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Why perturbative QCD?

* High-precision predictions for colliders like the LHC
* Stringent tests of the standard model
* Could give first hints of new physics
* High precision is worthwhile in its own right!
 Computationally intense
* e.g. multi-loop amplitude calculations
e e.g. Monte-Carlo integration of cross sections




What can quantum computers do?

* Prime factorisation

e Unstructured search

e e.g. searching abstract spaces
e e.g. Monte-Carlo integration

e Simulating quantum systems

* Computational chemistry
 Condensed matter systems
e Lattice QFT/QCD

* Machine learning
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Why now?

* Hardware progress
* Trapped ions
Neutral atoms
Photonic systems
Superconducting systems

e Software progress
* e.g. Error-correcting codes (e.g. "surface codes")

e Commercial interest
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IBM Quantum Development Roadmap

Quantum algarithm and application medules

Machine learning | Natural science | Optimization

Dynamic crcuits
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65 qubits 127 qubits 433 qubits

o
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Quantum Serverless @
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Google's quantum roadmap

We are here

® >

102 10° 10° # physical qubits
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Proposed applications in high-energy physics

* Experiments / data analysis

i P D FS [Pérez-Salinas, Cruz-Martinez, Alhajri, Carrazza, '20], [QuNu Collaboration, '21]
i E FTS [Bauer, Freytsis, Nachman, '21]
* Monte Carlo for cross-sections i, s eien, st 22

* Part h
a r O n S Owe rS [Bauer,deJong, Nachman, Provasoli, '19], [Bepari, Malik, Spannowsky, Williams, '20], [Gustafson, Prestel, Spannowsky, Williams, '22]

e E T ti \
Ve n ge n e ra I O n [Gustafson, Prestel, Spannowsky, Williams, '22], [Bravo-Prieto, Baglio, Cé, Francis, Grabowska, Carrazza, '21], [Kiss, Grossi, Kajomovitz, Vallecorsa, '22]

L]
* Latt CD
a I C e (See reviews [Klco, Roggero, Savage, '21] and [Baueretal., '22] and references therein)
c M
O re [Cervera-Lierta, Latorre, Rojo, Rottoli, '17], [Ramirez-Uribe, Renteria-Olivo, Rodrigo, Sborlini, Vale Silva, '21], [Fedida, Serafini, '22], [Clemente, Crippa, Jansen, Ramirez-Uribe, Renteria-Olivo, Rodrigo, Sborlini, Vale Silva, '22]
]
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Spotlight: guantum simulation

* Quantum simulation: a flagship application of quantum computers

* Recent years: proposals for quantum simulation of lattice QFTs (e.g.
lattice QCD)

* Quantum simulation of perturbative QCD remains largely unexplored
 Notable exception: several papers on parton showers

* This talk: first steps towards generic perturbative QCD processes
* Quantum simulation of in perturbative QCD
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Motivation for quantum simulation of pQCD

1. Perturbative QCD requires quantum-coherent combination of
contributions from many unobservable intermediate states
 natural candidate to exploit superpositions of quantum states in quantum

computers

2. Processes with high-multiplicity final states, with full interference
effects

3. Improve speed/precision of perturbative QCD predictions by
exploiting speed-ups of known quantum algorithms
 e.g. quantum amplitude estimation
e e.g. quantum Monte Carlo (see Mathieu Pellen's talk yesterday)
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Why start with the colour part?

* Smaller Hilbert space -> can test on today's simulators/machines

* Some obstacles in common with kinematics (e.g. non-unitary
operations)

* Analytic colour algebra -> might check (future) quantum computation
even if classical calculation is infeasible numerically

* For sufficiently complicated process, might seek to find quantum
advantage even just for colour part
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What quantum computers can and cannot do

* Formally, anything that can be computed on a quantum computer can
also be computed on a classical Turing machine

Tape of infinite length
A

Figure from: opengenus.org

* But quantum computers are potentially (much) faster than classical
computers for certain problems
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Operator Matrix

Quantum circuit model

Pauli-Y (Y)

Pauli-Z (Z)

° Qu b its Hadamard (H)

Phase (S, P)

* Gates
* Unitary, reversable ;X{

7/8 (T)

ianSNelch IS Molopciclcho

1 0 0 O
. Controlled Not 01 0 0
’ 00 1 0
e Can be controlled by other qubits (CNOT, CX) [ 00 ]
e 1 0 0 0O
Quantum Mechanical Computers 511 Control]ed Z (CZ) |:g (1] |::[) gl
—— B
; 0 0“_3"_0:0’ |A> ‘A) 0 0 0 -1
b > - ET b=b |B) j ! L D~ | B) o 1000
¥ z¢ T SWAP
T s Cia) & 5) - N
d=0 CARRY = d 0) —6b A Cone)
Fig. 5. Full adder, N > out
Figure from: Feynman, R.P. Quantum mechanical Toffoli o 1 0 00 o0 0 o
1] 1] 1 [¢] (V] 0 0 )
computers. Found Phys 16, 507-531 (1986) (CCNOT, 0o 0 0 1 0 0 0 o0
CCX, TOFF) © 00600 0 0 1
V] 1] 0 (4] (V] 0 1 V]
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Example: the increment circuit

k) — |k + 1 (mod 27))

——9—9 b
—8 9 4 £
. &
* Examples: e
* |00000) — [00001) B
w1/

* |01011) — [01100)

*|11111) — |00000) (overflow)
e a00000)+5(01011) . «|00001)4/3/01100)

Figure adapted from: algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.htm/

AN

a2+ 52 ’ af2+]| 5]
&
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Example: the increment circuit
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Example: the increment circuit
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*|11111) — |00000) (overflow)
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Rapid reminder of colour in QCD calculations

 SU(3) structure function fa®c at each triple-gluon vertex
* (4-gluon vertex can be written as linear combination of 3-gluon vertices)

* SU(3) generator T%; at each quark-gluon vertex

* Trace over unmeasured (unmeasurable) colours

*e.g.
Z TSTJ&?{
ac{l,..

j€4{1, 23}

* Note: the large-N. expansion is not used in this work
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|dea: can Gell-Mann matrices become gates?
0 1 O 0 —2 O 1 0 O

M=1[1 0 0], X=|i 0 0], X¥=[0 -1 0],
(o 0 0) (0 0 0) (0 0 0)

1
M=10 0 0 1],
1 0 1 0

e Short answer: yes, but there are complications:
* Not 2" x 2"
* Not unitary
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Key results of this work

 Two quantum gates (G and Q) to simulate colour parts of the
interactions of quarks and gluons

Q
LI
Il

=)
L
O
Il

INg
LI
(1T

e T e T

9,

* Explicit construction of these gates: see later
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Methods

Quark colours: represented by 2 qubits (22 = 4 basis states, of which 1 is unused)
Gluon colours: represented by 3 qubits (23 = 8 basis states) [a)

is designed such that

Qla), | Z Tik la), 2),, + (terms orthogonal to |£2),,)

Triple-gluon interaction gate is designed such that

Gla),, [b)y, lc) g, 0y = i (@) g, 16),, 1€) g, [0y + (terms orthogonal to [€2);,)

Note: |0),, is a reference state of a "Unitarisation register"”, which we introduce
because in SU(3), T%, and fabc are non-unitary.

o Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
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Calculating colour factors: illustrative example

(See laterslides for more complicated examples)

U
g —— Iy @ Q R, ——
i i q
R, R;*
g —/——] I

FREIBURG
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Calculating colour factors: illustrative example

(See laterslides for more complicated examples)

Sy

....“.ﬁ.@.i....
Al

Z Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,

. : . : 25
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Calculating colour factors: illustrative example

(See laterslides for more complicated examples)

Sy

- -
X X
L L
- N |
g —— By a Q@ Q R, F——
R . I—
z- ‘ P g — . -
| |
L — : f—
-

3

8
DD la)y lk)g k) 192)y

a=1 k=1

Z Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
. : . : 26
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Calculating colour factors: illustrative example

Z T35T5 |a), i), k) 5 1$2)y, + (terms orthogonal to [$2),)

ig+ gk

Sy

[
[ [

- - =

= = =

= = =

- N | |

[ [ [
—a— = ——a— e
g—-—Rg w Q Q—-—Rgl—
w1 | L —

. . = = =
7 _ ? q —u— = . e
> ] w ] —

[ [ [
B =  — —
—— - ] B

[ [

| |

[ [

3

8
DD la)y lk)g k) 192)y

a=1 k=1
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Calculating colour factors: illustrative example

T35T5 |a), i), k) 5 1$2)y, + (terms orthogonal to [$2),)

Sy

....H.ﬁ.@.x....
....”.H.@.....
T4

8
DD la)y lk)g k) 192)y
=1

a=1 k=1

g gt
28

2 S 1 |Q)Q|Q)q|Q)§|Q)M—|—(terms orthogonal to |Q)Q|Q)Q|Q)§|Q)u)
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Calculating colour factors: illustrative example

T35T5 |a), i), k) 5 1$2)y, + (terms orthogonal to [$2),)

| |
] ] ]
= = = e
L = » i —
Z/{ L L L L
- N | | I
u u u u
—— = e _ [l
B | L L -
| | | |
] = re— e l—
q_I_ L o W -1 L
n Rq n ] R ]
7 el — = e q — —
[ Q—— = " — e e
u u u
| |
| |

8
DD la)y lk)g k) 192)y
=1

a=1 k=1

g gt
29

2 S 1 |Q)g|Q)q|Q)q|Q)M—|—(terms orthogonal to |Q)Q|Q)Q|Q)§|Q)u)

1,7€{1,2,3}



Outline

1. Introduction
2. Basics of quantum computing

3. Quantum circuits for colour
e Overview

* Details
* Non-unitary matrices

* Constructing the Q and G gates
e General algorithm for calculating colour factors for arbitrary Feynman diagrams

4. Results/validation
Outlook and summary

UNIVERSITY O‘F
OXFORD

UNI
FREIBURG



UNIVERSITY O‘F
OXFORD

Non-unitary operators in perturbative QCD

* Would like quantum gates for the 8 linear operators
10 > DTG0,
and also for the (diagonal) operator

abc
a), [b),, 1)y, — J°1a), [b),,[c),

* An operator is unitary iff the rows of its matrix representation are
orthonormal

* In matrices T; and f2*<, rows are orthogonal »(? : 8), Az<‘? "
0 00 0

e But not necessarily of unit norm

* Need a unitary way to alter a state's norm

UNI
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Unitarisation register: expanding the space

* Let L be an operator acting on a Hilbert space #;
* If L is non-unitary, it cannot be directly implemented as a circuit

* But it may be possible to define a new unitary operator [ acting on a

larger space #H, ® Hy such that
for some state |()y) € Hy

(g 2l Lx1) [ = X2lLIX1)  for an states [x1) | 1xa) € K,

* In this work, we introduce a single additional register i/, whose size is
small: N, = [log,(Ny + 1)]

UNI
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Unitarisation register: gates A and B

e Let A denote the increment circuit described earlier
* Define a gate B(a):

q1 — — Bl(oz)
q? - Bla) [ $
dny — - O

where:

By(a) = (\/1_—alf1'|2 \/ﬁ)

Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
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Unitarisation register: key properties

* Together, gates A and B(a) act on ¢/ in the following way:

(|0) + /T —[a2|1) ifk=0 0), =
B(a)A|k) =< |k +1) if 0 <k <2Mu —1
1—|a2|0) —all) if k=20 -1,

which means we can apply B(a)A repeatedly up to 2% —1 times and

satisfy
Q[T {Ble)AY ), = ] «
1=1 1=1

UNI
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Construction of the Q gate

Qla), k), [0y

« Start by defining matrices )\,

(Il
Q
TTTT 1T 111

9
-——
——
q q

3
= Z Ti la) g 17) 4 1€2)y, + (terms orthogonal to [$2),,)
j=1

1 0 0
0 —1 0\
0 0 {1y
/100 0
ko 0 1
0O 1 O

B 0 1 O B 0 —2 0 B
Al = 1 O O , )\2 —_ Z O O ; AS =
0 001/ 0 0 (1,
B 0 0 1 B 0 0 —2 B
M= 0010, As=1001)0 1], A=
I 0 0 1 0 0
/100 0 1 0 0
=10 0 —il, )\8::(010.
0 i 0 0 001
8§§B§D _Eg_ Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,

Quantum simulation of colour in perturbative QCD
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(Il
Q
TTTT 1T 111

9
-——
——
q q

Qla), k), 1)y = ZT i la)y 17), 182y, + (terms orthogonal to [$2),,)
7=1

<

Construction of the Q gate

* Next, define a gate A

Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
Quantum simulation of colour in perturbative QCD
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Construction of the Q gate

Qla), k) \ﬂu—Zm

7=1

* Finally, define the gate Q

=)
11
L

(=]

[
QO

I
=
=

— Recall:

(e B() Al2), =

<

L
(il

N

g
=
1
(i
LA
[

M

—~
-~
|
—_
=
-~
~—
—

Ny
[INN
L

where U is defined such that u(a,i)X. i) = %Aalﬂ

L Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
Quantum simulation of colour in perturbative QCD
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=
11
Q
TTTT 1T 111

9
-——
——
q q

)¢ [$2)y, + (terms orthogonal to [2);,)

Explicitly:
% if (X“)U’ - ()\”)fj =0 vj
_213 ifa=8andie{l1,2}

N — J2v3
a,i) =
ula i) :/—% ifa=8andi=3
)

otherwise.

Recall
0 —i 0
. d=|i 0 0 s
y 0 0(T
B 00 —i
A= |ol1ho X
i 0 )
150 0 ‘10
00 —i|l, Xs- |n 1
0 i 0 00



Construction of the G gate

* Define G gate:

G/

g1 E
92 E
_ G
g3 =
U ]
where: .3
g2 E
g3 E
=
&
: =
UNIVERSITY OF ——E—
OXFORD 2
= I8

GI

N

~—

Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
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=
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<

Gla)y, 1b),, 1€) s [Ny = @) g, b) g, |€) 4, [€0)y4 + (terms orthogonal to [$2);/)




R, and R, gates for tracing

Ry |9, = Z% a), R, ), Z

=] [=]
1
1
|
av

—— R, }—

I
o
L))
| |
&
Il
I
L/
or—

y
|

Sl
o
VS

—

|

—

S—

ug!

Il
SR
- OJ%E
Sl e

(an) o

V]

8 8
. 1
R;l Z Ca |a)g ( Z ) |Q (terms orthogonal to |Q>g) Rq*l Z cik i), |k)g = (ﬁ Z Czi) 12, 1) + (terms orthogonal to |2), |Q)q)
a=1 a=1 ike{1,2,3} i=1

g

5
UNIVERSITY GF D Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
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Calculating the colour factor of arbitrary
Feynman diagrams

Build a quantum circuit with:
* For each gluon, 1 gluon register, with 3 qubits per register

* For each quark line, a pair of quark registers: ¢ and ¢, with 2 qubits per register

A unitarisation register with Nu = [logo(Nv + 1)] qubits
Initialise each register 7" into the state ‘2
For each gluon, apply R,
For each quark, apply R,

Recall the illustrative example:

N

E

]

For each quark-gluon vertex, apply Q gate to the corresponding g and g registers (not ¢)
For each triple-gluon vertex, apply G gate to the corresponding g registers

For each gluon, apply (R,)*?
For each quark, apply (R,)™

Colour factor C is found encoded in the final state of the quantum computer, which is:

1
WC |2),; + (terms orthogonal to [§2) ;)

UNI
1
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Validation

* Implemented using Qiskit (IBM)

e Simulated various diagrams

[ ]
[
[ ]
[
UNIVERSITY O‘F e
OXFORD g

FREIBURG

Simulated noiseless quantum computer
* These examples use up to 30 qubits

Ran each diagram 108 times
Measured output to infer colour factor
%C |2} ,;; + (terms orthogonal to [€2) ;)

Full agreement with analytic expectation

Herschel Chawdhry (Oxford), Workshop at IPPP, 20/09/2023,
Quantum simulation of colour in perturbative QCD

Diagram

Analytical

Numerical

CrN =4 3.9988 + 0.0012
Cp°N =18 5.331 £ 0.010
Cr =2 0.673 £ 0.010

N(N? —-1)=24

23.95£0.03

(Ni—l} —9 2.00 £ 0.03
0 0.079:5
J !
CeN® _ 5.92 +0.08



Directions for future work

* Interference of multiple diagrams

* Natural application for a quantum computer
e Can try with/without quantum simulation of kinematic parts

* Kinematic parts
e Unitarisation register could be useful here too
* Much larger Hilbert space since kinematic variables are continuous

* High-multiplicity processes

* Monte-Carlo integration of cross-sections
* quadratic speed-up (see Mathieu Pellen's talk yesterday)
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Summary and outlook | g

&k

E [

* Designed quantum circuits to simulate colour part of perturbative QCD
* Example application: colour factors for arbitrary Feynman diagrams
* First step towards a full quantum simulation of generic perturbative QCD
processes
* Natural avenues for follow-up work:
* Interference of multiple Feynman diagrams
 Kinematic parts of Feynman diagrams

e Usein aqguantum Monte Carlo calculation of cross-sections
* Quadratic speed-up over classical Monte Carlo (see Mathieu's talk)
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