

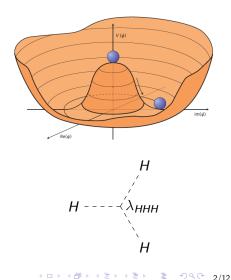
Thomas Stone

In collaboration with Gudrun Heinrich, Stephen Jones, Matthias Kerner, Vitaly Magerya & Augustin Vestner

21st November 2023

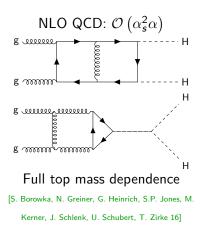
イロト イポト イヨト イヨト

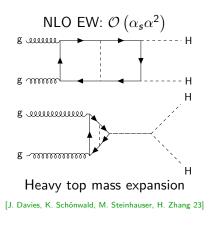
Two-loop EW Corrections to Higgs Boson Pair Production: Yukawa and Self-coupling corrections


Thomas Stone

1/12

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
●0		O	0	0


Introduction & Motivation


- Investigating Higgs properties in run 3 of the LHC requires precision calculations in the SM
- Gluon fusion is the dominant mechanism for producing Higgs bosons at the LHC
- Higgs pair production provides a direct way to measure the Higgs self-coupling through $\kappa_{\lambda} := \lambda_{HHH} / \lambda_{HHH}^{SM}$ (currently $-1.4 < \kappa_{\lambda} < 6.1$ [ATLAS 23] & $-1.24 < \kappa_{\lambda} < 6.49$ [CMS 22])

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
○●		O	0	O

NLO Corrections

(a)

Two-loop EW Corrections to Higgs Boson Pair Production: Yukawa and Self-coupling corrections

3/12

э

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
	●○○○○○	0	0	0
Amplitude Stru	cture			

 $\bullet\,$ To any number of loops, there exists a decomposition of the amplitude for gg $\to\,$ HH into form factors

Form Factor Decomposition

$$\begin{aligned} \mathcal{M}_{ab} &= \delta_{ab} \, \epsilon_1^{\mu} \epsilon_2^{\nu} \, \mathcal{M}_{\mu\nu} \\ \mathcal{M}^{\mu\nu} &= \mathcal{F}_1\left(s, t, m_h^2, m_t^2, d\right) \, \mathcal{T}_1^{\mu\nu} + \mathcal{F}_2\left(s, t, m_h^2, m_t^2, d\right) \, \mathcal{T}_2^{\mu\nu} \end{aligned}$$

• The form factors F_1 and F_2 correspond to the helicity amplitudes $\mathcal{M}^{++} = \mathcal{M}^{--}$ and $\mathcal{M}^{+-} = \mathcal{M}^{-+}$ respectively

Coupling Structures

$$F_{i} \sim \left(y_{t}^{2} F_{i,y_{t}^{2}}^{(0)} + y_{t} \lambda F_{i,y_{t}\lambda}^{(0)} + y_{t}^{4} F_{i,y_{t}^{4}}^{(1)} + y_{t}^{3} \lambda F_{i,y_{t}^{3}\lambda}^{(1)} + y_{t}^{2} \lambda^{2} F_{i,y_{t}^{2}\lambda^{2}}^{(1)} + ...\right)$$

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
	○●○○○○	0	O	O
Master Integrals				

- Obtain F_1 & F_2 from $\mathcal{M}_{\mu\nu}$ using projectors [Glover, van der Bij 88]
- Form factors are linear combinations of scalar Feynman integrals $(\sum_{i=1}^{O(10000)} c_i I_i)$
- We can express each complicated Feynman integral in terms of a finite set of master integrals

Master Integral Decomposition

$$\forall i: I_i = \sum_{j=1}^{494} \alpha_{ij} M_j$$

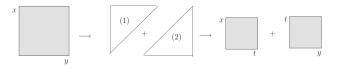
Two-loop EW Corrections to Higgs Boson Pair Production: Yukawa and Self-coupling corrections

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
	○○●○○○	O	O	O
Integral Reduct	ion			

- How do we determine {α_{ij}}?
- We can use integration-by-parts (IBP) reduction rules to rewrite integrals in terms of others

Integration-by-Parts Identity

$$\forall j, n : \int \prod_{i=1}^{L} \left[\mathrm{d}k_i \right] \frac{\partial}{\partial k_j^{\mu}} \frac{q^{\mu}}{\mathcal{D}_{1,n}^{\alpha_{1,n}} \dots \mathcal{D}_{p,n}^{\alpha_{p,n}}} = 0$$
 [Tkachov 81; Chetyrkin 81]


• We reduce these integrals using Kira [Maierhoefer, Usovitsch, Uwer 17; Maierhofer, Usovitsch 18; Klappert, Lange, Maierhofer, Usovitsch 20] and Ratracer [Magerya 22] via functional reconstruction with finite fields

6/12

Introduction & Motivation	Calculating the Amplitude	Current Status 0	Outlook 0	Backup 0

Numerical Evaluation of Master Integrals

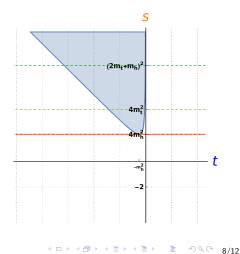
• Sector Decomposition (pySecDec [SecDec Collaboration 22])

• Series Solutions of Differential Equations (DiffExp [Hidding 20])

Two-loop EW Corrections to Higgs Boson Pair Production: Yukawa and Self-coupling corrections

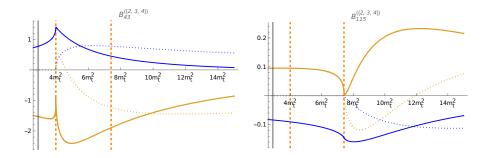
7/12

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
	○○○○●○	O	0	O


Differential Equations

 It was noted that master integrals could be solved as a system of differential equations [Kotikov 91]

Differential Equation System


$$\mathrm{d}\vec{f} = \left(\sum_{x \in \{s,t,m_h^2\}} \mathbf{A}_{\mathbf{x}} \mathrm{d}x\right) \vec{f}$$

 DiffExp [Hidding 20] is a Mathematica package which solves the differential equation system using a generalised series expansion solution

Introduction & Motivation	Calculating the Amplitude	Current Status	Outlook	Backup
	○○○○○●	0	0	O

DiffExp Master Integral Example Results

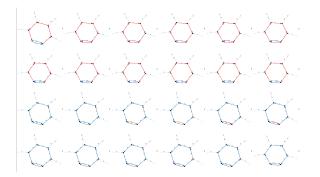
Two master integrals in the same integral family evaluated along a contour in the positive s-direction

9/12

э

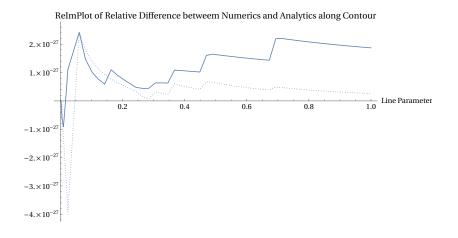
イロト イポト イヨト イヨト

Introduction & Motivation	Calculating the Amplitude	Current Status •	Outlook 0	Backup O
Current Status				


• We have the reduced differential equations and amplitude for an improved basis of master integrals

Basis Comparison for Virtual Correction ("Good" Point)

- Old Basis (2022): $T(F_1) = 45$ hours $T(F_2) = 347$ hours
- New Basis (2023): $T(F_1) \sim 5$ mins $T(F_2) \sim 5$ mins
- Old basis did not even converge on a "bad" phase space point!


Introduction & Motivation	Calculating the Amplitude	Current Status O	Outlook •	Backup 0
Outlook				

- We are currently performing the UV renormalisation using the one-loop result we have already calculated
- We will also begin looking at the full electroweak corrections $(\sim 17000 \text{ diagrams}!)$ and make progress on them

11/12

Introduction & Motivation	Calculating the Amplitude	Current Status 0	Outlook 0	Backup ●
DiffExp Error PI	ot			

Two-loop EW Corrections to Higgs Boson Pair Production: Yukawa and Self-coupling corrections

12/12