Quantum integration of elementary particle processes

Mathieu PELLEN

University of Freiburg

 \rightarrow Based on arXiv:2201.01547, Phys.Lett.B 832 (2022) 137228

In collaboration with: Gabriele Agliardi, Michele Grossi, Enrico Prati

Quantum computing for high-energy physics Durham, United Kingdom 19th of September 2023

Mathieu PELLEN

Quantum computers

[IBM]

[Landscape with the worship of the Golden calf, Claude Lorrain, Staatliche Kunsthalle, Karlsruhe (Germany)]

Mathieu PELLEN

Quantum integration of elementary particle processes

- Is it possible?
- Is there a quantum advantage?
- Is it more resource efficient than CPU/GPU?

Reviews

- [Gray, Terashi; Gray:2022fou] (selected topics)
- [Delgado et al.; 2203.08805] (Snowmass)
- [Klco et al.; 2107.04769] (lattice)

Selected references

- Amplitude/loop integrals: [Ramirez-Uribe et al.; 2105.08703], [Bepari, Malik, Spannowsky, Williams; 2010.00046], [Chawdhry, MP; 2303.04818]
- Parton shower: [Bauer, de Jong, Nachman, Provasoli; 1904.03196], [Bepari, Malik, Spannowsky, Williams; 2010.00046],
 [Williams, Malik, Spannowsky, Bepari; 2109.13975], [Chigusa, Yamazaki; 2204.12500], [Gustafson, Prestel, Spannowsky, Williams; 2207.10694]
- Machine learning: [Filipek et al; 2105.04582], [Bravo-Prieto et al; 2110.06933], [Alvi, Bauer, Nachman; 2206.08391]
- Others: [Ciavarella; 2007.04447], [Perez-Salinas, Cruz-Martinez, Alhajri, Carrazza: 2011.13934], [Bauer, Freytsis, Nachman;
 2102.05044], [Martenez de Lejarza, Cieri, Rodrigo; 2204.06496], [Agliardi, Grossi, MP, Prati; 2201.01547], [Martínez de Lejarza, Grossi,
 Cieri, Rodrigo; 2305.01686]

LHC legacy

See here for all cross section summary ple

Mathieu PELLEN

Quantum integration of elementary particle processes

Computing problem in high-energy physics

 \rightarrow Event generation: \sim 15% of \sim 3 billion cpuh.y^{-1}

 \rightarrow More in: [Buckley; 1908.00167], [Valassi et al.; 2004.13687]

Computing problem in high-energy physics

 \rightarrow Event generation: \sim 15% of \sim 3 billion cpuh.y^{-1}

 \rightarrow More in: [Buckley; 1908.00167], [Valassi et al.; 2004.13687]

• One possible solution: GPU

 \rightarrow Some references: [Borowka et al.; 1811.11720], [Carrazza et al.; 2002.12921, 2009.06635, 2106.10279], [Bothmann et al.; 2106.06507] + Talk1 + Talk2

• Can quantum integration be of any use in HEP?

 \rightarrow Application mostly in finance: [Woerner and Egger; 1806.06893], [Stamatopoulos et al.; 1905.02666,

2111.12509], [Rebentrost, Gupt, Bromley; Phys.Rev.A 98 (2018) 022321]

Mathieu PELLEN

Quantum integration of elementary particle processes

Grover algorithm/iteration

- Very general quantum algorithm
- Quadratic speed up
 - $\rightarrow \mathcal{O}(\sqrt{N})$ operations instead of $\mathcal{O}(N)$
- Most famous example: unstructured database search

[Nielsen, Chuang; Quantum Computation and Quantum Information]

• Example (from [Johnston, Harrigan, Gimeno-Segovia; Programming Quantum Computers])

 \rightarrow What solution is contained in our quantum register?

Grover algorithm/iteration

 \rightarrow Applying a Grover iteration

Grover algorithm/iteration

 \rightarrow Applying a Grover iteration

 \rightarrow Applying it twice

Mathieu PELLEN

Quantum Amplitude Estimate (QAE)

[Brassard, Hoyer, Mosca, Tapp; Quantum Amplitude Amplification and Estimation]

$${\cal A}|0
angle=\sqrt{1-a}|\Psi_0
angle+\sqrt{a}|\Psi_1
angle$$

QAE estimates a with high probability such that the estimation error scales as O(1/M) [as opposed to $O(1/\sqrt{M})$]

M: number of applications of A

Quantum Amplitude Estimate (QAE)

[Brassard, Hoyer, Mosca, Tapp; Quantum Amplitude Amplification and Estimation]

$${\cal A}|0
angle=\sqrt{1-a}|\Psi_0
angle+\sqrt{a}|\Psi_1
angle$$

QAE estimates a with high probability such that the estimation error scales as O(1/M) [as opposed to $O(1/\sqrt{M})$]

M: number of applications of A

- \rightarrow What the (orignal) algorithm provides:
 - an estimate: $\tilde{a} = \sin^2(\tilde{\theta}_a)$ with $\tilde{\theta}_a = y\pi/M$, $y \in \{0, ..., M-1\}$, and $M = 2^n$
 - A success probability (that can be increased by repeating the algorithm)
 - A bound: $|a \tilde{a}| \leq \mathcal{O}(1/M)$

Quantum Amplitude Estimate (QAE)

- ightarrow Basis of quantum Monte Carlo integration and $\mathcal{O}(1/M)$ scaling
- \rightarrow Various algorithms/implementations available

[[]Grinko, Gacon, Zoufal, Woerner; 1912.05559]

Resulting estimation error for a = 1/2 and 95% confidence level with respect to the required total number of oracle queries.

Mathieu PELLEN

Quantum integration of elementary particle processes

Quantum integration

Extension to

$$| \mathcal{A} | 0
angle = \sum_i a_i | \Psi_i
angle$$

 \rightarrow Definition of a piece-wise function with $f(x_i) = a_i$.

Quantum integration

Extension to

$${\cal A}|0
angle = \sum_i a_i |\Psi_i
angle$$

 \rightarrow Definition of a piece-wise function with $f(x_i) = a_i$.

So far used in finance for simple functions in 1D
 → Applicable to HEP? What are the limitations?

Mathieu PELLEN

 $I = \int \mathrm{d} x f(x) g(x)$

Quantum integration

Extension to

$${\cal A}|0
angle = \sum_i a_i |\Psi_i
angle$$

 \rightarrow Definition of a piece-wise function with $f(x_i) = a_i$.

So far used in finance for simple functions in 1D
 → Applicable to HEP? What are the limitations?

[Zoufal, Lucchi, Woerner; 1904.00043]

$$I = \int \mathrm{d} x f(x) g(x)$$

• In finance:

- f: probability
- g: payoff
- In HEP:

•
$$f: |\mathcal{M}|^2$$

• $g: \Theta(\Phi - \Phi_c)$

Mathieu PELLEN

Applications

• $e^+e^- \rightarrow q\bar{q}$ (in QED)

$$\sigma \sim \int_{-1}^{1} \int_{0}^{2\pi} \mathrm{d}\cos\theta \mathrm{d}\phi \left(1 + \cos^{2}\theta\right)$$

• $e^+e^- \rightarrow q\bar{q}'W$

$$\begin{split} \sigma &\sim \int_{M_{W}^{2}}^{s} \int_{0}^{s_{1}^{\mathrm{Max}}} \int_{-1}^{1} \int_{0}^{2\pi} \int_{0}^{2\pi} \mathrm{d}\Phi_{3} \left| \mathcal{M}_{e^{+}e^{-} \rightarrow q\bar{q}'W} \right|^{2} \\ &\sim \int_{M_{W}^{2}}^{s} \int_{0}^{s_{1}^{\mathrm{Max}}} \mathrm{d}\tilde{\Phi}_{3} \left| \mathcal{M}' \right|^{2} \end{split}$$

with $\mathcal{M}' = \mathcal{M}_{e^+e^- \to q\bar{q}'W}$ (cos $\theta_1 = 0$, $\phi_1 = \pi/2$, $\phi_2 = \pi/2$). \wedge We choose to output the variables of integration (maximal information)

Mathieu PELLEN

 \rightarrow Use Qiskit (IBM python software) subroutines and noiseless quantum simulation (perfect quantum computer)

 \rightarrow Use Qiskit (IBM python software) subroutines and noiseless quantum simulation (perfect quantum computer)

Loading of distribution - $1 + x^2$

 quantum Generative Adversarial Network (qGAN): default vs. optimised

Mathieu PELLEN

Loading of distribution - $1 + x^2$

 quantum Generative Adversarial Network (qGAN): default vs. optimised

• Exact loading (more qubits needed)

Integration - $1 + x^2$

• Matching boundary of integration (3 qubits $\Rightarrow 2^3$ bins)

Domain	low stat.		high stat.		very high stat.		exact	
	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta [\%]$
[-0.75;0]	0.345	-3.31	0.332	0.706	0.334	0.0331	0.334	-8.31×10^{-3}
[-0.5; 0]	0.215	-5.86	0.201	1.15	0.203	0.0986	0.203	-0.0161
[-0.25;0]	0.112	-17.1	0.0939	1.87	0.0960	-0.284	0.0957	-0.0389

Integration - $1 + x^2$

• Matching boundary of integration (3 qubits $\Rightarrow 2^3$ bins)

Domain	low stat.		high stat.		very high stat.		exact	
	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta [\%]$
[-0.75;0]	0.345	-3.31	0.332	0.706	0.334	0.0331	0.334	$-8.31 imes 10^{-3}$
[-0.5; 0]	0.215	-5.86	0.201	1.15	0.203	0.0986	0.203	-0.0161
[-0.25;0]	0.112	-17.1	0.0939	1.87	0.0960	-0.284	0.0957	-0.0389

• Non-matching boundary of integration

		[-0.7]	7; 0.6]		$\left[-0.625; 0.375 ight]$			
Qubits number	high stat.		exact		high stat.		exact	
	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta [\%]$
3	0.402	-28.0	0.406	-27.1	0.296	-28.1	0.299	-27.5
4	0.463	-17.0	0.468	-16.0	0.408	-1.07	0.412	$5.96 imes10^{-3}$
5	0.527	-5.46	0.532	-4.62	0.408	-1.07	0.412	$5.96 imes 10^{-3}$
6	0.542	-2.76	0.547	-1.81	0.408	-1.07	0.412	$5.96 imes10^{-3}$

Qubits	Criddim	.	\mathcal{S}_1	\mathcal{S}_2		
number	Gria ann.	σ	$\delta[\%]$	σ	$\delta[\%]$	
4	4×4	0.55	0	0.70	-4.1	
5	5×5	0.52	-4.92	0.53	-26.6	
6	6×6	0.47	-14.1	0.79	9	
6	7 imes 7	0.62	-14.4	0.70	-3.0	
6	8×8	0.55	0	0.78	7.6	

 $\mathcal{S}_1 {:}$ matching boundary of integration $\mathcal{S}_2 {:}$ not matching boundary of integration

[Agliardi, Grossi, MP, Prati; 2201.01547]

Remarks

- For present application, too many qubits and too deep circuit for test on real hardware (for free)
 - \rightarrow 4 qubits for representation \rightarrow 9 total qubits
 - \rightarrow 6 qubits for representation \rightarrow 13 total qubits
- Best quantum computer on IBM quantum experience (we used Qiskit):
 - 7 qubits (127 qubits for premium)
 - \rightarrow Simulators can go up to 5000 qubits

Remarks

- For present application, too many qubits and too deep circuit for test on real hardware (for free)
 - \rightarrow 4 qubits for representation \rightarrow 9 total qubits
 - \rightarrow 6 qubits for representation \rightarrow 13 total qubits
- Best quantum computer on IBM quantum experience (we used Qiskit):
 - 7 qubits (127 qubits for premium)
 - ightarrow Simulators can go up to 5000 qubits

Summary

- First application of quantum integration in HEP
- Theoretical quadratic speed-up
 - \rightarrow in practice, no gain because of generation of classical data
- Main challenge: error estimate
 - \rightarrow Interesting work in <code>[Cruz-Martinez, Robbiati, Carrazza; 2308.05657]</code>

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- Handle kinematics / 4-momenta conservation on a quantum computer

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- Handle kinematics / 4-momenta conservation on a quantum computer
- More natural definition of objects to be computed (matrix elements)
 → Example of colour algebra [see Herschel's talk]

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- Handle kinematics / 4-momenta conservation on a quantum computer
- More natural definition of objects to be computed (matrix elements)
 → Example of colour algebra [see Herschel's talk]
- Estimate of resources needed for actual computation on near-term quantum computers (noise, connections, ...)

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- Handle kinematics / 4-momenta conservation on a quantum computer
- More natural definition of objects to be computed (matrix elements)
 → Example of colour algebra [see Herschel's talk]
- Estimate of resources needed for actual computation on near-term quantum computers (noise, connections, ...)
- Can there be quantum advantage for event generation?

BACK-UP