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Event Generation - What’s the problem?
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Typical hadron-hadron collisions are highly 
complex resulting in O(1000) particles
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Figure 1: Schematic of the structure of a pp ! tt event, as modelled by PYTHIA. To
keep the layout relatively clean, a few minor simplifications have been made: 1) shower
branchings and final-state hadrons are slightly less numerous than in real PYTHIA events,
2) recoil effects are not depicted accurately, 3) weak decays of light-flavour hadrons are
not included (thus, e.g. a K0

S meson would be depicted as stable in this figure), and 4)
incoming momenta are depicted as crossed (p! �p). The latter means that the beam
remnants and the pre- and post-branching incoming lines for ISR branchings should be
interpreted with “reversed” momentum, directed outwards towards the periphery of the
figure; this avoids beam remnants and outgoing ISR emissions having to criss-cross the
central part of the diagram.
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The theoretical description of collision 
events is highly complex

Monte Carlo Event 
Generators have been the most 
successful approach to simulating 
particle collisions 

MC Event Generators exploit 
factorisation theorems in QCD - 
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The Parton Shower
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Interference effects only allow for 
partial factorisation

Successive decay steps factorise into 
independent quasi-classical steps

Leading contributions to the decay rate in the collinear 
limit are included in the soft limit

In this limit, the decay from high energy to low energy 
proceeds as a colour-dipole cascade. 
 
This interpretation allows for straightforward 
interference patterns and momentum conservation
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Parton shower - Collinear limit

The cross-section can be factorised in the 
collinear limit by defining splitting 
functions  Pij(z)

|0i |1i

i = 0 i = 1 i = 2i = �1i = �2

i

j

k

✓

n-partons

2

High-multiplicity final state: Using the splitting functions, we define the non-
emission probability, known as the Sudakov:

Δi(z1, z2) = exp[ − αs ∫
z2

z1

dz′ Pji(z′ )]
It is now possible to build an MCMC algorithm for the 
collinear shower: 
 
1) Determine whether an emission has occurred 
2) Identify which emission has occurred 
3) Update shower content
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Towards a quantum computing algorithm for helicity amplitudes
and parton showers
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The interpretation of measurements of high-energy particle collisions relies heavily on the performance
of full event generators, which include the calculation of the hard process and the subsequent parton shower
step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the
potential quantum that computers can provide. We propose general and extendable algorithms for quantum
gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity
amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a
quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing
the quantum nature of the computation. This advantage over classical computers is further exploited by the
simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm
simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementa-
tions, the quantum algorithm constructs a wave function with a superposition of all shower histories for the
whole parton shower process, thus removing the need to explicitly keep track of individual shower
histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout
the computation and represent a first step towards a quantum computing algorithm describing the full
collision event at the LHC.

DOI: 10.1103/PhysRevD.103.076020

I. INTRODUCTION

Modern collider experiments such as the Large Hadron
Collider (LHC) at CERN depend heavily on the modeling
of particle collisions and simulations of detector response
to examine physics processes within the experiments. This
modeling is used to construct different possible outcomes
from particle collisions, used both for the identification of
certain physical processes and for the construction of event
backgrounds. Consequently, such simulations play a cru-
cial role in modern high energy physics, and are usually
carried out byMonte Carlo event generators such as PYTHIA
[1], HERWIG [2], and SHERPA [3].
The theoretical description of LHC events can be highly

complex. In a typical event, hundreds of particles are

produced as a result of the evolution of an event from
the collision of two protons to the formation of long-lived
hadrons, leptons, and photons. The collision process can be
separated into several stages. The protons consist of many
partons, each carrying a fraction of the total proton energy.
When protons collide, two of their partons can interact with
each other via a large momentum transfer, thereby giving
rise to the so-called hard interaction. In this part of the
collision, large interaction scales are probed, possibly
accessing new physics. However, if color-charged particles
are produced during the hard interaction process, they are
likely to emit further partons. This results in a parton
shower, providing a mechanism that evolves the process
from the hard interaction scale down to the hadronization
scale OðΛQCDÞ, where nonperturbative processes rearrange
the partons into color-neutral hadrons.
The hard interaction and the parton shower are the two

parts of the event evolution that can be described pertur-
batively and largely independently of nonperturbative
processes, as a result of the factorization theorem [4]. In
addition, together with the phase space integration, they are
by far the most time-consuming parts of the event gen-
eration and pose, therefore, the bottleneck in the generation
of pseudo-data for ongoing measurements at the LHC.
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Quantum walk approach to simulating parton showers
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This paper presents a novel quantum walk approach to simulating parton showers on a quantum
computer. We demonstrate that the quantum walk paradigm offers a natural and more efficient approach to
simulating parton showers on quantum devices, with the emission probabilities implemented as the coin
flip for the walker, and the particle emissions to either gluons or quark pairs corresponding to the movement
of the walker in two dimensions. A quantum algorithm is proposed for a simplified, toy model of a 31-step,
collinear parton shower, hence significantly increasing the number of steps of the parton shower that can be
simulated compared to previous quantum algorithms. Furthermore, it scales efficiently: the number of
possible shower steps increases exponentially with the number of qubits, and the circuit depth grows
linearly with the number of steps. Reframing the parton shower in the context of a quantum walk therefore
brings dramatic improvements, and is a step towards extending the current quantum algorithms to simulate
more realistic parton showers.

DOI: 10.1103/PhysRevD.106.056002

I. INTRODUCTION

The emergence of quantum computers has brought a
new paradigm to the field of computation. The unique
features of these devices has garnered attention from
various disciplines, including high energy physics
(HEP), where the computational challenges associated with
taking, processing, and analyzing vast amounts of data in
collider experiments like the Large Hadron Collider (LHC)
requires innovative solutions. Quantum algorithms have
been proposed to tackle some of these challenges, including
the simulation of collision events [1–3], reconstruction of
charged particle tracks in the detectors [4–6], and event
classification and analysis [7–15].
Collision events at the LHC typically involve hundreds

of particles and can be very complicated. Simulation of
such events requires extensive modeling of proton-proton
interactions and the subsequent detector response to fully

uncover the underlying physics processes. Theoretical
descriptions of these collisions can be separated into several
stages. Constituent partons in the colliding protons can
interact via large momentum transfer in the so-called hard
interaction. Due to the large interaction energies, such
collisions have the potential to probe new physics. Color-
charged particles produced as a result of this hard inter-
action are likely to emit further partons, resulting in a
parton shower. The parton shower process evolves the
system down in energy from the hard interaction to the
hadronization scale, OðΛQCDÞ. It is a perturbative process
and can involve many partons, thus being one of the most
time consuming parts of the generation of a collision event.
Consequently, the development of quantum algorithms for
the calculation of the hard process [2] and the resultant
parton shower [1,2] is an area of interest.
This paper presents a novel approach to simulating a

many-particle, collinear parton shower on a quantum
device using a quantum walk (QW) framework. It is
structured as follows: Section II gives a brief introduction
to the QW framework, Sec. III contains the description of
the proposed parton shower algorithm, and Sec. IV gives a
summary and conclusions.

II. QUANTUM WALKS

The quantum random walk [16–19] is the quantum
analog of the classical random walk and defines the
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The Quantum Walk
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Figure 1: One dimensional walker at position x = 0 can move either left or right depending

on the outcome of the coin flip, | #i and | "i respectively.

HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.

– 3 –

σ2
c = N
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coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.
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The Quantum Walk
|0i |1i

x = 0 x = 1 x = 2x = �1x = �2

Figure 1: One dimensional walker at position x = 0 can move either left or right depending

on the outcome of the coin flip, | #i and | "i respectively.

HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.
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Quantum Walks with Memory

|pi

|ci H

|mi M

Coin Shift Memory

Figure 1

1

Advantages: 
- Arbitrary dynamics 
- Classical dynamics in unitary evolution

Disadvantages: 
- Tight conditions on quantum advantage

Qubit model: 
Augment system further by adding an additional 
memory space

ℋ = ℋP ⊗ ℋC ⊗ ℋM

Speedup via Quantum Walks

Szegedy Quantum Walks have been proven to 
achieve quadratic speed up for Markov Chain 
Monte Carlo
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The Dipole Shower
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Master Equation

The choice of the variables  and  is 
known as the phase space 
parameterisation 
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Non-Emission Probability
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Current interpretations of the veto 
algorithm treat the phase space variables 
 and  as continuous ξ t
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1. Parameterise phase space in terms of gluon transverse 
momentum and rapidity:

1 2

`

`/2 = n �yg

| {z }

�yg

 = ln(k2
?
/⇤2)

y

L

L/2�L/2

Figure 1: The phase space of e↵ective gluon emission is discrete, since 1 gluons within a
rapidity region �yg act coherently due to running-coupling e↵ects. The  (or equivalently
the k

2
?) dimension is also quantised, since 2 additional phase space folds opening due to

gluon emission are quantised in units of �yg. See main text for more details.

choice of an evolution variable t, and c) the choice of a momentum mapping sij , sjk $ t, ⇠

which determines the relations between pre-and post-decay momenta.

It is worth noting that all conventional state-of-the-art parton showers use slight vari-

ations of a single algorithm – the “veto algorithm” – to solve Eq. 2.2 numerically. This

algorithm treats the variables t and ⇠ as continuous degrees of freedom. It is thus unsuit-

able for (current) quantum devices. The following section will develop other algorithmic

solutions of Eq. 2.2, guided by keeping in mind the feasibility of NISQ devices.

2.1 Reinterpreting classical parton shower algorithms as random walks

This section extends the classical shower algorithm toolbox by performing several abstrac-

tions of the features of dipole showers. We are led to conclude that the showering process

can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.

The first abstraction to consider is removing the independent treatment of decay prob-

ability and momentum-space integration by absorbing the non-uniform probability density

in Eq. 2.1 into the integration measure. This can be obtained by choosing a phase-space

parametrisation in terms of the gluon’s transverse momentum,

k
2
? =

sijsjk

sIK
and rapidity y =

1

2
ln

✓
sij

sjk

◆
, (2.4)

which leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
C↵s

⇡
ddy with  = ln

�
k

2
?/⇤2)

�
, (2.5)

where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted

– 4 –
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The first step has an elegant implementation on intermediate-scale quantum devices.
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which leads to the inclusive probability:
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where                    and  is an arbitrary mass scale Λ

Due to the colour charge of emitted gluons, the rapidity span 
for subsequent dipole decays is increased. This is interpreted as 
“folding out”
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2. Neglect  splittings and examine transverse-
momentum-dependent running coupling

g → qq

leads to the inclusive probability

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
d



dy

�yg
with �yg =

11

6
, (2.7)

and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form

dtd⇠
d�

2⇡
C

↵s

2⇡

2sik(t, ⇠)

sij(t, ⇠)sjk(t, ⇠)
�(tn, t) =
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
exp

0

@�

maxZ



d̄

̄

1

A =
d

max
(2.8)

Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional

– 5 –

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
d



dy

�yg
with �yg =

11

6
, (2.7)

and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form

dtd⇠
d�

2⇡
C

↵s

2⇡

2sik(t, ⇠)

sij(t, ⇠)sjk(t, ⇠)
�(tn, t) =

d


exp

0

@�

maxZ



d̄

̄

1

A =
d

max
(2.8)

Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional

– 5 –

with

Interpreting the running coupling renormalisation group as a gain-
loss equation:

Gluons within  act coherently 
as one effective gluon

δyg
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2. Neglect  splittings and examine transverse-
momentum-dependent running coupling

g → qq

leads to the inclusive probability

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to
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6
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and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form
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Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional

– 5 –

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
d



dy

�yg
with �yg =

11

6
, (2.7)

and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form

dtd⇠
d�

2⇡
C

↵s

2⇡

2sik(t, ⇠)

sij(t, ⇠)sjk(t, ⇠)
�(tn, t) =

d


exp

0

@�

maxZ



d̄

̄

1

A =
d

max
(2.8)

Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional

– 5 –

with

Interpreting the running coupling renormalisation group as a gain-
loss equation:

Gluons within  act coherently 
as one effective gluon

δyg

R(✓) = exp
⇣
i✓Y

⌘
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
(1)

cR(✓) : |100i ! |1i(cos ✓|0i+ sin ✓|1i)|0i
ciY : ! |1i(cos ✓|00i � sin ✓|11i)

cR(�✓) : ! |1i(cos2 ✓|00i � cos ✓ sin ✓|11i
� sin ✓ cos ✓|11i+ sin2 ✓|01i)

PS : ! |1i(cos2 ✓|00i+ sin2 ✓|01i)/
p

cos4 ✓ + sin4 ✓

d


exp

0

@�
maxZ



d̄

̄

1

A =
d

max
(2)

↵s(k
2
?) =

12⇡

33� 2nf

1

ln(k2?/⇤
2
QCD)

=
const.



1

R(✓) = exp
⇣
i✓Y

⌘
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
(1)

cR(✓) : |100i ! |1i(cos ✓|0i+ sin ✓|1i)|0i
ciY : ! |1i(cos ✓|00i � sin ✓|11i)

cR(�✓) : ! |1i(cos2 ✓|00i � cos ✓ sin ✓|11i
� sin ✓ cos ✓|11i+ sin2 ✓|01i)

PS : ! |1i(cos2 ✓|00i+ sin2 ✓|01i)/
p

cos4 ✓ + sin4 ✓

d


exp

0

@�
maxZ



d̄

̄

1

A =
d

max
(2)

↵s(k
2
?) =

12⇡

33� 2nf

1

ln(k2?/⇤
2
QCD)

=
const.



1



Simon Williams - s.williams19@imperial.ac.uk QC4HEP, IPPP Durham, 20/09/23

Discrete QCD - Abstracting the Parton Shower Method

14

1 2

!

!/2 = n δyg

︸ ︷︷ ︸

δyg

κ = ln(k2⊥/Λ
2)

y

L

L/2−L/2

Folding out extends the baseline of the triangle 

to positive  by , where  is the height at which 

to emit effective gluons

y
l
2

l

1 2

!

!/2 = n δyg

︸ ︷︷ ︸

δyg

κ = ln(k2⊥/Λ
2)

y

L

L/2−L/2

A consequence of folding is that the  axis is quantised into 
multiples of 

κ
2δyg

Each rapidity slice can be treated independently of any other 
slice. The exclusive rate probability takes the simple form:

R(✓) = exp
⇣
i✓Y

⌘
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
(1)

cR(✓) : |100i ! |1i(cos ✓|0i+ sin ✓|1i)|0i
ciY : ! |1i(cos ✓|00i � sin ✓|11i)

cR(�✓) : ! |1i(cos2 ✓|00i � cos ✓ sin ✓|11i
� sin ✓ cos ✓|11i+ sin2 ✓|01i)

PS : ! |1i(cos2 ✓|00i+ sin2 ✓|01i)/
p
cos4 ✓ + sin4 ✓

d


exp

0

@�
maxZ



d̄

̄

1

A =
d

max
(2)

1



Simon Williams - s.williams19@imperial.ac.uk QC4HEP, IPPP Durham, 20/09/23

Discrete QCD as a Quantum Walk

15

|�i B S

|gi S
0

|ci C

|mi M

Coin

Repeat for all slices in fold

Shift Memory

Figure 1: Schematic of the quantum circuit for one slice in the fold. For each slice, the algorithm is split

into three distinct sections: (1) The coin operation, C, controls from the relevant walk memory to apply

the correct coin operation to the coin register; (2) the shift operation first increases the walker’s position

along the base of the fold, B, and then controls from the coin outcome to shift the walker accordingly

to increase the grove baseline, S, and e↵ective gluon position, S
0
; (3) The memory operation, M , then

updates the memory register with the outcome of the coin operation. This is then repeated for all slices

in the primary fold, and any subsequent folds formed.

|�i

|gi

|ci H

|mi

Coin Shift Memory

Figure 2: Schematic for a fold with a single slice of two tiles. There are two equal probability outcomes,

thus a Hadamard coin is used: 50% chance of an e↵ective gluon being created is represented by the |1i
state on the coin qubit. The shift operation increases the walker along the base of the fold, and then,

depending on the outcome of the coin operation, creates a new fold representing an e↵ective gluon. The

gluon is then recorded in the gluon register, and the memory operation updates the memory register with

the outcome of the coin operation. Note that no further calculation is needed, as the new fold created in

the event of an emitted e↵ective gluon is only 1 tile. If the new fold could produce further e↵ective gluons,

then the algorithm is applied recursively until no gluon bearing folds are produced.
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The baseline of the grove structure 
contains all kinematics information

For LEP data there are 24 unique 
grove structures

For LEP data there are 24 unique grove 
structures for  GeVΛQCD ∈ [0.1,1]

The Discrete-QCD dipole cascade can 
therefore be implemented as a simple 
Quantum Walk
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The algorithm has been run on the 
IBM QASM 32-qubit simulator

The 24 grove structures are generated 
for a  GeV, corresponding 
to typical collisions at LEP.

ECM = 91.2

The device simulates a fully fault 
tolerant quantum computer without 
a noise model

We see exact agreement between the 
simulator and analytical rates



Simon Williams - s.williams19@imperial.ac.uk QC4HEP, IPPP Durham, 20/09/23

Generating Scattering Events from Groves

17

Once the grove structure has been selected, event data can be synthesised in the following steps using 
the baseline:

1. Create the highest  effective gluons first (i.e. go from top to bottom in phase space)

2. For each effective gluon  that has been emitted from a dipole , read off the values ,  
and  from the grove

3. Generate a uniformly distributed azimuthal decay angle , and then employ momentum 
mapping (here we have used Phys. Rev. D 85, 014013 (2012), 1108.6172 ) to produce post-
branching momenta

κ

j IK sij sjk

sIK

ϕ

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.85.014013
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|�i B S

|gi S
0

|ci C

|mi M

Coin

Repeat for all slices in fold

Shift Memory

Figure 1: Schematic of the quantum circuit for one slice in the fold. For each slice, the algorithm is split

into three distinct sections: (1) The coin operation, C, controls from the relevant walk memory to apply

the correct coin operation to the coin register; (2) the shift operation first increases the walker’s position

along the base of the fold, B, and then controls from the coin outcome to shift the walker accordingly

to increase the grove baseline, S, and e↵ective gluon position, S
0
; (3) The memory operation, M , then

updates the memory register with the outcome of the coin operation. This is then repeated for all slices

in the primary fold, and any subsequent folds formed.
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Coin Shift Memory

Figure 2: Schematic for a fold with a single slice of two tiles. There are two equal probability outcomes,

thus a Hadamard coin is used: 50% chance of an e↵ective gluon being created is represented by the |1i
state on the coin qubit. The shift operation increases the walker along the base of the fold, and then,

depending on the outcome of the coin operation, creates a new fold representing an e↵ective gluon. The

gluon is then recorded in the gluon register, and the memory operation updates the memory register with

the outcome of the coin operation. Note that no further calculation is needed, as the new fold created in

the event of an emitted e↵ective gluon is only 1 tile. If the new fold could produce further e↵ective gluons,

then the algorithm is applied recursively until no gluon bearing folds are produced.
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thus a Hadamard coin is used: 50% chance of an e↵ective gluon being created is represented by the |1i
state on the coin qubit. The shift operation increases the walker along the base of the fold, and then,

depending on the outcome of the coin operation, creates a new fold representing an e↵ective gluon. The

gluon is then recorded in the gluon register, and the memory operation updates the memory register with

the outcome of the coin operation. Note that no further calculation is needed, as the new fold created in

the event of an emitted e↵ective gluon is only 1 tile. If the new fold could produce further e↵ective gluons,

then the algorithm is applied recursively until no gluon bearing folds are produced.
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115 qubits 
116 gate operations  
(102 multi-qubit, 14 single qubit)

10 qubits 
21 gate operations  
(12 multi-qubit, 9 single qubit)
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The algorithm has been run on the 
IBM Falcon 5.11r chip

The figure shows the uncorrected 
performance of the ibm_algiers 
device compared to a simulator

The 24 grove structures are generated 
for a  GeV, corresponding 
to typical collisions at LEP.

ECM = 91.2

Main source of error from CNOT 
errors from large amount of SWAPs
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Aleph data (EPJC 35 (2004) 457ff)
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Summary
High Energy Physics is on the edge of a computational frontier, 
the High Luminosity Large Hadron Collider and FCC will provide 
unprecedented amounts of data

Quantum Computing offers an impressive and powerful tool to 
combat computational bottlenecks, both for theoretical and 
experimental purposes

Future Work: A dedicated research effort is required to fully 
evaluate the potential of quantum computing applications in 
HEP

The first realistic simulation of a high energy collision has 
been presented using a compact quantum walk implementation, 
allowing for the algorithm to be run on a NISQ device
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Classical Random Walk
|0i |1i

x = 0 x = 1 x = 2x = �1x = �2

Figure 1: One dimensional walker at position x = 0 can move either left or right depending

on the outcome of the coin flip, | #i and | "i respectively.

HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.

– 3 –
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2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
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for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a
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HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
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2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
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We present a discrete QCD, collinear parton shower using the quantum walk framework.
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of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1
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The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
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2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
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N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a
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HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.

– 3 –

}ℋ = ℋC ⊗ ℋP

ℋP = { | i⟩ : i ∈ ℤ}

ℋC = { |0⟩, |1⟩}

U = S·(C ⊗ I)

Unitary  
Transformation:



Simon Williams - s.williams19@imperial.ac.uk QC4HEP, IPPP Durham, 20/09/2325

The Quantum Walk 
|0i |1i

x = 0 x = 1 x = 2x = �1x = �2

Figure 1: One dimensional walker at position x = 0 can move either left or right depending

on the outcome of the coin flip, | #i and | "i respectively.

HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.
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HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.
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HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a
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Collider Events on a Quantum Computer - Varying Λ
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Observables dominated by non-perturbative dynamics show mild dependence on the mass scale , 
but are highly sensitive to changes in the tune.
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