operating at √s = 100 TeV

Electron-Proton Colliders: LHeC and FCC-eh

- Energy Recovery Linac (ERL) to provide electron beam with E = 60GeV
- Can run ep collider concurrently with (HL)LHC ($\sqrt{s}=1.3$ TeV) or FCC-hh ($\sqrt{s}=3.5$ TeV)

Circular Electron-Positron Collider (CEPC)

- Similar in scope to FCC-ee, proposed by the Chinese particle physics community.
- Smaller luminosity, limited by choice on SR power for energy costs. In principle, can be increased to match FCC-ee
- Tunnel can be re-used in the future for a proton-proton collider a.l.a FCC-hh

	FCC-ee				CEPC			
Running mode	Z	W	ZH	tī	Z	W	ZH	tī
Number of IPs	2				2			
Circumference (km)	91.2				100.0			
Beam energy (GeV)	45.6	80	120	182.5	45	80	120	180
Bunches/beam	12000	880	272	40	11951	1297	249	35
Beam current [mA]	1280	135	26.7	5.0	803.5	84.1	16.7	3.3
Lum. / IP $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	193	22.0	7.73	1.31	115	16	5	0.5
Synchr. Rad. Power [MW]	100					60)	

Higgs production at future colliders

Higgs production cross sections

- Electron-positron colliders access the WW-fusion and ZH Higgstrahlung processes.
- Proton-proton colliders access more production mechanisms
 - but have larger theoretical uncertainties.....
- Higgs production cross sections at FCC-hh are factors of 10-50 larger than at LHC.

Experimental considerations at ee colliders

-uminosity [10³⁴ cm²s¹]

- Lower \sqrt{s} runs for electroweak physics
- Clean environment (pile-up ~free)
- 4 IPs under serious consideration
- 3 FCC detector concepts (CLD, IDEA, LAr)

Working point	HZ	tī	
\sqrt{s} (GeV)	240	340-350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	8.5	0.95	1.55
Lumi/year (ab ⁻¹ , 2 IP)	1.7	0.2	0.34
Physics goal (ab ⁻¹)	5	0.2	1.5
Run time (year)	3	1	4
	$10^{6} HZ +$	$10^6 \text{ t}\overline{\text{t}}$	
Number of events	$25k~WW \to H$	+200k HZ	
		$+50 \mathrm{kW}$	$W \to H$

Experimental considerations at pp colliders

- Unprecedented particle flux / radiation levels
- Detector requirements for physics are likely to be extreme and still under investigation
- O(1000) pile-up interactions per event
- Low-x collisions produce far-forward objects

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
Ecm	TeV	14	14	27	100
Circumference	km	26.7	26.7	26.7	97.8
Peak L, nominal (ultimate)	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	1(2)	5 (7.5)	16	30
Bunch spacing	ns	25	25	25	25
Number of bunches		2808	2760	2808	10 600
Goal ∫ L	ab^{-1}	0.3	3	10	30
$\sigma_{\text{inel}}[340]$	mb	80	80	86	103
$\sigma_{\rm tot}[340]$	mb	108	108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak av. PU events/BC, nom-		25	130 (200)	435	950
inal (ultimate)		(50)	. ,		
Total number of pp collisions	10 ¹⁶	2.6	26	91	324
Charged part. flux at 2.5 cm,	$GHz cm^{-2}$	0.1	0.7	2.7	8.4 (10)
est. (FLUKA)					
1 MeV-neg fluence at 2.5 cm.	$10^{16} \mathrm{cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
est. (FLUKA)					·
Total ionising dose at 2.5 cm,	MGy	1.3	13	54	270 (300)
est. (FLUKA)					
$dE/d\eta _{n=5}$ [340]	GeV	316	316	427	765
$dP/d\eta _{\eta=5}$		0.04	0.2	1.0	4.0
	kW				
$90\% \text{ bb } p_T^{\text{b}} > 30 \text{ GeV/c} [341]$	$ \eta <$	3	3	3.3	4.5
VBF jet peak [341]	$ \eta $	3.4	3.4	3.7	4.4
90% VBF jets [341]	$ \eta <$	4.5	4.5	5.0	6.0
$90\% H \rightarrow 4l [341]$	n <	3.8	3.8	4.1	4.8

Experimental considerations at ep colliders

- Lower fluxes and radiation levels compared to proton-proton colliders
- Manageable pile-up conditions
- Detector concepts similar at LHeC and FCC-eh

Parameters	Unit	LHeC	HE-LHeC	FCC-eh
$E_{\rm p}$	TeV	7	13.5	50
\sqrt{s} for $E_e = 60 \text{ GeV}$	TeV	1.3	1.7	3.5
Peak \mathcal{L}	$10^{33} {\rm cm}^{-2} {\rm s}^{-1}$	8	12	15
Bunch spacing	\mathbf{ns}	25	25	25
Goal $\int \mathcal{L}$ electron-proton	ab^{-1}	1	2	2
Goal $\int \mathcal{L}$ electron—ion	fb^{-1}	10	20	20
Events per bunch crossing (pile-up)		0.1	0.2	1
1 MeV-neq fluence at $r = 2.5 \mathrm{cm}$	$10^{15} {\rm cm}^{-2}$	1	2	5
DIS ep: $\sigma_{ep \to eX}$ $Q^2 \ge 1 \text{GeV}^2$	μb	3.0	3.4	4.6
DIS Pb: $\sigma_{eN \to eX} / [nucleon, Pb]$ $Q^2 \ge 1 \text{GeV}^2$	$\mu \mathrm{b}$	1.8	2.1	2.7
Top: $\sigma(ep \rightarrow \nu \bar{t}X), p_T^j > 10 \text{ GeV}, \eta < 6$	pb	0.9	2.4	11
Higgs: $\sigma(ep \rightarrow \nu HX), P = -0.8$	pb	0.2	0.4	1

$\sigma_{_{ZH}}$.BR measurements at \sqrt{s} = 240 GeV

The Higgs peak can be reconstructed from the Z-boson decay products alone:

$$m_{\text{Recoil}}^2 = s + m_Z^2 - 2\sqrt{s}(E_{\ell^+} + E_{\ell^-})$$

Count events and measure:

- σ_{zH} determined when Higgs decays are ignored.
- σ_{ZH} ·BR(H \rightarrow XX) if the decay products are selected.

The Higgs mass can be measured from the recoil mass to an accuracy of 2.5%.

Possible due to expected excellent beam energy resolution (0.1MeV)

Events/1 GeV

11

$\sigma_{WW \rightarrow H}$.BR measurements at \sqrt{s} = 365 GeV

 $WW \rightarrow H$ production accessed by selecting Higgs candidates in a specific decay channel and looking at the missing (i.e. recoil) mass

Contributions from ZH and WW \rightarrow H peak in different regions:

- fit to extract each component.
- $\sigma_{WW \rightarrow H}$ ·BR(H \rightarrow XX) then determined for each decay channel.

Summary of measurement accuracy in e⁺e⁻ collisions

\sqrt{s}	$240 \mathrm{GeV}$		365	GeV
Int. Luminosity	$5 {\rm ~ab^{-1}}$		$1.5 { m ~ab^{-1}}$	
Channel	ZH	WWH	ZH	WWH
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\overline{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$\mathrm{H}{\rightarrow}\mathrm{c}\overline{\mathrm{c}}$	± 2.2		± 6.5	± 10
$\rm H \rightarrow gg$	± 1.9		± 3.5	± 4.5
$\rm H{ ightarrow}W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H}{\rightarrow}\mathrm{ZZ}$	± 4.4		± 12	± 10
$\mathrm{H} \!\! \to \tau^+ \tau^-$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$H \rightarrow \mu^+ \mu^-$	± 19		± 40	
${\rm H}{\rightarrow}$ invisible	< 0.3		< 0.6	

Assumes:

- Luminosity uncertainty similar to LEP (<0.1%).
- Beam energy uncertainty of 0.1MeV via resonant depolarisation
- CMS-like detector resolutions and efficiencies

Higgs cross sections and coupling modifiers

$$\sigma_{\rm ZH} \times \mathcal{B}({\rm H} \to X\overline{X}) \propto \frac{g_{\rm HZZ}^2 \times g_{\rm HX\overline{X}}^2}{\Gamma_{\rm H}} \qquad \qquad \sigma_{{\rm H}\nu_{\rm e}\overline{\nu}_{\rm e}} \times \mathcal{B}({\rm H} \to X\overline{X}) \propto \frac{g_{\rm HWW}^2 \times g_{\rm HX\overline{X}}^2}{\Gamma_{\rm H}}$$

- $\bullet \qquad g_{_{HZZ}} \text{ determined from } \sigma_{_{ZH}}$
- g_{HWW} then determined from $\sigma_{WW \rightarrow H}$.BR(H \rightarrow AA) / σ_{ZH} .BR(H \rightarrow AA)[any A]
- Total width then determined from σ_{zH} .BR(H \rightarrow ZZ)
- All other g_{HAA} then determined from σ_{ZH} ·BR(H \rightarrow AA) and $\sigma_{WW\rightarrow H}$ ·BR(H \rightarrow AA)

Higgs cross sections and coupling modifiers: results

Collider	HL-LHC	$FCC-ee_{240\rightarrow 365}$	FCC-ee
			+ HL-LHC
Int. Lumi (ab^{-1})	3	5 + 0.2 + 1.5	—
Years	10	3 + 1 + 4	-
$g_{ m HZZ}$ (%)	1.5	0.18	0.17
$g_{ m HWW}$ (%)	1.7	0.44	0.41
$g_{ m Hbb}~(\%)$	5.1	0.69	0.64
$g_{ m Hcc}~(\%)$	\mathbf{SM}	1.3	1.3
g_{Hgg} (%)	2.5	1.0	0.89
$g_{\mathrm{H} au au}$ (%)	1.9	0.74	0.66
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9	3.9
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9	1.3
$g_{\mathrm{HZ}\gamma}$ (%)	11.	_	10.
$g_{ m Htt}~(\%)$	3.4	_	3.1
$g_{\rm HHH}$ (%)	50.	44.	33.
$\Gamma_{\rm H}$ (%)	SM	1.1	1.1

Higgs self coupling at ee colliders?

- Sensitivity to trilinear Higgs coupling via loop corrections (both ZH and WW→H)
- Requires global fit to all σ.BR measurements.
- Uncertainty of 42% from FCC-ee alone, reducing to 33% if HL-LHC measurements are included.

Higgs self-coupling in pp collisions (I)

 Sensitivity to trilinear Higgs coupling via measurements of diHiggs production.

events / 0.5 GeV

 x300 event yield over LHC means that diHiggs production can be measured with high accuracy

g 000000

Higgs self-coupling in pp collisions (II)

- Excellent sensitivity to modifications in the trilinear couplings in multiple channels.
- Assumptions:
 - Excellent b-tagging efficiency (85%) and light/charm mistag rate (1%/5%)
 - Backgrounds (non-resonant, single Higgs) known to 1% accuracy.

	bĒγγ	$bar{b} au au$	$b\bar{b}ZZ^{*}[\rightarrow 4\ell]$	$b\bar{b}WW^*[\rightarrow 2j\ell\nu]$	4b+jet
δκλ	6%	8%	14%	40%	30%

Rare decay channels in pp collisions: $H \rightarrow \gamma \gamma$

- Huge rates at proton-proton colliders allow rare decay channels to be measured accurately, and eventually limited by systematic precision.
- Target uncertainties:
 - 0.5% for object reconstruction
 - 1% for luminosity
 - 1% for production mechanism (for coupling modifier extraction)

	${ m H} ightarrow \gamma \gamma$	$H \to 4\ell$	${ m H} ightarrow \mu^+ \mu^-$	$H \to \ell^+ \ell^- \gamma$
$p_{\rm T}$ (H) > 0 GeV	50×10^6	3×10^{6}	5×10^{6}	$2.5 imes 10^6$
$p_{\rm T}({\rm H})>200~{ m GeV}$	900×10^3	$50 imes 10^3$	$90 imes 10^3$	$40 imes 10^3$
$p_{\rm T}$ (H) > 500 GeV	100×10^3	6×10^3	$10 imes 10^3$	5×10^3
$p_{\rm T}$ (H) > 1 TeV	4000	250	400	200

- Utilises boosted-Higgs topologies where the ratio N_{ttr}/N_{ttz} can be measured to 1% accuracy (with cancellation of systematic uncertainties)
- Higgs-top Yukawa coupling then extracted assuming the ttZ coupling is measured to high accuracy in other decay channels.

Higgs couplings at ep colliders

- Sensitivity to driven by cross section measurements of WW→H and ZZ→H.
- Clean environment and accurate theory calculations lead to excellent precision.

Collider	FCC-ee	FCC-eh
Luminosity (ab ⁻¹)	+1.5@	2
	365 GeV	
Years	3+4	20
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	1.3	SM
$\delta g_{\rm HZZ}/g_{\rm HZZ}$ (%)	0.17	0.43
$\delta g_{\rm HWW}/g_{\rm HWW}$ (%)	0.43	0.26
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	0.61	0.74
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	1.21	1.35
$\delta g_{\mathrm{Hgg}}/g_{\mathrm{Hgg}}$ (%)	1.01	1.17
$\delta g_{\rm H\tau\tau}/g_{\rm H\tau\tau}$ (%)	0.74	1.10
$\delta g_{\mathrm{H}\mu\mu}/g_{\mathrm{H}\mu\mu}$ (%)	9.0	n.a.
$\delta g_{\rm HYY}/g_{\rm HYY}$ (%)	3.9	2.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	-	1.7
BR _{EXO} (%)	< 1.0	n.a.

Additional input from ep colliders to Higgs couplings

- The entire FCC-hh programme relies on theoretical predictions accurate to 1%.
- Current PDF uncertainty on gluon fusion calculations is 3%
- DIS measurements at electron-proton colliders provide the necessary improvements.

Collider	HL-LHC	$FCC-ee_{240\rightarrow 365}$	FCC-ee	FCC-INT	FCC-INT
			+ HL-LHC		+ HL-LHC
Int. Lumi (ab^{-1})	3	5 + 0.2 + 1.5	—	30	_
Years	10	3 + 1 + 4	—	25	_
$g_{\rm HZZ}$ (%)	1.5	0.18	0.17	0.17	0.16
$g_{\rm HWW}$ (%)	1.7	0.44	0.41	0.20	0.19
$g_{ m Hbb}~(\%)$	5.1	0.69	0.64	0.48	0.48
$g_{ m Hcc}~(\%)$	\mathbf{SM}	1.3	1.3	0.96	0.96
g_{Hgg} (%)	2.5	1.0	0.89	0.52	0.5
$g_{\mathrm{H} au au}$ (%)	1.9	0.74	0.66	0.49	0.46
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9	3.9	0.43	0.43
$g_{\rm H\gamma\gamma}$ (%)	1.8	3.9	1.3	0.32	0.32
$g_{\mathrm{HZ}\gamma}$ (%)	11.	_	10.	0.71	0.7
$g_{ m Htt}~(\%)$	3.4	-	3.1	1.0	0.95
$g_{\rm HHH}$ (%)	50.	44.	33.	3-4	3–4
$\Gamma_{\rm H}$ (%)	SM	1.1	1.1	0.91	0.91

Factor 5-20 improvement in precision Higgs coupling modifiers

- Can produce Higgs directly in electron-positron collisions at \sqrt{s} = 125 GeV
- but low cross section due to small electron Yukawa
- Line shape is broadened significantly by ISR and beam energy spread (δ_{is})
- If δ_{v_s} is reduced to around Γ_H : sensitive the electron Yukawa at around SM expectations (this is 100x better than HL-LHC)

Examining the Lorentz structure of Higgs couplings

- Assuming that there is new physics at higher energy scales, the SM can be thought of as an effective field theory that is valid at low energy.
- The Lagrangian density is then written as:

- The effective field theory operators induce anomalous Higgs boson interactions with different Lorentz structures to those in the Standard model
 - o different kinematic properties, CP-violation

CP-violating Higgs interactions at e⁺e⁻ colliders

• Smoking gun signature of CP violation is an asymmetry in a CP-odd observable

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathrm{SM}}|^2 + 2\operatorname{Re}(\mathcal{M}_{\mathrm{SM}}^*\mathcal{M}_{\mathrm{d6}}) + |\mathcal{M}_{\mathrm{d6}}|^2,$$

Typically measure angles between decay planes, e.g. TT (left) or ZZ (right)

FCC-hh will build on and extend the CPV-Higgs programme that already exists at the LHC:

- Higher statistics measurements of CPV in ZZ/ττ decays and gluon-fusion / vector boson fusion
- First differential measurements of ZH production (left) and ttH production (right).
- Systematic uncertainties tend to cancel in asymmetries = enhanced sensitivity

The European Strategy for Particle Physics calls for a coherent long-term collider programme to deliver:

- Factor of 5-10 improvement in HZZ, HWW, Htautau, Hbb, Hgg, Hmumu, Hyy, HZy couplings compared to HL-LHC.
 - Each will be known to better than 1% accuracy.
- First measurements of Hcc coupling and Higgs width; both to 1% accuracy
- Higgs self-coupling measured to 3% accuracy.

This collider programme will provide <u>much more</u> information than just the improvements above, probing the nature of the Higgs boson interactions far above the electroweak scale.

Future Circular Collider (FCC): integrated programme (I)

Integrated programme: https://www.frontiersin.org/articles/10.3389/fphy.2022.888078/full