

Jniversit incheste

A flavour of (not an exhaustive list) Accelerator Technologies for Future Colliders

Dr Öznur Apsimon

The University of Manchester, Department of Physics and Astronomy **Accelerator Physics Group**

with input from Prof Erik Adli (University of Oslo) and Dr Peter Williams (ASTeC)

HL-LHC will provide factor of 5-10 luminosity. What's next?

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

What is imminent?

Proposed projects at the energy frontier

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

From European Strategy Update meetings (2022)

Energy doubling

Driver: 42 GeV e- beam

GeV electrons from a cm scale accelerator

A. J. Gonsalves et al., Phys. Rev. Lett, 122, 084801 ┥

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

Driver: 40TW laser pulse

Acceleration in proton wake

Driver: 400 GeV p⁺ beam

CERN

BELLA

8 GeV along ~20 cm

Phil. Trans. R. Soc. A 377: 20180185. http://dx.doi.org/10.1098/rsta.2018.0185

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

Modulated proton bunch through stepped-up plasma.

A. Caldwell, K. V. Lotov, Physics of Plasmas 18, 103101 (2011).

PRL 126 (16) 164802 (2021), PRL 129 (2), 024802 (2022)

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

PRL 126 (16) 164802 (2021), PRL 129 (2), 024802 (2022)

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

7

PRL 126 (16) 164802 (2021), PRL 129 (2), 024802 (2022)

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

Energy recovery linacs for future colliders

ERLs can also be applied to e+e- colliders in addition to e-p colliders (LHeC) and cooling for EIC.

In particular that achievable luminosities using ERLs can exceed those at FCC-ee, ILC etc by orders of magnitude.

Please see, <u>https://www.ipac23.org/preproc/author/peter-williams-cockcroft-institute/index.html</u>, for details.

ERLC: A re-imagining of the ILC as an ERL.

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

CERC: A re-imagining of FCC-ee as an ERL.

P.S. I haven't included the status with the muon colliders. See the talk from Monica tomorrow.

Thanks for your attention.

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

11

Next collider: Higgs factory

Community (through Snowmass and Alegro processes) agrees that the next collider should be a **Higgs factory** e⁺e⁻ collider with 250-380 GeV centre of mass energy. Advantages of an e⁺e⁻ collider

- improved momentum and energy resolution.
- measure absolute branching ratios and total width.
- interactions (LHC).

Detail, Reconstruction of complete events, direct measurement of spin-dependence of production and decay processes possible. Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

Cleanliness, reduced detector background with respect to hadron collisions through

Democracy, e⁺e⁻ annihilation produces pairs of all species at similar rates. Unlike LHC, can

Calculability, radioactive corrections are more precise for EW interactions (LC) than QCD

Plasma Wakefield Acceleration

Driven by high-power lasers or particle beams, plasmas can generate very large amplitude wakefields - orders of magnitude larger than the state-of-art metallic cavities.

- Plasma consists of ions and electrons

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6

 Driven by a laser pulse, plasma electrons oscillate under ponderomotive force Driven by a particle beam, plasma electrons oscillate due to Coulomb force A charged particle beam can ride these wakefields to gain energy.

> Illustration of the wake created by an electron beam in a plasma. Author: Rasmus Ischebeck.

AWAKE Run 1 (2016-2018)

Dr Öznur Apsimon | UK Future Collider Town-Hall Meeting | 6 July 2023

Witness e-beam energy gain

- Acceleration from 20 MeV to 2.0±0.1 GeV was achieved
- with a plasma density of 6.6 x 10¹⁴ cm⁻³ over 10 m.
- Avg. acceleration gradient ~200 MV/m.

