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Motivation 1/33

Important goals of B-physics phenomenology:

- Constraining the CKM unitarity triangle in the SM

- Indirect probes of physics beyond the SM

Theoretical predictions need information on non-perturbative hadronic matrix elements, e.g.

B — lv B — wlv B — ~vfv
Need decay constant fp Need transision form factor Need transition form factors
(Can extract V,p) Have lattice prediction Cannot use lattice

Have lattice prediction Have QCD factorisation!



Role of the B-meson LCDA 2/33
f dr )wT ¢ ( )

Example for factorisation theorem

oo

d
M(B = ~ID) ~ meB/Uw T(w,...) ¢ (w)
0
with perturbative process dependent kernel T

and non-perturbative process independent ¢, (7; ):

- Describes momentum distribution of partons in the B meson
- Formally, matrix element of non-local operator, [erozin, Neubert (1997)]

$+(7) o (01a(7n) [rn, 0] fiys hu(0) [B(V))

- Not available from first principles (yet?), only encoded in data!




Properties of the B-meson LCDA 3/33

What information about ¢ (7) is available?

(40
-
+
)

E.g. “inverse moment” \;"
Measurable (pseudo-) observable in B — ~vlv

*dr - . | .
A= — do(— = finite
B /O o ¢4 (—IT) |

= Constrains behaviour for large 7

“operator product expansion” (OPE)
Theory/analyticity:

Lower half plane is analytic except for the origin
= Constrains behaviour for small 7




Operator product expansion

Expand the bilocal operator using 7-dependent coefficients and local operators

Ultimate goal: connect information of OPE coefficients to the relevant region

oo Ky
G(rn) [rn, 0] s hy(0) = S 3~ c(r) O
n=3 k=1
= (1) §(0) fivs V(O) dim-3
+c9(r) g(0) (in - D) fiys h(0) + <S2() G(0) (iv- D) firs hu(0)  dim-4
+ ... dim > 5

- Determine coefficients in a matching calculation
- Dimensional grounds: cg@ﬂ x 7"

= How does this work on tree level?



OPE matching at tree level: partonic side

5/33

G(rn)[rn, 0lfiys h(0) = ¢ (7) G piys hy dim-3
+ () a(in - D) s by + () G (iv - D) s v dim-4
+ ... dim > 5
- Extract coefficients using partonic matrix element (0] ... |q(R) h,)

- Wilson line at LO: [rn, 0] = 1+ O(gs)

Result:

[Grozin, Neubert (1997)]

) =140(as), () =—ir+O(as), () =0+ O(as)



OPE matching at tree level: hadronic side

a(rn) [rn, 0] fivs hu(0) = () G thys hy dim-3
+ ) giin- D) s b + (1) G (iv- D) s hy dim-&
+... dim > 5
Connect to hadronic matrix element (0] ... |B):

- LHS yields LCDA by definition,
(01g(rn) [rn, 0] firs hy(0) |B) o ¢+ (7)

- RHS yields (just a few) hadronic constants, e.g.
_ . = -
(013 (in - ) ivs v |B) o
F _ —_
D) s v |B) o A

= Insert coefficients, obtain expression for the LCDA!

A

Wi~

(0lg (iv
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OPE matching at tree level: hadronic side 7133

a(rn) [n, 0] fiys hu(0) = ) (7) G s h dim-3
+ ) g(in- D) s b + &2(r) G (iv- D) s hy dim-&
+... dim > 5

The OPE result at tree-level (LO) up to mass dimension 4:

- 4N
OPE 2
=1=lFr=
+(7) L0, dim-4 ™3
- Can easily extend this to higher mass dimensions - introduce new constants
- Limited range of validity (does not fall off)
- Cannot calculate inverse moment Ay’

- Local limit 7 — 0 is well-defined at tree-level (LO)

What about radiative corrections (NLO)?



OPE matching at NLO 8/33
Radiative corrections appear on the partonic side (in the coefficients)

For the bilocal operator (LHS):

—>— h’H h;; ———y
i (b) ;; (o) i
| q 1 q 1

—
~
=

fOQQQO

(=]

For example, [Lee, Neubert (2005)] [Kawamura, Tanaka (2009)]
C . . 572
) = 17% (z log(iT/1€7)? + 2 log(iT/e7®) + 17;) + O(ad)

s

- Manifestly scale dependent (must compensate the hard scattering kernel)

- Now even singular for 7 — 0 (“renormalisation and local limit do not commute”)

- Limit 7 — oo remains incompatible with finite A5’

= Need some means of extrapolation from OPE and other quantities!



Loose ends (for now)

Here briefly, later in detail:

Renormalisation group evolution
LCDA is scale dependent

Scale evolution is convolution:

b (rip) = /dT/’Y(T,T/JM7M0)¢~>+(7'/¢M0)

= Difficult, esp. numerically

Finite spectator quark mass
BSM physics: e.g. Bs — yutpu~
- Also uses LCDAs

- New dimensionful scale in the OPE
- What about radiative corrections?

9/33



Parametrisation



Model independence of an analysis 10/33

Model-based analysis Model-independent analysis
- Construct model that fulfills the general - Parametrisation has infinite parameters:
properties (to some extend)
- Popular exponential model (single Zak ) fie(7 1)
parameter) [Grozin, Neubert (1997)]:
- 1 = Everything is decorrelated
=
$+(7) (1+iXxg7)? - What about convergence? Need
truncation!

Local limit like tree-level OPE and falls off
to produce inverse moment
- Problem: there are more » Must fulfill constraints order-by-order

- Estimate of the error?

pseudo-observables than A5 .
i i ??
= Those will be (highly) correlated! Is this possible??



Construction of a parametrisation

Important considerations:
- Control the truncation error (K < co) with a bound:

2 2 2 2
X =Y _la* = laol® + |an* + |aa* + ...
k

- Construct this with weighted integral

fo') d . 2
= [ SE|amm| nnlf, 0<x<o

- Choose the weight function according to known LCDA behaviour
- Keep series convergence in mind (low-order behavior)

11/33



Result 12/33

- inT—1
T iweT + 1

Additional features:
- Auxilliary dimensionful scale wg to “measure” the scalar coefficients
- Simple functional form (and also for the Fourier transform)
- Generalises/extends the exponential model
- Numerically efficient RG evolution

= Can we connect this to the OPE?




Test case: model for the radiative tail 13/33

f dr )wT )
Model that reflects OPE-induced “radiative tail” [Lee, Neubert (2005)]:
we /@ . e
dy(w,p) =N = exponential-like
Cr O(w — 1 A o :
+gM S P E N (B P “radiative tail"/OPE
T w 2 I 3w 1

- For small and intermediate range of w

- Scale-dependent parameter values are
matched onto partonic calculation

= Can we reproduce the tail?




Test case: model for the radiative tail 14/33

1/2 < €<2 _——

0.06 [ / 3 K — oo ]

X 0.04F i
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- K= 3 already consistent up to large w
- Larger K increases “precise” range (slowly)
= Even though the model is pathological, the parametrisation is flexible enough!



Renormalisation group evolution

Exact RGE of the LCDA is convolution:
b (1ip) = /dT”y(ﬂT’:u,uo)03+(T’;uo)

Numerically faster for the parameters:

A

-9

Ho

aw () = (m) S Rkl t0) A 1t0)
k

- Compute expensive matrix only once!

- Excellent agreement with exact result

- Uncertainty band remains consistent
(low K for illustration)

¢+ (w; ) [GeVTY]
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—— LN (1 =1.0GeV) ]
—— RG solution

--== LN (p=2.5GeV) ]
K=3

K' =K+3

0.5 < graey <20 1




OPE with mq # 0




Effect of the spectator quark mass

For m # 0, one new relevant operator in the OPE:

oo Ky

G(rn) [7n, 0] fiys hy(0) = >3 e

n=3 k=1
(in - D) fis hy + () G (iv- D) fis h

+ mass dimension > 5

On the hadronic side,

<0|0$“>|B(v>>o<%, (00 1B(v) xR, (o]0

16/33

dim-3
massless dim-4

massive dim-4

)|B(v)) oc —m

cs%)) L o)



Problem description 17/33

What is the problem with non-zero spectator mass?

- Introduces new scale into 1-loop integrals

= Exact position-space result at 1-loop not easily obtainable in closed form
- But we only need O(m) for dimension 47?

= Yes, but needs careful calculation!

Dimensional regularisation can lead to non-analytical behaviour of intermediate results!



Partonic setup 18/33

Base the calculation on a simple setup available in literature

- Need single new Wilson coefficient = use not the most general but simple setup
- Extracts a sum of coefficients; further use result by Kawamura and Tanaka

Bell, Feldmann (2008)

- Our choice corresponds to the “non-relativistic setup” e
heavy-quark velocity v#, spectator-quark momentum mv*

- They give momentum-space results for the three 1-loop contributions I (w):
Py
(a)

—
=5
~
—
o
~

Q)



Matching relation (massive case) 19/33

Obtain matching relation from partonic matrix element (0| ... |g h,) of the OPE
- Leads to:
2 OzsC/: i 9 2 2
1—imr + T’ (1) +O(77,a5) bilocal operator
T
Cr~ Cr ~
= cf)(r) (1 + % l@) +m Cﬁ‘*)(r) (1 + a: i 154)) local operators
79 s

+mc(r) = m(r) + O(, ad)

- Expanded in m on the LHS
- Local 1-loop contributions are taken into account on the RHS:

. €2 . 1
123) :/ dw !t (w) and I$4) = —/ dw w It (w)
m
0 0



Matching relation (massive case) 20/33

‘ Cr - ‘
1—imr + %/JF(T)-FO(TZ,QQ bilocal operator
s
Cr ~ Cr
— &) (1 + Lj : /53)) +mc(r) (1 + % Iﬁl‘)) local operators
™ v

+mc(r) = mc(7) + O(r%, 2)

Re-arrange in terms of powers of as

4

asCr (rho N 70 4 i 78
= (/ (r) =T + imr T )

= (1) =) +m (it + %) + () = () + 072, 02)

’The sum of non-local and local terms on the LHS now allows expansion in m! ‘




Example: vertex-like piece 21/33

Take vertex correction as illustration how this works

- In momentum space: -

ple )‘{ 2 o(m—w) H(w—m)}

I;(w):Zwr(1+6)<(m_w)z M—w)? mm-w) w(w-m)

- Calculate the Fourier transform and expand after in m

7*(7)—/mdwe*"“”/+(w)—3—2L+3|n“—2—2—irm (3—6L+5|n"—2+7>+0(m2 €)
a - a - 3 3 ’
@ € m € m

with L = log iTue™, exponential integral function Ei(2)
- Local contributions added in the matching relation:

10 _ [ gt 3 p
= dwlg(w)==+31In"— -2+ 0O(¢)
0 e m

w_ 1 [T + 5 %
ILGZE i dww/a(w):E+5lnﬁ+3+(’)(e)

= Result is free of IR logs; the sum can be linearized in m before FT



The other pieces

Pieces remain with gluon exchange from Wilson line and each of the quarks

- Gluon coupling to the heavy quark yields
~ ; 1 2L 572
l+ — p—lT™m _7_7_2L2_7
b (T) e ( 62 a 12 ) + O(G)
- A universal contribution to all orders in mass dimension
- No local subtractions (integrals in dim-reg are scaleless)

- Gluon coupling to the light quark vanishes:

moom—k (p?e™\ S(R—m+w)—dw—m)
/j(w)zzr(e)/o dr T ( - > )

Only involves low-momentum region w < m
= Expansion of the Fourier integral and dim-reg commute and

T*(r) — 7532 + imTYSZ'C) = / dw (ef"‘” -1+ fwT) IT(w) =0
’ ’ 0

€

22/33

)



New primary result

The new mass-induced Wilson coefficient;

™

&) = —ir {O‘:CF (L—1)+ O(aﬁ)}

Yields OPE form of the LCDA:
- A — 2
$i(r) = [1 g m} {1 _ asCr (2L2 o+ ﬂ

3 4t 12
.—CXSCF 8 0 OzSCF 4 9 _9
ITA —L-3 Imm —L—1 O
i 4o <3 )+ T 4t (3 >+ (a5, 7%)

= What's the impact in a global analysis? Connect to the parametrisation

23/33



Connecting the OPE to the inverse moment

Important caveat:

- QCD factorization formulas and sum rules (primarily) probe the low-w region
= Radiative tail cannot predict this!

What can we do?
Make (strong) ad-hoc assumptions and check for consistency = sanity check

- Assume truncation K = 2 is sufficient = Relate ag, a;, a, via two OPE constraints
- Assume that the bound saturates rapidly to constrain ay:
q)|? q)|2
a@F )
q)|2 q)|2 o
ja”|* + |a?)|

P+ o+ [oF

- Fix wg due to simultaneous convergence of OPE and parametrization

= Check results!

01, = ..<a®<..

24/33



Range for Ag, and Ag, 25/33

0.7 our central value 0.7 our central value
sum rules sum rules

0.6 0.6 4

z %

5} 0.5 1 3 0.5 1

< 0.41 <041
0.3 1 0.3 1
0.2 0.2

—-0.3 —0.2 —0.1 0.0 0.1 0.2 —-0.3 —0.2 —0.1 0.0 0.1 0.2
o ol
- Comparison to recent sum rule calculation [Khodjamirian et al. (2020)]

= Large overlap, no “finetuning” required

- Not shown: difference of individual afq’s) is about 10% to 15%



Ratio ABs/ABq

[ /1 |das| < 0.1

sum rules

[daz| =0
SN [0az| < 0.05

1.3 1

1.2 1

NX =
\\‘\v < ,V ’
NV

rrmime

WSS

0.9 1

AB./AB,

-0.3 -02

- Comparison to recent sum rule calculation
- Now two varied parameters a$%"*
- Vary a;

(@) 3s before and examine difference éa, = ags)

26/33

B 033 <a) <020

sum rules

0.00 0.05 0.10
) gq)

—a.

—0.05

(s
az

[Khodjamirian et al. (2620)]

. Clgq)

= Again, large overlap consistent with da, = 0, but favoring da, < 0



Summary of numerical analysis 27/33

- Find a consistent picture, even with aggressive assumptions
= OPE is well suited for global analysis using the parametrization
- Not shown: dominant source is the binding energy Ag, ., not mg.
= Lends support for the application even to charmed B
= Find numerically similar coefficients, but for drastically different scales 1o, wo:

Bq BS BC
o 1 GeV 1 GeV 2 GeV
wo 594 MeV 594 MeV 1.18 GeV
Aa 367 MeV 437 MeV 1.24 GeV
Ma 0 106 MeV 1.00 GeV
ap — @y 1.31 1.24 1.22
a1 — 2ay 0.47 0.42 0.35

As (380,690) MeV  (390,730) MeV  (0.76, 1.49) GeV




Generalized calculation 28/33

Move from simple setup to fully general setup
- Generic Dirac structure in the operator allows to extract subleading ¢_(7; u)

operators ...fvys... — operators ...T...
= Requires more terms in the OPE
- General kinematic allows to extract individual Wilson coefficients

massm — massm and momentum componentsn-k,v-R

= Profit from Taylor expansion before Fourier transform!

Additional benefits

- Cross-check because

- Independent from external input (massless Wilson coefficients)
- Extendable to NNLO

- Renders operator basis transparent



General dim-4 operator basis 29/33

Generic operator basis to mass dimension 4:
Or(t) = q(wn)[rn,0]T h,(0)

= a0 Y rao +d¥ a0 2 o)
+d)0) in- 5) 2 rhu(0) + (1) a(0) (in - 5) 2 rhngo)
+d0m)a(0) (iv- ) 2 rhu(0) + () a0) (v- 5) X rhgo)

_, 2V — _
+ &) ma©) 2L rh0) + ) ma() & o) + o)
Using “light-cone projectors”

iy _ i

< Massless terms come with even number of Dirac matrices
- Linear terms in m come with odd number of Dirac matrices
- I = fis recovers previous calculation sincen-n=0,v-n =1



Vertex correction piece, generic

Vertex correction with generic operator inserted:
r . o V(R) Y(—R+ £+ m) T u(v)
law, m k) = ’/W] Ow=n-(k=0) tr =7~z o]y ¢ + 0][2 < 10]

Linearise with local subtractions first and then perform the Fourier transform:

/OOO dw (€77 — 1+ iwor + ...} l5(w, m, k)
— k) {(—1—2L+ <;€+L> ir(n - k) + <§+4L—3) /T(v./e))
i (1+2L— (216+L> ir(n- k) + <1+2L—3> /T(v-/e))

_ (216 . 1) irmy + 0(72)} ru(v)

NEIME

= Can read off contributions to Wilson coefficients




Towards dimension-5 OPE 31/33

New hadronic parameters at mass dimension 5
- For local dimension-5 operators,
_ o =
(0]giD*iD¥Thy|B) ~ five tensor structures

- Quark equations of motion pose three constraints = two degrees of freedom remain
- (Canonically) define ME of gluon field strengh tensor G+ = [D*, D¥]

0|GgiG* (hy)a|B(v 1 I8 — I P
< ‘qﬁ ( _V) | ( )> _ ' (»I +y) H E (’}/MVV —’}/VV”) _ OH gk s

(0|0 B(v)) 4 3 3 op
- But for symmetric terms, EOM introduce m as

_ R = = — _
7 (01Gs {iD*,iD"} (h)alB(v)) 1 [(1 9 (6/\2+2A§+/\£, —2mA — m? iy
(0|0P|B(v)) 4 3
A2+ X2 4+ 2% — m? 2A2 + 22— 2mA
A e A L GO ) P
3 6 s

= Yields leading-order Mellin moments (w"?).



Estimate of dimension-5 OPE at NLO 32/33

For leading two-particle LCDA, we estimate

2 b 12
aSCF 8 . O/SC/: 4
—asCe (10 35 m Y.
trR <3L -5 +o(x)+o ( {’f)) +0(ad) + O()

- First line: tree-level to dimension 5, with universal 1-loop correction

- Third line: neglect mass and chromo-electric and -magnetic moments



Estimate of dimension-5 OPE at NLO

Numerical results:

tree-level, pole-scheme

1-loop™), pole-scheme

1-loop, a-scheme

no=1/31dim-3 dim-4 dim-5 | dim-3 dim-4 dim-5 dim-4
K=0 K=1 K=2|K=0 K=1 K=2 K=2
al® 1 1.44 1.54 0.78 1.07 1.07 (0.98,1.51)
al® - 0.44  0.65 - 026  0.23 (=0.19,0.87)
ag‘” _ - 0.11 = - —0.03 (—0.33,0.20)
af”) 1 137 143 | 078 099 0.9 (0.92,1.45)
al® - 037  0.49 - 020  0.10 (—0.22,0.84)
al® _ - 0.06 - - —0.06 (—0.32,0.21)

- Completely consistent with ad-hoc procedure at dim-4

- Indicates similar amount of SU(3) breaking

33/33
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arXiv:hep-ph/0509350 34/33

“Model-Independent Properties of the B-Meson Distribution Amplitude” (2005)
Seung ). Lee, Matthias Neubert

- OPE to dimension 3 and 4 for “Mellin moments” with cutoff Ayy:

Auy
WY = [ dwwféi(w), k=0,1
0

- Obtained from “partonic LCDA” in momentum space at 1-loop order (MS):

w\[#]
Cras w2 Cra In 1\l
B arton = 0 ('I— e w F&s 4| 2L
&1 (w, W)part ) 4 12 * 4 w /. * w/

Cras 2 C;:as}
& —n-p[1— 1+ — .
+ (w){ np{ e (+12)}+szm +

= Complicated distributions due to non-local operator with Wilson line
- Extract “radiative tail” from cut-off Mellin moment (w°),




arXiv:0810.5628 35/33

“Operator product expansion for B-meson distribution amplitude and dimension-5 HQET
operators” (2008)

Hiroyuki Kawamura, Kazuhiro Tanaka

- OPE calculation of the LCDA directly
- Up to mass dimension 5, i.e. o< 72 at 1-loop order (MS)

- Involved framework in position space, few details, few intermediate results given
- For example, 1-loop 1PI diagrams (“1LDs") yield (before renormalization)

o= [l e -0+ (G -2) (59,
— (3 +1) pratempsnon — ¢ (- +2—1-¢) @etnv- Tihah(on |+

Here: (Simpler) distributions




arXiv:2306.14686 36/33

“Strange-quark mass effects in the Bs meson’s light-cone distribution amplitude” (2023)
Thorsten Feldmann, PL, Nicolas Seitz - our new paper

In comparison:

- OPE calculation of the LCDA directly
- Up to mass dimension 4, i.e. oc 7" at 1-loop order (MS)
- Including spectator quark mass, i.e. extend application from B, 4 to Bs
- Systematic and explicit framework for calculation in momentum space
- Optimize for extraction of Wilson coefficients
- Avoid intermediate calculation of distributions
- Allow convenient Taylor expansion w.r.t. dimensionful scales
- Investigate suitability for global analysis
- Results for subleading two-particle LCDA ¢_(T; u1)



Mapping onto the unit circle 37/33

Im y(7)
Im7
O—ou 0
O 0
O ¢ o— Rer ! 1 Rey(7)
o— o
Oo—o= 0
fwer — 1 0— -1
V) = o R~ Dy /dT'W]{dV'
R Dy

(using auxilliary parameter) \T||TOOT = =



Bound Construction 38/33

- The bound (with weight function) takes the form

T

x= [ 1o )P Her

2&)0
=w y:ere
- Conveniently factorise the LCDA:
__ f+v(m)) N i1 Al ())
= B arn = T )

- Then, with parameters,

o 1 T d9 0 2 ! &= 2
X—m E‘ﬁ(e )‘ O<Z|an|-
O n=0
= Use math of orthogonal polynomials on unit circle Ds.
- The set of functionsspanning f(y) is unique: monomials y", n € Ng
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