Physics Prospects @future colliders Eleni Vryonidou

UK Future collider town-hall 6/7/2023

What can we hope for the future?

Lepton Colliders Cleaner environment

Precision frontier

Hadron Colliders

Messier environment

Energy frontier:

Eleni Vryonidou

What do we hope to learn?

Dear Santa Claus,

We have been good these past decades. Please could you now bring us

- a dark matter candidate
- an explanation for the fermion masses
- an explanation of matter-antimatter asymmetry
- an axion, to solve the strong CP problem
- a solution to fine tuning the EW scale
- a solution to fine tuning the cosmological constant

Thank you, Particle Physicists

From G. Salam's talk@FCC-week 2023

Eleni Vryonidou

Any future project will aim to address these questions

No guarantee that answers will be found

What do we hope to learn?

Dear Santa Claus,

We have been good these past decades. Please could you now bring us

- a dark matter candidate
- an explanation for the fermion masses
- an explanation of matter-antimatter asymmetry
- an axion, to solve the strong CP problem
- a solution to fine tuning the EW scale
- a solution to fine tuning the cosmological constant

Thank you, Particle Physicists

From G. Salam's talk@FCC-week 2023

Eleni Vryonidou

Any future project will aim to address these questions

No guarantee that answers will be found

Then why do we bother?

ARE THERE ANY GUARANTEED GAINS FROM A FUTURE COLLIDER?

Eleni Vryonidou

Future Collider Prospects

Higgs precision

Higgs: Yukawa couplings

Unprecedented precision expected: below 1% for 3rd generation

Hope to probe also: electron and strange Yukawa for the first time! e.g. H to hadrons at FCC-ee (strange), ee@125GeV (electron)

h **Higgs potential**

The potential holds the key to: EWSB (and hence masses) and stability of the Universe

Eleni Vryonidou

Φ

+)
mber 2019
e-Higgs V(
LHC
·LHC
C-ee/eh/hh
FCC
C-eh ₃₅₀₀
C-ee ^{4lP} ₃₆₅
S-ee
, , ,
C-ee ₂₄₀
<u>.</u>
1000 5
500
250 p
PC
с
3000 5
C ₁₅₀₀
<u>,</u> 01
vith HL-LHC

Quantifying our knowledge

Snowmass study: arXiv: 2206.08326

Eleni Vryonidou

Future Collider Prospects

Busy plot: compare grey (HL-LHC) with yellow (FCC-ee) and dark yellow (FCC-ee+365)

 Typically bounds improve by more than an order of magnitude compared to HL

nptions	
F_{ND}	
0	

• This is true for both Higgs couplings and Vff couplings

Precision gives an indirect energy reach!

Future Collider Prospects

What about Dark Matter?

Dark Matter Portals through invisible Higgs width

Some regions: unique sensitivity from colliders

Future Collider Prospects

What about Dark Matter?

Dark Matter Portals through invisible Higgs width

Some regions: unique sensitivity from colliders

Future Collider Prospects

Physics prospects of future colliders

Miggs couplings **Miggs** potential Indirect reach through precision measurements **M** Direct reach of heavy particles **Probing the dark sector**

Future Collider Prospects

Thanks for your attention

Useful slides & references

European strategy for Particle Physics Briefing book https://arxiv.org/abs/1910.11775

Snowmass efforts: https://www.slac.stanford.edu/econf/C210711/

FCC week 2023 https://indico.cern.ch/event/1202105/

Muon Collider Snowmass: https://arxiv.org/pdf/2203.08033.pdf

Keynote talk on FCC Physics perspectives by Gavin Salam: https://indico.cern.ch/event/1202105/contributions/5423455/attachments/2659121/4607170/fcc-london.pdf FCC physics case by Matthew McCullough https://indico.cern.ch/event/1202105/contributions/5396847/attachments/2659371/4606360/FCCWeek.pdf

Future Collider Prospects

Christophe Grojean