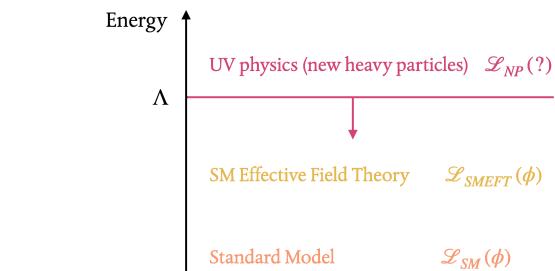
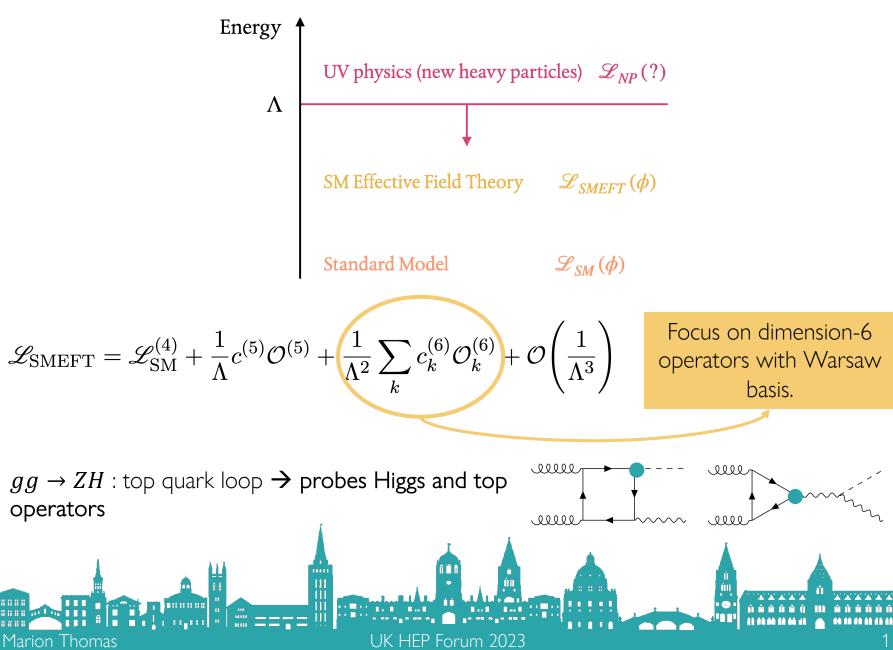
Studying the Higgs boson in the SMEFT: gluon-induced ZH production

Marion Thomas


University of Manchester

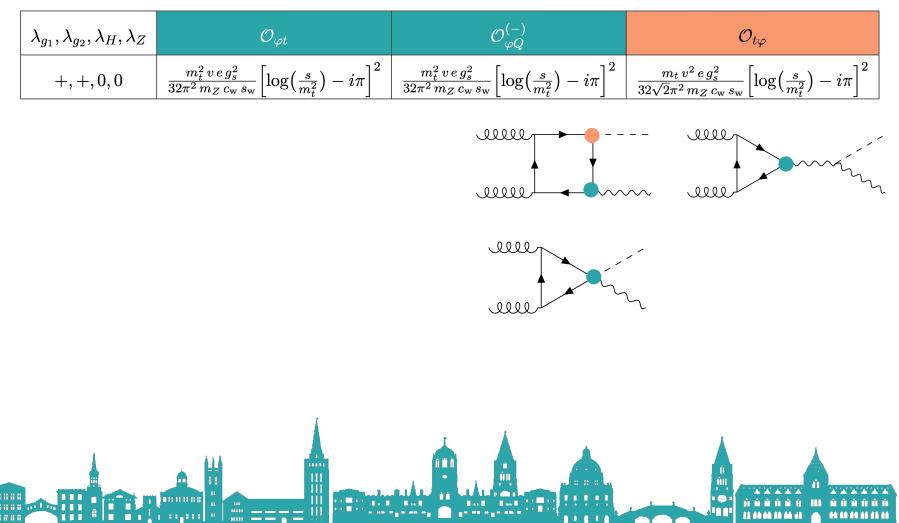
UK HEP Forum 2023 Abingdon, 21/11/23

Based on arXiv: 2306.09963 (accepted in JHEP) In collaboration with A. Rossia and E. Vryonidou


About the SMEFT framework

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}}^{(4)} + \frac{1}{\Lambda} c^{(5)} \mathcal{O}^{(5)} + \frac{1}{\Lambda^2} \sum_k c_k^{(6)} \mathcal{O}_k^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

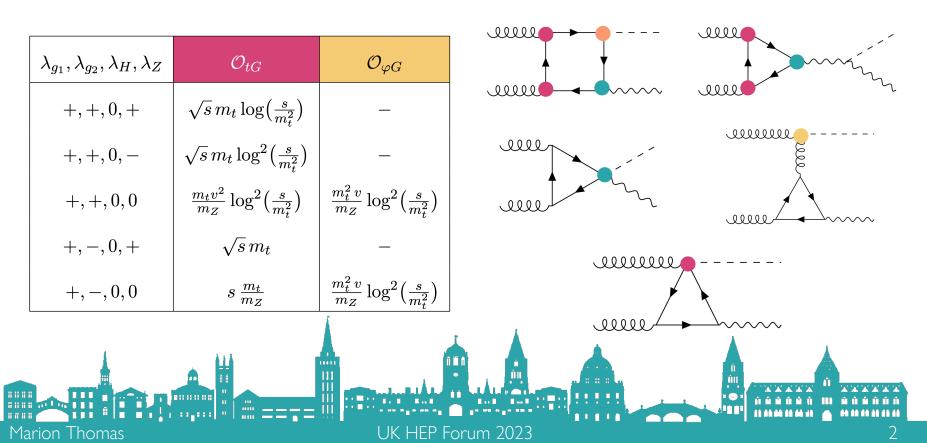
Growing amplitudes in $gg \rightarrow ZH$


- Calculated analytical helicity amplitudes with **1** insertion of dim-6 SMEFT operators.
- Studied high-energy behaviour of amplitudes \rightarrow Which operators grow with energy?

Growing amplitudes in $gg \rightarrow ZH$

Marion Thomas

- Calculated analytical helicity amplitudes with **1 insertion of dim-6 SMEFT operators**.
- Studied high-energy behaviour of amplitudes \rightarrow Which operators grow with energy?



UK HEP Forum 2023

Growing amplitudes in $gg \rightarrow ZH$

- Calculated analytical helicity amplitudes with **1 insertion of dim-6 SMEFT operators**.
- Studied high-energy behaviour of amplitudes \rightarrow Which operators grow with energy?

$\lambda_{g_1},\lambda_{g_2},\lambda_H,\lambda_Z$	$\mathcal{O}_{arphi t}$	${\cal O}^{(-)}_{arphi Q}$	\mathcal{O}_{tarphi}
+, +, 0, 0	$\Big \; rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\mathrm{log}ig(rac{s}{m_t^2}ig) - i\pi \Big]^2$	$rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\mathrm{log} ig(rac{s}{m_t^2} ig) - i \pi \Big]^2$	$rac{m_t v^2 e g_s^2}{32 \sqrt{2} \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\log ig(rac{s}{m_t^2}ig) - i \pi \Big]^2$

Can measuring $pp \rightarrow ZH$ improve the bounds on Higgs and top operators?

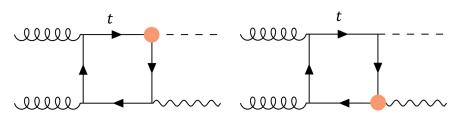
Quark and gluon

channels interplay

Third generation operators -

 $c^{(1)}_{\varphi Q} \qquad i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{Q} \gamma^{\mu} Q \right)$

 ${\cal O}^{(1)}_{arphi Q}$

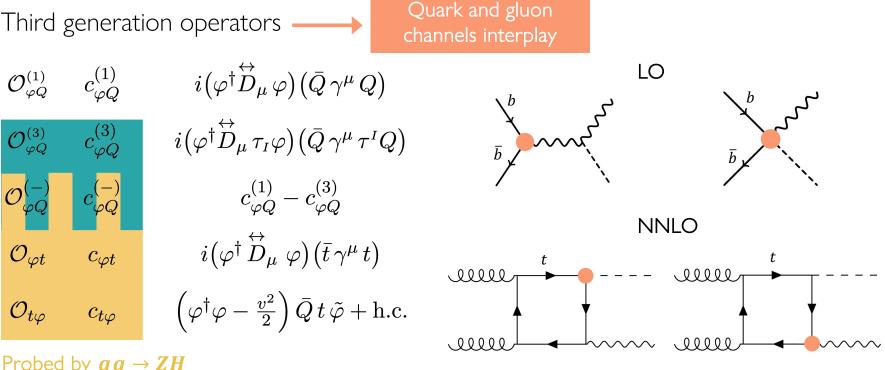

 $\mathcal{O}_{t\varphi}$

 $\begin{aligned} c^{(1)}_{\varphi Q} - c^{(3)}_{\varphi Q} \\ i \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) \left(\bar{t} \gamma^{\mu} t \right) \\ \left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{Q} t \, \tilde{\varphi} + \text{h.c.} \end{aligned}$

 $i(arphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \, au_{\scriptscriptstyle I} arphi) (ar{Q} \, \gamma^{\mu} \, au^{\scriptscriptstyle I} Q)$

LO b b

NNLO



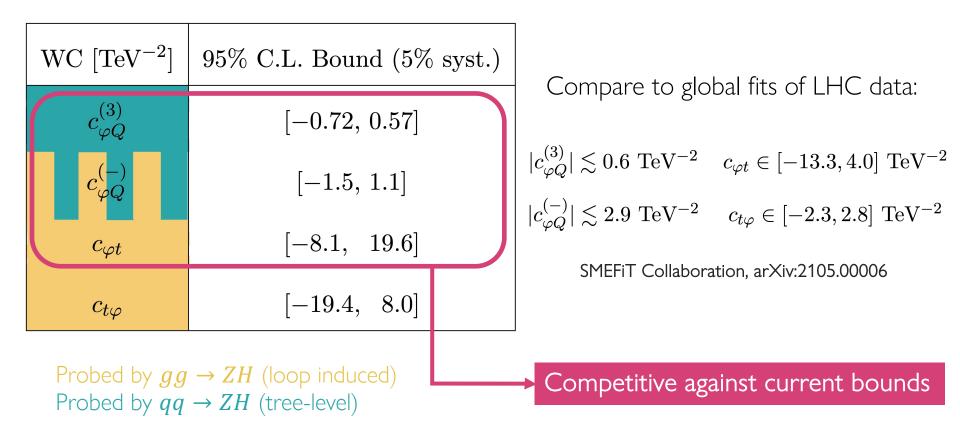
Probed by $gg \rightarrow ZH$ Probed by $qq \rightarrow ZH$

 $c_{t\varphi}$

Can measuring $pp \rightarrow ZH$ improve the bounds on Higgs and top operators?

Probed by $gg \rightarrow ZH$ Probed by $qq \rightarrow ZH$

- Used $qq \rightarrow ZH$ analysis by Bishara, Englert, Grojean, Panico and Rossia, arXiv:2208.11134.
- Predictions obtained with Madgraph in the presence of one operator at a time.


HL-LHC projected bounds from $pp \rightarrow ZH$

WC $[\text{TeV}^{-2}]$	95% C.L. Bound (5% syst.)	
$c^{(3)}_{arphi Q}$	[-0.72,0.57]	
$c^{(-)}_{arphi Q}$	[-1.5,1.1]	
$c_{arphi t}$	$[-8.1, \ 19.6]$	
c_{tarphi}	$[-19.4, \ 8.0]$	

Probed by $gg \rightarrow ZH$ (loop induced) Probed by $qq \rightarrow ZH$ (tree-level)

HL-LHC projected bounds from $pp \rightarrow ZH$

ightarrow Motivates precision measurements and inclusion in global fits.

Thank you!

