Electroweak phase transition and gravitational waves

Oliver Gould University of Nottingham

UK HEP Forum 2023: Completing the Higgs-saw puzzle 22 November 2023

Overview

- 1. Cosmological phase transitions
- 2. Gravitational waves
- 3. Reliable predictions and effective field theory
- 4. What's next?

Hot Big Bang

Figure: Blackbody spectrum of cosmic microwave background (COBE), and temperature anisotropies (Planck).

- Matter was thermal in the early universe.
- Lots of interesting thermal physics.

Standard Model phase transitions

- Electroweak symmetry breaking occurs at $\,\mathcal{T}\sim 160~\text{GeV}$

D'Onofrio & Rummukainen 1508.07161

- Quark confinement occurs at $\, T \sim 155 \,\, {\rm MeV}$

In the minimal Standard Model (SM) both are crossovers.

Beyond SM phase transitions

- A 1st-order transition is required for successful electroweak baryogenesis.
- With new scalars, all kinds of transition patterns are possible.

Patel & Ramsey-Musolf 1212.5652

Gravitational waves

Gravitational waves

Wave-like fluctuations of the metric,

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},$$
$$\Box h_{\mu\nu}^{\mathsf{TT}} = 4\pi \, G_{\mathsf{N}} \, T_{\mu\nu}^{\mathsf{TT}},$$

sourced by the (trasverse-traceless) energy-momentum tensor.

GW interferometers

Interferometers precisely measure arm lengths to look for wave-like deviations.

ingo 1002.00001

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Pulsar timing arrays

Discovery announced this June

Celestial correlations explained by GWs with lightyear wavelengths

European PTA, Indian PTA, NANOGrav, Parkes PTA '23

LISA, Taiji and TianQin

LISA timeline 2016: LISA Pathfinder Now: Detailed Design Phase ~2035: Launch 4 years data taking planned Taiji and TianQin timeline 2019: Taiji-1 and TianQin-1 2030s: Launch

Cosmological 1st-order phase transitions

Cutting et al. 1906.00480

- Universe supercools
- Bubbles nucleate, expand and collide
- This creates long-lived fluid flows
- And creates gravitational waves:

$$\Box h_{ij}^{(\mathsf{TT})} \sim T_{ij}^{(\mathsf{TT})}$$

Gravitational wave frequencies

- Signal produced on frequencies $f_* \approx \frac{1}{R_*} \ge H_*$
- Red-shifting to today:

$$f_0 = \left(rac{a_*}{a_0}
ight) f_* \gtrsim rac{10^{-3}}{R_* H_*} \left(rac{g(T_*)}{100}
ight)^{1/6} \left(rac{T_*}{100 \text{ GeV}}
ight) \text{Hz}$$

Caprini & Figueroa 1801.04268

The prediction pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathscr{L} \to SNR(f)$, Caprini et al. 1910.13125.

Contributions:

- Gradient energy of scalar field
 - Envelope approximation: only uncollided walls contribute

Van de Vis '23

Contributions:

- Gradient energy of scalar field
 - Envelope approximation: only uncollided walls contribute

Kosowsky & Turner '93, Weir '16

- Contributions of collided walls can change UV power law

Cutting, Hindmarsh & Weir '18, Konstandin '18

Van de Vis '23

Contributions:

- Gradient energy of scalar field
 - Envelope approximation: only uncollided walls contribute

Kosowsky & Turner '93, Weir '16

- Contributions of collided walls can change UV power law

Cutting, Hindmarsh & Weir '18, Konstandin '18

• Sound waves in fluid plasma

Hindmarsh, Rummukainen & Weir '13, Hindmarsh '16

Jinno et al. '22

Contributions:

- Gradient energy of scalar field
 - Envelope approximation: only uncollided walls contribute

Kosowsky & Turner '93, Weir '16

- Contributions of collided walls can change UV power law

Cutting, Hindmarsh & Weir '18, Konstandin '18

• Sound waves in fluid plasma

Hindmarsh, Rummukainen & Weir '13, Hindmarsh '16

• Fluid shocks, turbulence

Caprini et al. '09, Roper Pol et al. '19, Dahl et al. '22

- Feebly interacting particles Jinno et al. '22
- Topological defects, oscillons ...

Spectral dependence on thermodynamics

Spectrum depends most strongly on 4 quantities,

$$\Omega_{\mathsf{GW}} = F(T_*, R_*, \alpha_*, v_{\mathsf{w}}),$$

- T_* : transition temperature,
- R_* : bubble radius,
- α_* : transition strength,
- v_w : bubble wall speed.

Bringmann et al. 2306.09411

Spectrum of gravitational wave experiments

gwplotter.com

Reliable predictions and effective field theory

Effective potential

Effective potential

Kapusta '79, Parwani '92, Arnold & Espinosa '92

Order of the EW phase transition? A potted history

- Leading order (LO): $V_T = V_0 + \bigcirc$
 - $\Rightarrow 2^{nd} \text{ order}$

• NLO: $V_T = V_0 + \bigcirc$ $\Rightarrow 1^{\text{st}} \text{ order}$

- Infrared problems at higher orders \Rightarrow ? order Linde '80
- EFT + lattice approach resolves all issues ⇒ crossover Kajantie et al '96
- Accurate thermodynamics for SM

D'Onofrio & Rummukainen '15, Laine & Meyer '15

Quantum field theory at T > 0

• Thermodynamics $Z = \text{Tr}e^{-\hat{H}/T}$ formulated in $\mathbb{R}^3 \times S^1$,

• Fields are expanded into Fourier modes:

$$\Phi(\tau, x) = \sum_{n} \phi_n(x) e^{i(n\pi T)\tau}$$

where n is even (odd) for bosons (fermions).

Dimensional reduction

Substituting in the Fourier expansion (here for a scalar),

$$\int_{\tau} \int_{x} \left[\frac{1}{2} \Phi(\tau, x) (-\nabla^2 - \partial_{\tau}^2 + m^2) \Phi(\tau, x) \right] = \frac{1}{T} \sum_{n} \int_{x} \left[\frac{1}{2} \phi_n(x) (-\nabla^2 + (n\pi T)^2 + m^2) \phi_n(x) \right].$$

The masses of the Fourier modes are

$$m_n^2=(n\pi T)^2+m^2.$$

Matsubara '55

EFTs at zero temperature

EFTs at high temperature

Farakos et al. '94, Braaten & Nieto '95, Kajantie et al. '95

Minimal EFT for the phase transition

Start from BSM model in T=0 and integrate out σ at high T,

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\sigma} + \frac{1}{2}a_1\sigma\phi^{\dagger}\phi + \frac{1}{2}a_2\sigma^2\phi^{\dagger}\phi$$

$$\mathcal{L}_{\rm eff} = \frac{1}{4}F^a_{ij}F^a_{ij} + D_i\phi^{\dagger}D_i\phi + m_3^2\phi^{\dagger}\phi + \lambda_3(\phi^{\dagger}\phi)^2$$

The electroweak phase transition is first order if

$$x\equiv rac{\lambda_3}{g_3^2} < x_* = 0.0983(15).$$
 Kajantie et al '96

The new scalar modifies the SM value ($\approx 0.3)$ at tree-level,

$$x \approx \frac{\lambda}{g^2} = \frac{m_H^2}{8m_W^2} \left(1 + \frac{m_\sigma^2 - m_H^2}{m_H^2} \sin^2\theta\right),$$

and at loop-level,

$$\Delta x \sim -rac{a_2^2 T}{\pi g^2 m_{\sigma,3}}.$$

Electroweak phase diagram

OG, Güyer, Rummukainen 2205.07238,

Ekstedt, OG & Löfgren 2205.07241

- Thermodynamics of minimal EFT accurately known
- EFT solves pathologies of loop expansion
- Only the lattice can pin down the endpoint

Infrared strong coupling

Infrared bosons are highly occupied; the effective expansion parameter α_{eff} grows

$$\alpha_{\mathrm{eff}} \sim g^2 \frac{1}{e^{E/T} - 1} \approx g^2 \frac{T}{E}$$

Softer modes are classically occupied and more strongly coupled:

$$\begin{array}{lll} \text{hard}: & E \sim \pi T \Rightarrow \alpha_{\text{eff}} \sim g^2, \\ \text{soft}: & E \sim gT \Rightarrow \alpha_{\text{eff}} \sim g, \\ \text{supersoft}: & E \sim g^{3/2}T \Rightarrow \alpha_{\text{eff}} \sim g^{1/2}, \\ \text{ultrasoft}: & E \sim g^2T \Rightarrow \alpha_{\text{eff}} \sim 1. \end{array}$$

Linde '80

Triplet scalar extension: phase diagram

Niemi et al. 2005.11332

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{a_2}{2} \Phi^{\dagger} \Phi \Sigma^a \Sigma^a + \frac{1}{2} D_{\mu} \Sigma^a D_{\mu} \Sigma^a + \frac{m_{\Sigma}^2}{2} \Sigma^a \Sigma^a + \frac{b_4}{4} (\Sigma^a \Sigma^a)^2$$

Triplet scalar extension: thermal evolution

• More loops helps, but EFT is crucial.

Niemi et al. 2005.11332, OG & Tenkanen 2309.01672

 $\underbrace{\bigcirc}_{(SSS)} \underbrace{\bigcirc}_{(VSS)} \underbrace{\bigcirc}_{(VVS)} \underbrace{\bigcirc}_{(VVV)} \underbrace{\bigcirc}_{(VGC)} \\ \underbrace{\bigcirc}_{(SS)} \underbrace{\bigcirc}_{(VS)} \underbrace{\bigcirc}_{(VV)} \underbrace{\bigcirc}_{(VV)} \underbrace{\bigcirc}_{(VVC)} \underbrace{\odot}_{(VVC)} \underbrace{O}_{(VVC)} \underbrace{O}$

Real scalar extension: gravitational waves

Figure: Renormalisation scale dependence of GW spectrum at one physical parameter point within perturbation theory.

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{\mathsf{a}_2}{2} (\Phi^{\dagger} \Phi) \sigma^2 + \frac{1}{2} (\partial \sigma)^2 + \frac{m_{\sigma}^2}{2} \sigma^2 + \frac{b_4}{4} \sigma^4$$

OG & Tenkanen 2104.04399

What's next?

- What about collider/gravitational wave complementarity?
- Why are the uncertainties so large?
- Why does perturbation theory work at all?
- What about nonequilibrium quantities, such as v_w ?
- Where is electroweak baryogenesis in this story?

What's next?

- What about collider/gravitational wave complementarity?
- Why are the uncertainties so large?
- Why does perturbation theory work at all?
- What about nonequilibrium quantities, such as v_w ?
- Where is electroweak baryogenesis in this story?

Thanks for listening!

Backup slides

Introducing thermal scales

hard: $E \sim \pi T$ $m_n^2 = (n\pi T)^2 + m^2$ with $n \neq 0$ soft: $E \sim gT$

Introducing thermal scales

supersoft:
$$E \sim g^{3/2} T$$

$$m_{\rm eff}^2 = -\mu^2 + g^2 T^2$$

ultrasoft: $E \sim g^2 T$

A hierarchy problem

Let's assume there is some very massive particle χ , $M_{\chi} \gg m_H$, coupled to the Standard Model Higgs Φ like

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \mathbf{g}^2 \Phi^{\dagger} \Phi \chi^{\dagger} \chi + \mathscr{L}_{\chi}.$$

If we integrate out $\chi_{\rm r}$ we find that the Higgs mass parameter gets a correction of the form

$$(\Delta m_H^2) \Phi^{\dagger} \Phi = \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & \sim g^2 M_{\chi}^2 \Phi^{\dagger} \Phi \end{pmatrix},$$

Relevant operators in the IR get large contributions from the UV,

$$\frac{\Delta m_H^2}{m_H^2} \sim g^2 \left(\frac{M_\chi}{m_H}\right)^2.$$

Phase transitions

For there to be a phase transition, thermal/quantum fluctuations should modify the potential at leading order,

$$V_{\rm eff} = V_{\rm tree} + \Delta V_{\rm fluct}$$

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\text{fluct}}}{V_{\text{tree}}} \sim g^2 \textit{N} \left(\frac{\Lambda_{\text{fluct}}}{\Lambda_{\text{tree}}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

 $\Rightarrow \text{ either:}$ (i) $\frac{\Lambda_{\text{fluct}}}{\Lambda_{\text{tree}}} \sim \frac{1}{(g^2 N)^{1/\sigma}} \gg 1$, i.e. scale hierarchy (ii) $g^2 N \gtrsim 1$, i.e. strong coupling

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

 \Rightarrow either:

(i) $\frac{\Lambda_{\text{fluct}}}{\Lambda_{\text{tree}}} \sim \frac{1}{(g^2 N)^{1/\sigma}} \gg 1$, i.e. scale hierarchy (ii) $g^2 N \gtrsim 1$, i.e. strong coupling

Perturbative phase transitions require scale hierarchies

UV and IR problems

There are two main difficulties

- large UV effects break loop expansion
- IR becomes more strongly coupled

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim \alpha_{\rm eff} \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^{\sigma}$$

