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CERN QTI 1 - Areas of Investigation
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Computing Sensing Networks/Comms Theory

Simulation

Reconstruction

Classification

Quantum 
networks, QKD 

applications

Quantum Field 
TheoryLow-energy experiments, quantum 

states measurements, nano-
technologies

https://doi.org/10.1140/epjst/e2015-02607-4

Lattice QCD

https://cds.cern.ch/record/2703396

Future HEP Detectors
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CERN QTI Phase 2 – Expected Impact (high-level)
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HYBRID QUANTUM 
COMPUTING AND 

ALGORITHMS

QUANTUM 
NETWORK AND 

COMMUNICATIONS

CERN QUANTUM 
TECHNOLOGY 
PLATFORMS

COLLABORATION 
FOR IMPACT



Studying Deep Learning in physics

• High quality labelled training data from realistic MC simulation
• Large experimental datasets
• Interestingly structured data at multiple scales
• Detailed understanding of systematic uncertainties

M. Erdmann, J. Glombitza,G. Kasieczka, U. Klemradt, Deep Learning for physics research

Quantum Machine
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Machine Learning + QC 

Unsupervised ML
Unlabeled data.
ML finds patterns in your data.
Indirect evaluation.

Supervised ML

Labeled data, i.e., data with 
defined output.

A model is trained giving this 
data and you have direct 
evaluation.

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

regression
classification

Generative model
clustering

anomaly detec
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QML models
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S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)
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Generative Model

Explicit
• definition of explicit density form that allows likelihood inference

• VAE

Implicit
• flexible transformation from random noise to generated samples 

(a stochastic process to draw samples from the underlying data distribution)

• no distribution specified/required

• no tractable likelihood function required

• GAN

unsupervised learning problem

10
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Quantum Generative Models

12

Characteristics : 
- Discrete 
- Uses quantum randomness.
- 1 shot = 1 sample.
- Needs more qubits.

Examples
§ Quantum circuit Born machines (QCBM) (Phys. Rev. A 98, 062324, 2018)
§ Discrete Quantum GAN for learning random distribution (npj Quantum Inf 5, 103, 2019)
§ Quantum GAN for Bar and Stripes generation (Phys. Rev. A 99, 5, 2019)

1 Discrete data 
à Use quantum 
random source
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Characteristics : 
- Discrete 
- Uses quantum randomness.
- 1 shot = 1 sample.
- Needs more qubits.

2

Examples
§ Quantum circuit Born machines (QCBM) (Phys. Rev. A 98, 062324, 2018)
§ Discrete Quantum GAN for learning random distribution (npj Quantum Inf 5, 103, 2019)
§ Quantum GAN for Bar and Stripes generation (Phys. Rev. A 99, 5, 2019)

Continuous data 
à Use classical random source.

Characteristics : 
- Continuous.
- Requires low number of qubits.
- High number of shots.
- 1 sample = many shots.

1 Discrete data 
à Use quantum 
random source

Examples
§ Variational Quantum Generator (arXiv:1901.00848, 2019)
§ Style-based quantum GAN for MC event generation (Quantum 6, 777, 2022)
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Quantum Circuit Born machine (QCBM) in a nutshell
1. Sample from a variational pure state | ⟩𝜓(𝜃) by projective measurement with 

probability given by the Born rule: 𝒑𝜽 𝒙 = |*𝒙|𝝍(𝜽 ⟩) |𝟐 .

2. Training (Hybrid loop):

3. Why the MMD ?  

n dimensional binary strings
map to 2n bins of the discretized dataset.

• KL divergence               Delgado and Hamilton, arXiv:2203.03578.
• Adversarial (QGAN)      Zoufal, et al., npj Quantum Inf 5, 103 (2019).
• In the phase space                 Kyriienko, et al., arXiv: 2202.08253.
• Maximum Mean Discrepancy Rudolph et al, arXIV: 2305.02881. 

MMD(P,Q) =  𝔼!~#
$~#

𝐾 𝑋, 𝑌 + 𝔼!~%
$~%

𝐾 𝑋, 𝑌 − 2𝔼!~#
$~%

𝐾 𝑋, 𝑌

• Resource efficient for NISQ devices.
• Stable.
• However, empirically less performant.
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Quantum Circuit Born Machine (QCBM)
Probability for each sample:

A deeper circuit gives more flexibility!

Benedetti et al., npj Quantum Inf 5, 45 (2019)

Target
distribution

QCBM

|𝜓⟩ =

𝛼&…&
𝛼&…(
⋮

𝛼(…(

𝑝 𝑥 = 𝜶)!)"…)#
*

= 𝑥 𝑈 𝜃 0 *

𝑥

𝑝
𝑥

𝑥

𝑝
𝑥
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Quantum Circuit Born Machine (QCBM)
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Quantum Circuit Born Machine (QCBM)

17
M.Grossi CERN QTI - IPPP Durham 

Workshop23



QUANTUM GENERATIVE MODELS
ARE IMPLICIT MODELS

Quantum Circuit Born Machine (QCBM)
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Resource intensive
( !
"!

measurements are required       
estimate a cost to precision 𝜖)  

Barren plateaus

Small gradients 

High precision required to find
cost-minimizing direction

19
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Choice in circuit

• Too expressive

• Too entangling 

Choice in target learning problem 

Choice in cost function (loss)

Local 

Global

⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩

𝐻 = 𝜎(+ ⊗𝜎*+ ⊗⋯⊗𝜎,+

𝐻 = 𝜎(+ ⊗ 𝕀*⊗⋯⊗ 𝕀,

Expressive 

Inexpressive 
Barren plateaus
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Generative Loss Function

21

Sample quantum state and build the empirical 
distribution q to be used in the loss
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Generative Loss Function

Total Variation Distance

Jensen-Shannon Divergence

Reverse KL Divergence

KL Divergence

22

Problem: It is very rare you sample relevant data point 
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Generative Loss Function

Total Variation Distance

Jensen-Shannon Divergence

Reverse KL Divergence

KL Divergence

Loss concentration
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Total Variation Distance

Jensen-Shannon Divergence

Reverse KL Divergence

KL Divergence

ARE NOT TRAINABLE
FOR GENERIC CIRCUITS

Generative Loss Function

NO GO THM
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Maximum Mean Discrepancy

with

Generative Loss Function
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Maximum Mean Discrepancy

with

to Pauli basis

Generative Loss Function

Equivalent representation

as observable 

ML vs QC
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Maximum Mean Discrepancy

with

to Pauli basis

Generative Loss Function

Equivalent representation

as observable 

ML vs QC
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Maximum Mean Discrepancy

with

Equivalent representation

as observable 

ML vs QC
to Pauli basis

CAN BE GLOBAL
OR LOW-

BODY/LOCAL

Generative Loss Function

28

Full-body losses are needed

to learn long range 

correlations.
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MMD Trainability
Product States

Deeper Circuits
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Product States

Deeper Circuits MIGHT BE TRAINABLE
FOR GENERIC CIRCUITS

MMD Trainability
LARGE GRADIENTS ARE NOT 

ENOUGH

SMART CIRCUIT + 

GOOD INITIALIZATION 

+ NOT TOO LOCAL 

LOSSES 
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Final Benchmarks
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Summary

Paper link

Explicit losses
are a no-go

Expressivity BP

Implicit losses
can work

Quantum 
strategies?
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Data 
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Feature 
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Data 
Analysis
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

Exact 

distribu�on 

loading

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Classical 

preprocessing

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

loading 

through qGAN

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

qGAN training

Classical 

preprocessing

Quantum data 

prepara�on 

𝜎 =
1
𝐹
2𝑑Φ 𝑀 #Θ Φ − Φ$

matrix element

phase-space factor

phase-
space cuts 

Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary 
particle processes." https://doi.org/10.1016/j.physletb.2022.137228

https://doi.org/10.1016/j.physletb.2022.137228
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

F.Rehm, Full Quantum GAN Model for HEP 
Detector Simulations, ACAT22

Bravo-Prieto, Carlos, et al. "Style-based 
quantum generative adversarial networks 
for Monte Carlo events." Quantum 2022

Kiss O., Grossi M. et all., Conditional 
Born machine for Monte Carlo 
events generation, Phys. Rev. A 106, 
022612 (2022)
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Are we using the right data?

What if you do not know the signal or 
where to look for new-physics ? 

Re-embracing the scientific method: starts gathering information about
nature 

… our baseline is the SM (from 1970!) à let’s change the approach

Rather than specifying a signal hypothesis upfront, we could start looking at
our data

Based on what we see (e.g., clustering alike objects) we could formulate a 
signal hypothesis

EXAMPLE: star classification was based on observed characteristics …



Simulate QCD multijet production at 
the LHC (64 fb -1)

Standard Model jet data

Event selection: 
• Two jets with pT > 200 GeV and |η| < 2.4
• mjj > 1260 GeV (emulate online selection) 
• Each event is represented by its two highest-pT

jets.

Jet is built of 100 highest-pT
particles within ∆R < 0.8 from 
its axis.

Convolutional AutoEncoder compresses
particle jet learning the internal structure

• Trained on background events

ℝ=>> → ℝℓ , ℓ = 4, 8,16
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A typical hybrid QML workflow
Anomaly detection can point to new physics at the LHC Model-agnostic! 

Data 
compression

Quantum 
algorithm

«Normal» 
training data

Output

Wózniak, Belis, Grossi, Tavernelli, Vallecorsa et al. - https://arxiv.org/abs/2301.10780
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Paper Code

• Narrow and Broad Graviton resonance G à W+W- à Multi-jet final state
• New scalar boson A à HZ à ZZZZ (Multi-jet final state) 

ℝ%&& → ℝℓ , ℓ = 4, 8,16

39
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Results
Comparison to best-performing classical algorithm with 
similar complexity trained and tested on the same data
• RBF –based SVM

AUC shows consistent advantage for quantum algorithm

Evaluate performance at typical working, where εs = 0.6, 0.8

Quantum kernel machine works best for more complex physics
M.Grossi CERN QTI - IPPP Durham 
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• Supervised searches served HEP well so far 

• We need new directions to search for as an alternative workflow, where data guide us

• Studying the behaviour of models in the NISQ regime is useful

• Can we reduce the impact of data reduction techniques?

• Can we find the right balance of trainability vs generalization?

• Can Quantum Anomaly Detection being a good candidate?

• What is the role on Quantum Data for HEP?

Outlook and Questions
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CERN  19-24 November 2023
Annual international conference focusing

on the interdisciplinary field of quantum 

technology and machine learning



CERN QTI 
https://quantum.cern/


