

QC @ CERN: trainability issues and summary of QC4HEP applications

Workshop on Quantum Computing 4 HEP IPPP Durham – 19-20 September 2023

Michele Grossi, PhD

CERN QTI Quantum Computing Sen. Fellow

CERN QTI & Motivation Trainability issues with GM Summary of QC4HEP applications

CERN QTI & Motivation

Trainability issues with GM Summary of QC4HEP applications

M.Grossi CERN QTI - IPPP Durham Workshop23

3

CERN QTI 1 - Areas of Investigation

Quantum networks, QKD applications

Lattice QCD

CERN QTI Phase 2 – Expected Impact (high-level)

Workshop23

Studying Deep Learning in physics

Quantum Machine

- High quality labelled training data from realistic MC simulation
- Large experimental datasets
- Interestingly structured data at multiple scales
- Detailed understanding of systematic uncertainties

M. Erdmann, J. Glombitza, G. Kasieczka, U. Klemradt, Deep Learning for physics research

Machine Learning + QC

QML models

a) Explicit quantum model: $\rho(\mathbf{x}) = |\psi(\mathbf{x})\rangle\langle\psi(\mathbf{x})|$ $O_{\boldsymbol{\theta}} = V^{\dagger}(\boldsymbol{\theta}) OV(\boldsymbol{\theta})$ $f_{\theta}(\mathbf{x}) = \operatorname{Tr}[\rho(\mathbf{x})O_{\theta}]$ A linear model with a restricted w **b)** Implicit quantum model: $f_{\alpha}(\mathbf{x}) = \operatorname{Tr}[\rho(\mathbf{x})O_{\alpha,\mathcal{D}}] \qquad O_{\alpha,\mathcal{D}} = \sum \alpha_m \rho(\mathbf{x}^{(m)})$ $\overline{m=1}$ A kernel linear model c) Data re-uploading model: $f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \mathrm{Tr}[\rho(\boldsymbol{x}, \boldsymbol{\theta})O_{\boldsymbol{\theta}}]$

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)

CERN QTI & Motivation

Trainability issues with GM

Summary of QC4HEP applications

M.Grossi CERN QTI - IPPP Durham Workshop23

9

Generative Model

unsupervised learning problem

Explicit

- definition of explicit density form that allows likelihood inference
- VAE

Implicit

• flexible transformation from random noise to generated samples

(a stochastic process to draw samples from the underlying data distribution)

- no distribution specified/required
- no tractable likelihood function required
- GAN

$\zeta_{12}(c_{1}/c_{2}) \land (c_{2}) \land (c_{3}) \land (c$

Trainability barriers and opportunities in quantum generative modeling

Manuel S. Rudolph,^{1,*} Sacha Lerch,^{1,*} Supanut Thanasilp,^{1,2,*} Oriel Kiss,^{3,4} Sofia Vallecorsa,³ Michele Grossi,³ and Zoë Holmes¹
¹Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland ²Chula Intelligent and Complex Systems, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330
³European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland
⁴Department of Nuclear and Particle Physics, University of Geneva, Geneva 1211, Switzerland (Dated: May 5, 2023)

Quantum Generative Models

Characteristics :

- Discrete
- Uses quantum randomness.
- 1 shot = 1 sample.
- Needs more qubits.

Examples

- Quantum circuit Born machines (QCBM) (*Phys. Rev. A* 98, 062324, 2018)
- Discrete Quantum GAN for learning random distribution (*npj Quantum Inf* **5**, 103, 2019)
- Quantum GAN for Bar and Stripes generation (*Phys. Rev. A* 99, 5, 2019)

Quantum Generative Models

Characteristics :

- Discrete
- Uses quantum randomness.
- 1 shot = 1 sample.
- Needs more qubits.

<u>Examples</u>

- Quantum circuit Born machines (QCBM) (*Phys. Rev. A* 98, 062324, 2018)
- Discrete Quantum GAN for learning random distribution (*npj Quantum Inf* 5, 103, 2019)
- Quantum GAN for Bar and Stripes generation (*Phys. Rev. A* **99**, 5, 2019)

2 Continuous data

 \rightarrow Use classical random source.

Characteristics :

- Continuous.
- Requires low number of qubits.
- High number of shots.
- 1 sample = many shots.

Examples

- Variational Quantum Generator (*arXiv:1901.00848*, 2019)
- Style-based quantum GAN for MC event generation (Quantum 6, 777, 2022)

13

Quantum Circuit Born machine (QCBM) in a nutshell

1. Sample from a variational pure state $|\psi(\theta)\rangle$ by projective measurement with probability given by the Born rule: $p_{\theta}(x) = |\langle x | \psi(\theta) \rangle|^2$.

n dimensional binary strings map to 2ⁿ bins of the discretized dataset.

- KL divergence
- Training (Hybrid loop): Adversarial (QGAN)
 - In the phase space

Delgado and Hamilton, arXiv:2203.03578.

- Zoufal, et al., *npj* Quantum Inf 5, 103 (2019).
- Kyriienko, et al., arXiv: 2202.08253.
- Maximum Mean Discrepancy Rudolph et al, arXIV: 2305.02881.

 $\mathsf{MMD}(\mathsf{P},\mathsf{Q}) = \mathbb{E}_{\substack{X \sim P \\ Y \sim P}} [K(X,Y)] + \mathbb{E}_{\substack{X \sim Q \\ Y \sim Q}} [K(X,Y)] - 2\mathbb{E}_{\substack{X \sim P \\ Y \sim Q}} [K(X,Y)]$

3. Why the MMD ?

- Resource efficient for NISQ devices.
- Stable.
- However, empirically less performant.

INITIATIVE

Probability for each sample:

Workshop23

$$p(x) = |\boldsymbol{\alpha}_{x_1 x_2 \dots x_n}|^2$$
$$= |\langle x | U(\theta) | 0 \rangle|^2$$
$$|\psi\rangle = \begin{pmatrix} \alpha_{0 \dots 0} \\ \alpha_{0 \dots 1} \\ \vdots \\ \alpha_{1 \dots 1} \end{pmatrix}$$

A deeper circuit gives more flexibility!

15

1

1.0

0.8

0.2

0.0

Probability

Barren plateaus

Barren plateaus

Choice in circuit

- Too expressive
- Too entangling

Barren plateaus in quantum neural network training landscapes

Jarrod R. McClean 🖂, Sergio Boixo 🖂, Vadim N. Smelyanskiy 🖂, Ryan Babbush & Hartmut Neven

Nature Communications 9, Article number: 4812 (2018) | Cite this article

Connecting Ansatz Expressibility to Gradient Magnitudes and **Barren** Plateaus

Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles PRX Quantum 3, 010313 – Published 24 January 2022

Entanglement-Induced Barren Plateaus

Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe PRX Quantum 2, 040316 – Published 25 October 2021

Choice in target learning problem

Barren Plateaus Preclude Learning Scramblers

Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht, and Andrew T. Sornborger Phys. Rev. Lett. 126, 190501 – Published 12 May 2021

Cost function dependent barren plateaus in shallow parametrized quantum circuits

M. Cerezo 🖂, Akira Sone, Tyler Volkoff, Lukasz Cincio & Patrick J. Coles 🖂

Inexpressive \mathbb{U}^B_{a} \mathbf{T}^{A}

QUANTUM TECHNOLOGY

Choice in cost function (loss)

Global

Sample quantum state and build the empirical distribution *q* to be used in the loss

 $x \in \mathcal{X}$

Loss concentration

Implicit $\mathop{\mathbb{E}}\limits_{oldsymbol{x},oldsymbol{y}}[g(oldsymbol{x},oldsymbol{y})]$

Maximum Mean Discrepancy

$$\mathcal{L}_{\text{MMD}}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim q_{\boldsymbol{\theta}}}[K(\boldsymbol{x}, \boldsymbol{y})] - 2\mathbb{E}_{\boldsymbol{x} \sim q_{\boldsymbol{\theta}}, \boldsymbol{y} \sim p}[K(\boldsymbol{x}, \boldsymbol{y})] \\ + \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim p}[K(\boldsymbol{x}, \boldsymbol{y})],$$

with

$$K_{\sigma}(\boldsymbol{x}, \boldsymbol{y}) = e^{-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}{2\sigma}} = \prod_{i=1}^{n} e^{-\frac{(x_{i}-y_{i})^{2}}{2\sigma}}$$

 $O^{(\sigma)}_{\mathrm{MMD}} := \sum_{oldsymbol{x},oldsymbol{y}} K_{\sigma}(oldsymbol{x},oldsymbol{y}) |oldsymbol{x}
angle \langleoldsymbol{x}| \otimes |oldsymbol{y}
angle \langleoldsymbol{y}| \;.$ $\int to Pauli basis$ $O_{\rm MMD}^{(\sigma)} = \sum_{l=0}^{n} \binom{n}{l} (1 - p_{\sigma})^{n-l} p_{\sigma}^{l} D_{2l}$

Maximum Mean Discrepancy

Implicit

 $\mathop{\mathbb{E}}\limits_{oldsymbol{x},oldsymbol{y}}[g(oldsymbol{x},oldsymbol{y})]$

$$\mathcal{L}_{\text{MMD}}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim q_{\boldsymbol{\theta}}}[K(\boldsymbol{x}, \boldsymbol{y})] - 2\mathbb{E}_{\boldsymbol{x} \sim q_{\boldsymbol{\theta}}, \boldsymbol{y} \sim p}[K(\boldsymbol{x}, \boldsymbol{y})] \\ + \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim p}[K(\boldsymbol{x}, \boldsymbol{y})],$$

with

$$K_{\sigma}(\boldsymbol{x}, \boldsymbol{y}) = e^{-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}{2\sigma}} = \prod_{i=1}^{n} e^{-\frac{(x_{i}-y_{i})^{2}}{2\sigma}}$$

Maximum Mean Discrepancy

$$\mathcal{L}_{\text{MMD}}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim q_{\boldsymbol{\theta}}}[K(\boldsymbol{x}, \boldsymbol{y})] - 2\mathbb{E}_{\boldsymbol{x} \sim q_{\boldsymbol{\theta}}, \boldsymbol{y} \sim p}[K(\boldsymbol{x}, \boldsymbol{y})] \\ + \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim p}[K(\boldsymbol{x}, \boldsymbol{y})],$$

with

INITIATIVE

MMD Trainability

Product States

MMD Trainability

Final Benchmarks

Summary

Paper link

CERN QTI & Motivation

Trainability issues with GM

Summary of QC4HEP applications

Jorge J. Martinez de Lejarza, Michele Grossi, Leandro Cieri and German Rodrigo: <u>arXiv: 2305.01686</u>

35

F.Rehm, Full Quantum GAN Model for HEP Detector Simulations, ACAT22

QUANTUM TECHNOLOGY Bravo-Prieto, Carlos, et al. "Style-based quantum generative adversarial networks for Monte Carlo events." *Quantum 2022*

Kiss O., Grossi M. et all., **Conditional Born machine for Monte Carlo events generation**, *Phys. Rev. A* **106**, 022612 (2022)

Data acquisition

100 GB/ 1GB/sec sec

What if you do not know the signal or where to look for new-physics?

Re-embracing the scientific method: *starts gathering information about*

... our baseline is the SM (from 1970!) \rightarrow let's change the approach

Rather than specifying a signal hypothesis upfront, we could start looking at

Based on what we see (e.g., clustering alike objects) we could formulate a

EXAMPLE: star classification was based on observed characteristics ...

Workshop23

Standard Model jet data

Simulate QCD multijet production at the LHC (64 fb ⁻¹)

Jet is built of **100 highest-p**_T **particles** within $\Delta R < 0.8$ from its axis.

100 particles

Event selection:

- Two jets with $p_T > 200$ GeV and $|\eta| < 2.4$
- m_{jj} > 1260 GeV (emulate online selection)
- Each event is represented by its two highest- p_T jets.

Convolutional AutoEncoder compresses particle jet learning the **internal structure**

• Trained on background events

$$\mathbb{R}^{300}
ightarrow \mathbb{R}^{\ell}$$
 , $\ell = 4, 8, 16$

A typical hybrid QML workflow

Anomaly detection can point to new physics at the LHC **Model-agnostic**!

- Narrow and Broad Graviton resonance $G \rightarrow W^+W^- \rightarrow Multi-jet$ final state •
- New scalar boson $A \rightarrow HZ \rightarrow ZZZZ$ (Multi-jet final state) ٠

QUANTUM

NITIATIVE

TECHNOLOGY

Paper

Results

Comparison to best-performing classical algorithm with similar complexity trained and tested on the same data

Quantum kernel machine works best for more complex physics

M.Grossi CERN QTI - IPPP Durham Workshop23

TPR

Quantum

Classical

Unsupervised kernel machine

Anomaly signature

Narrow G → WW 3.5 TeV

Outlook and Questions

- Supervised searches served HEP well so far
- We need new directions to search for as an alternative workflow, where data guide us
- Studying the behaviour of models in the NISQ regime is useful

- Can we reduce the impact of data reduction techniques?
- Can we find the right balance of trainability vs generalization?
- Can Quantum Anomaly Detection being a good candidate?
- What is the role on Quantum Data for HEP?

CERN 19-24 November 2023

Annual international conference focusing on the interdisciplinary field of quantum technology and machine learning

CERN QTI https://quantum.cern/