Dark Matter search using astrophysical observations: present status and future prospects

Arpan Kar

Center for Quantum Spacetime (CQUeST), Sogang University, Seoul, South Korea

Institute for Particle Physics Phenomenology (IPPP), Durham University July 27, 2023

Introduction

• Cold Dark Matter (CDM):

provides ${\sim}25\%$ of the energy density of the Universe

• Evidences only through gravitational effects:

galactic rotation curves, CMB anisotropy, structure formation, bullet clusters, etc.

• $\Omega h^2 \simeq 0.12$

- The Standard Model (SM) of particle physics cannot explain CDM
- Candidates of CDM:
 - Thermal WIMPs (GeV-TeV)
 - Sub-GeV DM
 - PBHs
 - Ultralight bosonic DM
 -
- A variety of detection methods is needed to search for various DM candidates

Searches for particle DM signal

• Collider searches:

search for the missing- $E_{\mathcal{T}}$ signal caused by the produced DM particles at the LHC

• Direct detection searches:

search for the recoil signal produced by the interactions of local DM particles with the targets inside terrestrial detectors

Indirect detection:

search for the products of the annihilation/decay of DM particles in DM-dense astrophysical systems

 \Rightarrow An alternative search strategy for DM

Indirect detection

- DM is concentrated in the form of halos surrounding galaxies
- Annihilation/decay of DM particles in a galactic halo (e.g., MW Galaxy, dwarf galaxies) can produce SM particles, which can lead to further cascades and produce γ, e[±], p[±], ν's, etc.

- Searches in various experiments:
 - γ -rays: Fermi-LAT, HESS, etc.
 - 2 e^+ , \bar{p} : AMS-02 (cosmic-ray), etc.
 - $\nu(\bar{\nu})$: Super-K, IceCube, etc.
 - Planck (obsv. of CMB)

Secondary particle flux from DM annihilation in an astrophysical system

• Source function:

$$\chi\chi \to \underbrace{\mathrm{SM}_1 \,\mathrm{S}\bar{\mathrm{M}}_2}_{f} \qquad \qquad Q_i^{annihilation}(E,r) = \langle \sigma v \rangle \left\{ \frac{\rho_{\chi}^2(r)}{2m_{\chi}^2} \right\} \left\{ \sum_f \frac{dN_f^i}{dE} B_f \right\}$$

 $\langle \sigma v \rangle$: annihilation cross-section of DM particle χ

$$\frac{\rho_{\chi}^{2}(r)}{2m_{\chi}^{2}}$$
: number density of DM pairs

Annihilation channel f: $\tau^+\tau^-$, $\mu^+\mu^-$, e^+e^- , $t\bar{t}$, $b\bar{b}$, $q\bar{q}$, W^+W^- , ZZ, $\gamma\gamma$, gg, hh, Z γ , Zh, $\nu\bar{\nu}$

 $\begin{array}{l} \displaystyle \frac{dN_{f}^{i}}{dE}: & \mbox{spectrum of secondary particle } i \mbox{ produced per annihilation} \\ & [i \Rightarrow \gamma, \ e^{+}(e^{-}), \ \nu(\bar{\nu}), \ \mbox{etc.}] \end{array}$

Indirect searches for WIMP DM

γ -ray searches

- WIMP annihilations in a galactic halo produce γ -rays
- Fermi-LAT γ -ray observation of dwarf spheroidal (dSph) galaxies \rightarrow constrains GeV-TeV scale WIMPs

[Fermi-LAT, 2016] [Leane, *et al.*, PRD 98, 023016]

Cosmic-ray e^+ searches

- WIMP annihilations in the Milky Way (MW) produce e^{\pm}
- \bullet e^{\pm} undergo diffusion and energy losses and ultimately reach the Earth
- AMS-02 measures cosmic-ray e⁺ flux
 - \rightarrow put upper limit on $\langle\sigma\nu\rangle$ of GeV-TeV scale WIMPs

CMB observation

- γ and e^\pm from WIMP annihilations at high redshift
 - \rightarrow modify the ionization history through energy injection
 - \rightarrow perturb CMB anisotropies
- Planck measurement of CMB anisotropies
 - \rightarrow upper limits on $\langle \sigma v \rangle$

[Planck, 2015]

[Leane, et al., PRD 98, 023016]

Going beyond the standard approach

- Thermal WIMP DM: $\langle \sigma v \rangle_{\rm relic} \simeq 3 \times 10^{-26} \, {\rm cm}^3 \, {\rm s}^{-1}$ gives $\Omega_{\chi} h^2 = 0.12$ $[\Omega_{\chi} h^2 \propto 1/\langle \sigma v \rangle]$
 - \rightarrow A WIMP of mass m_{χ} is allowed if the corresponding upper limit on total $\langle \sigma \mathbf{v} \rangle > \langle \sigma \mathbf{v} \rangle_{\rm relic}$
- In a generic DM model, WIMP χ may annihilate into multiple channels simultaneously with different branching fractions (B_f)
 - \rightarrow flux distributions are determined by $B_f s$
 - \rightarrow limits obtained for individual channels are not applicable
- Constraints obtained from different observations vary largely
 - \rightarrow For a given channel, $\langle\sigma\nu\rangle$ allowed by one observation may be ruled out by others
- A B_f independent upper limit on total $\langle \sigma v \rangle$, allowed by all observations, is needed

Limit on total $\langle \sigma v \rangle$

- Fermi-LAT, AMS-02 and Planck data are used and B_f of each channel is arbitrarily varied (ensuring $\sum_{\epsilon} B_f = 1$)
 - ightarrow maximum allowed total $\langle \sigma v
 angle$ is obtained
 - ightarrow WIMPs of $m_\chi \lesssim 20\,{
 m GeV}$ are excluded

Limit on total $\langle \sigma v \rangle$

- Fermi-LAT, AMS-02 and Planck data are used and B_f of each channel is arbitrarily varied (ensuring $\sum_{\epsilon} B_f = 1$)
 - ightarrow maximum allowed total $\langle \sigma v
 angle$ is obtained
 - ightarrow WIMPs of $m_\chi \lesssim 20\,{
 m GeV}$ are excluded

• WIMP annihilation into $\nu \bar{\nu}$ is not considered

Neutrino observation constraints

• Super-Kamiokande, IceCube, ANTARES neutrino observations of the inner Galactic halo

[dominant background: atmospheric neutrinos]

ightarrow constrain $\chi\chi
ightarrow
uar{
u}$ for $m_{\chi}\sim \mathcal{O}({
m GeV-TeV})$

[K. Dutta, A. Ghosh, AK, B. Mukhopadhyaya, arxiv:2212.09795]

Constraints from Super-K low energy ν search

- Low energy (10 ~ 100 MeV) neutrino observation of Super-Kamiokande is used to search for diffuse supernovae neutrino background (DSNB) [dominant background: atmospheric neutrinos]
 - \to this observation can also be used to constrain $\chi\chi\to\nu\bar\nu$ for $m_\chi\sim$ a few tens of MeV

$\langle \sigma v \rangle$ of thermal WIMP: most general limit

• Arbitrary B_f 's are attributed to all channels including $\nu \bar{\nu}$, (ensuring $\sum_f B_f = 1$) and data of neutrino observations are included

ightarrow upper limit on total $\langle \sigma v \rangle$ substantially relaxes

 \rightarrow all m_{χ} values in the range 10 MeV - 100 TeV are allowed

[Constraint on standard thermal WIMP annihilating into SM particle pairs] [K. Dutta, A. Ghosh, AK, B. Mukhopadhyaya, arxiv:2212.09795] Indirect search for DM using radio waves (Prospects in upcoming radio telescopes)

Radio synchrotron signal from DM

Radio telescopes on Earth

e^{\pm} source function & propagation

• e^{\pm} source function:

$$\chi\chi \to \underbrace{\mathrm{SM}_1 \, \mathrm{S}\bar{\mathrm{M}}_2}_{f} \qquad \qquad Q_e^{annihilation}(E,r) = \langle \sigma v \rangle \left\{ \frac{\rho_{\chi}^2(r)}{2m_{\chi}^2} \right\} \left\{ \sum_f \frac{dN_f^e}{dE} B_f \right\}$$

• Propagation of e^{\pm} :

$$D(E)\nabla^{2}\left(\frac{dn_{e}}{dE}\right) + \frac{\partial}{\partial E}\left(b(E)\frac{dn_{e}}{dE}\right) + Q_{e}(E,r) = 0$$

D(E): Diffusion term $D(E) = D_0 (E/GeV)^{\gamma}$; $D_0 \equiv$ diffusion coefficient b(E): Energy loss term [Inverse Compton, synchrotron, Coulomb interactions, Bremsstrahlung]

 $b_{synch}(E) \propto B^2 (E/GeV)^2$; $B \equiv$ ambient magnetic field

Synchrotron emission & predicted signal

• Synchrotron emissivity:

$$j_{synch}(r,\nu) = 2 \int_{m_e}^{m_{\chi}} dE \quad \frac{dn_e}{dE}(E,r) \underbrace{\underset{synch}{P_{synch}(E,B,\nu)}}_{synchrotron power}$$

- $B \equiv \text{ambient magnetic field} \\ \nu \equiv \text{frequency of the emitted radio flux}$
- Signal at observation:

$$S_{\nu}(\nu) = \frac{1}{4\pi} \int_{\Omega} d\Omega \int_{l.o.s.} dl \, j_{sync}(l,\nu)$$

- Local dwarf spheroidal (dSph) galaxies are promising candidates mainly due to:
 - High mass to light ratio
 ⇒ high dark matter content
 - \bullet Close proximity ($\lesssim 100$ kpc)
 - \bullet Astrophysical processes (e.g., star formation) are well suppressed \Rightarrow low background

Australia Telescope Compact Array (ATCA) MeerKAT Australian SKA Pathfinder (ASKAP) Low-Frequency Array (LOFAR) Green Bank Telescope (GBT) Giant Metrewave Radio Telescope (GMRT) Murchison Widefield Array (MWA)

Upcoming: Square Kilometre Array (SKA)

Square Kilometre Array (SKA)

- Upcoming radio telescope
- Large effective area
 - ⇒ High sensitivity (low rms noise level)

$$N_{
m rms} = rac{\sqrt{2} \, K_B \, T_{
m sys} / A_{
m eff}}{\sqrt{\Delta
u \, t_{
m obs}}}$$

- $\Delta
 u \equiv$ Band-width $t_{
 m obs} \equiv$ observation time
- frequency range: 50 MHz – 50 GHz

[Braun, *et al.*, 2017]

 The wide frequency range and relatively high sensitivity make SKA useful in exploring DM in a wide mass range

SKA detectability

SKA detectability threshold for a 100 hours of observation towards Draco dSph Diffusion coefficient $D_0 = 3 \times 10^{28} \text{cm}^2 \text{s}^{-1}$ magnetic field $B = 0.1 - 1 \ \mu G$

[AK, S. Mitra, B. Mukhopadhyaya, T.R. Choudhury, PRD 101, 023015 (2020)]

Decaying DM at the SKA

- DM can be an unstable particle
- Its lifetime τ_{χ} (= 1/ Γ) must be much larger than the age of the Universe ($t_U \sim 10^{17} \, \text{s}$), but it can still decay into SM particle pairs

Decaying DM at the SKA

- DM can be an unstable particle
- Its lifetime τ_{χ} (= 1/ Γ) must be much larger than the age of the Universe ($t_U \sim 10^{17} \, \text{s}$), but it can still decay into SM particle pairs

[K. Dutta, A. Ghosh, AK, B. Mukhopadhyaya, JCAP 09 (2022) 005]

Sub-GeV DM at the SKA

Radio signals from MeV DM

- MeV scale BSM particles are often proposed as viable candidates for DM
- Annihilation/decay of MeV DM particles inside a galaxy can produce mildly relativistic e^{\pm}
- Synchrotron emission from MeV e^{\pm} are too weak (in frequency) to be detected in radio telescopes

Radio signals from MeV DM

- MeV scale BSM particles are often proposed as viable candidates for DM
- Annihilation/decay of MeV DM particles inside a galaxy can produce mildly relativistic e^\pm
- Synchrotron emission from MeV e^{\pm} are too weak (in frequency) to be detected in radio telescopes

 Inverse Compton (IC) scattering of e[±] on CMB photons inside a galactic system produces relatively high frequency photon flux

• For MeV e^{\pm} , such photon flux fall (at least partially) inside the usual frequency range of radio telescopes like the SKA

IC flux from MeV DM: radio signal at the SKA

IC flux from Seg I dSph

• Independent of the ambient magnetic field B

[B. Dutta, AK, L. E. Strigari, JCAP 03 (2021) 011]

SKA detectability

SKA threshold limits for detecting (in 100 h observation) DM induced IC flux from dSphs

• Independent of the ambient magnetic field B

[B. Dutta, AK, L. E. Strigari, JCAP 03 (2021) 011]

Dark Matter probes using compact stars

WIMP capture in celestial bodies

• Celestial bodies can accumulate DM particles in their interior due to their gravitational potential

Example: gravitational capture of WIMPs in the Sun

• Inside the celestial bodies (e.g. Sun) captured WIMPs can annihilate into SM particles

 $\chi\chi \rightarrow b\bar{b}, \, \tau^+\tau^-, W^+W^-, ... \Rightarrow \nu(\bar{\nu})$ [signal for neutrino telescopes]

WIMP capture mechanism

- Inside the celestial body the incoming WIMPs is accelerated by the gravitational potential $v_{\rm in} = \sqrt{u_{\rm asymptotic}^2 + v_{\rm esc}^2(r)}$
- The WIMP can scatter off a nucleus inside the celestial body (via the same interactions probed by Direct Detections)
- If its outgoing speed (v_{out}) after the scattering is below $v_{esc}(r)$, the WIMP gets trapped into a gravitationally bound orbit
- The WIMP continues to scatter inside the celestial body and ultimately settles down in the core

Inelastic Dark Matter (IDM)

- WIMP DM (χ) scatters off a nucleus (N) by making a transition to a slightly heavier state (χ'): $\chi + N \rightarrow \chi' + N$
- χ and χ' are close in mass: $m_{\chi'} m_{\chi} \equiv \delta > 0$
- Elastic scattering $[\chi + {\rm N} \rightarrow \chi + {\rm N}]$ is absent

[D. Smith and N. Weiner (PRD 64, 043502 (2001))]

• Kinetic energy of the incoming DM particle χ should be large enough to overcome the mass splitting δ

$$\frac{1}{2} \mu_{\chi N} v_{in}^2 > \delta \qquad \Rightarrow v_{in} > \sqrt{\frac{2\delta}{\mu_{\chi N}}}$$
$$[\mu_{\chi N} \equiv \text{reduced mass} = \frac{m_{\chi} m_N}{m_{\chi} + m_N}]$$

Inelastic Dark Matter (IDM)

• Direct detection:

 $v_{
m in} \lesssim$ 800 km/s (Galactic escape velocity w.r.t the Earth frame)

 $\Rightarrow \delta \lesssim 200 \text{ keV}$ (for Xe based detectors)

• WIMP capture in the Sun:

The incoming WIMP is accelerated by the strong gravitational potential of the Sun before scattering; $\nu_{\rm in} \lesssim 1600 \text{ km/s}$

- Compact stars have much larger steller densities compared to that of the Sun; [e.g., White Darves (WDs), Neutron stars (NSs)]
 - \Rightarrow DM particles are gravitationally accelerated to very high speeds
 - \Rightarrow IDM capture is possible for higher mass splitting δ
- Interior density of the heavier WDs ($M_* \sim 1.4~M_\odot)$ can be 10^8 times larger than in the Sun
 - \Rightarrow the incoming WIMP speed can reach up to a few 10⁴ km/s
 - $\Rightarrow \delta \lesssim$ a few tens of MeV
- For NSs, the incoming WIMP speed can reach up to a few 10^5 km/s $\Rightarrow \delta \lesssim$ a few hundreds of MeV
WDs in M4 globular cluster

Hubble Space Telescope (HST) has observed many faint and cold WDs in the core of Messier 4 (M4), the closest globular cluster to the Earth (\sim 2 kpc)

[McCullough, et al. (PRD 81, 083520 (2010)); Bell, et al. (JCAP10(2021)083)]

Annihilations of captured WIMPs can increase WD luminosities above the observed values

 \Rightarrow It is possible to constrain the WIMP parameter space

DM density in M4

Prediction for DM abundance in M4 relies on Galaxy formation models

The total estimated DM content that survives the tidal stripping is less than 1% of the original halo

 \rightarrow consistent with the observed lack of DM in globular clusters

Capture rate of IDM in WDs

• Optically-thin limit for capture: When the scattering cross-section is relatively small (i.e., scattering length larger than WD size)

$$C_{\rm opt-thin} = \frac{\rho_{\chi}}{m_{\chi}} \int_{0}^{R_{*}} dr \, 4\pi r^{2} \int_{0}^{\infty} du \, \frac{f(u)}{u} \, w \, \Omega(w, r) \, \Theta\left(\frac{1}{2}\mu_{\chi N}w^{2} - \delta\right)$$

$$\Omega(w, r) = \eta_{N}(r) \, w \, \Theta(E_{\rm max} - E_{\rm cap}) \int_{\max[E_{\rm min}, E_{\rm cap}]}^{E_{\rm max}} dE \, \frac{d\sigma[\chi + N \to \chi' + N]}{dE}$$
Nuclear density in WD
(WD equation of state)

 $w = \sqrt{u^2 + v_{esc}^2(r)}$ (incoming WIMP speed before scattering $= v_{in}$) u = asymptotic WIMP speed at large distance f(u) = WIMP speed distribution in M4 \rightarrow Maxwell Boltzmann

Condition for IDM scattering:

 $\frac{1}{2}\mu_{\chi N}w^2 > \delta$

 $\frac{\text{Condition for capture:}}{E > E_{\text{cap}} = \frac{1}{2}m_{\chi}u^2 - \delta}$ (corresponds to $v_{\text{out}} < v_{\text{esc}}(r)$)

Capture rate of IDM in WDs & the annihilation luminosity

 Geometrical limit for capture: When the cross-section is large, capture saturates to the geometrical limit (i.e., all the WIMPs crossing the WD star are captured)

$$C_{\rm geom} = \pi R_*^2 \left(\frac{\rho_{\chi}}{m_{\chi}}\right) \int_0^\infty du \, \frac{f(u)}{u} \, w^2(R_*)$$

- $C_* = \min[C_{\text{opt-thin}}, C_{\text{geom}}]$
- Inside WDs the captured WIMPs annihilate and produce SM particles
- Capture and annihilation processes equilibrate $(\tau_{equilibrium} \ll t_{WD})$ $\Rightarrow \Gamma_{ann} = C_*/2$
- Almost all the energy injected by WIMP annihilations is absorbed in the WD star and increases its luminosity (true even for ν 's in the final products of annihilations, if m_{χ} is large)

$$L_{\chi} \simeq 2m_{\chi}\Gamma_{\rm ann} = m_{\chi}C_{*}$$

Capture rate of IDM in WDs & the annihilation luminosity

Heavy WDs are mostly made of ${}_{6}^{12}C$ or ${}_{8}^{16}O$ \Rightarrow WIMP capture in WDs is driven by Spin-Independent (SI) interaction

[A. Biswas, AK, H. Kim, S. Scopel, L. V. Sevilla, PRD 106, 083012 (2022)]

Capture rate of IDM in WDs & the annihilation luminosity

Heavy WDs are mostly made of ${}_{6}^{12}$ C or ${}_{8}^{16}$ O \Rightarrow WIMP capture in WDs is driven by Spin-Independent (SI) interaction

[A. Biswas, AK, H. Kim, S. Scopel, L. V. Sevilla, PRD 106, 083012 (2022)]

WD exclusion for IDM

Excluded parameter space in $\delta - \sigma_N$ plane (SI interaction) for IDM

Independent of m_y , when $m_y >> m_{nucleus}$

[A. Biswas, AK, H. Kim, S. Scopel, L. V. Sevilla, PRD 106, 083012 (2022)]

A realization of IDM in Left-Right symmetric models (LRSM)

- Motivation: explain observed maximal parity violation in the SM
- the SM gauge group is enlarged to contain $SU(2)_L$ and $SU(2)_R$
- $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \rightarrow SU(3) \times SU(2)_L \times U(1)_Y \rightarrow SU(3) \times U(1)_{em}$

· 1	Minimal Left Right Symmetric Model		
$Y = T_B^3 + \frac{1}{2}(B - L)$	Matter	Generations	$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C$
n 2 ⁺	Fermions		
$Q = T_i^3 + Y$	L_L	3	(2, 1, -1, 1)
• · · · · · · · · · · · · · · · · · · ·	L_R	3	(1, 2, -1, 1)
$= T_L^3 + T_R^3 + \frac{1}{2}(B - L)$	Q_L	3	$(2,1,+rac{1}{3},3)$
	Q_R	3	$(1, 2, +\frac{1}{3}, 3)$
	Scalars		-
1 1 1	Φ	1	$(2, \overline{2}, 0, 1)$
$\frac{1}{\sigma^2} = \frac{1}{\sigma^2} + \frac{1}{\sigma^2}$	T_R	1	(1, 3, +2, 1)
5Y $5R$ $5B-L$	T_L	1	(3, 1, +2, 1)
$\frac{1}{-} = \frac{1}{-} + \frac{1}{-}$	DM Candidates		
e^2 g_1^2 g_2^2	Fermion		
	Ψ	1	(2, 2, 0, 1)

• Left-right symmetry is broken at scale M_R by triplet T_R with vev v_R \Rightarrow masses of Z_R and W_R are generated

• EW symmetry is broken by bi-doublet Φ with vevs v_1 and v_2 \Rightarrow masses of Z_L and W_L are generated (SM gauge bosons)

$$v_R \gg v_1, v_2 \, ; \ v_L \simeq 0 \qquad \qquad \sqrt{v_1^2 + v_2^2} = v \simeq 246 \ \text{GeV}$$

Bi-doublet fermionic DM

LRSM is minimally extended by adding a self-conjugate fermionic bi-doublet $\boldsymbol{\Psi}$

$$\Psi = \begin{bmatrix} \psi^0 & \psi^+ \\ & \\ \psi^- & -(\psi^0)^c \end{bmatrix} \qquad (\tilde{\Psi} \equiv -\sigma_2 \Psi^c \sigma_2 = \Psi)$$

 $SU(2)_L \times SU(2)_R$ invariant Lagrangian for bi-doublet(BD) Ψ :

$$\mathcal{L}_{\mathrm{BD}} = rac{1}{2} \mathrm{Tr} \left[\overline{\Psi} i \not\!\!{D} \Psi
ight] - rac{1}{2} M_{\Psi} \mathrm{Tr} \left[\overline{\Psi} \Psi
ight]$$

covariant derivative: $D_{\mu}\Psi = \partial_{\mu}\Psi - i\frac{g_{L}}{2}\sigma_{a}W_{L\mu}^{a}\Psi + i\frac{g_{R}}{2}\Psi\sigma_{a}W_{R\mu}^{a}$

$$\begin{aligned} \mathcal{L}_{\mathrm{BD}} &\in \quad \frac{g_L}{2} \left(\overline{\psi^0} \mathcal{W}_L^3 \psi^0 - \overline{\psi^-} \mathcal{W}_L^3 \psi^- + \sqrt{2} \ \overline{\psi^0} \mathcal{W}_L^+ \psi^- + \sqrt{2} \ \overline{\psi^-} \mathcal{W}_L^- \psi^0 \right) \\ &- \frac{g_R}{2} \left(\overline{\psi^0} \mathcal{W}_R^3 \psi^0 + \overline{\psi^-} \mathcal{W}_R^3 \psi^- + \sqrt{2} \ \overline{\psi^0} \mathcal{W}_R^- \psi^+ + \sqrt{2} \ \overline{\psi^+} \mathcal{W}_R^+ \psi^0 \right) \end{aligned}$$

Mass splitting in Bi-doublet fermionic DM

When Φ acquires vevs, W_L^{\pm} and W_R^{\pm} mixing induces a $\psi^0 \rightarrow (\psi^0)^c$ transition that generates a tiny off-diagonal Majorana mass term δM

The Dirac fermion Ψ^0 splits into two Majorana states χ_1 and χ_2

$$\chi_{1,2} = \frac{1}{\sqrt{2}} \left(\psi^0 \mp (\psi^0)^c \right)$$
$$m_{\chi_{1,2}} = M_{\Psi} \mp \delta M$$
$$\delta = m_{\chi_2} - m_{\chi_1} = 2\delta M$$

[Garcia-Cely, et al. (JCAP03(2016)021)]

 $\delta = \frac{g_L^2}{16\pi^2} \frac{g_R}{g_L} \sin(2\xi) M_{\Psi} \left[f(r_{W_1}) - f(r_{W_2}) \right] = \delta(g_R, M_{\Psi}, M_{W_2})$

Loop function: $f(r_V = M_V/M_{\Psi}) = 2 \int_0^1 dx (1+x) \log [x^2 + (1-x)r_V^2]$

Bi-doublet DM interaction

$$\begin{aligned} \mathcal{L}_{\mathrm{BD}}^{\mathsf{NC}} &\in \quad \frac{g_L}{2} \left(\overline{\psi^0} \mathcal{W}_L^3 \psi^0 \right) - \frac{g_R}{2} \left(\overline{\psi^0} \mathcal{W}_R^3 \psi^0 \right) \\ &= \quad \frac{1}{2} \overline{\chi_1} \left(g_L \mathcal{W}_L^3 - g_R \mathcal{W}_R^3 \right) \chi_2 \end{aligned}$$

Only off-diagonal interaction term; no diagonal interaction term

Inelastic scattering (An explicit IDM realization)

lighter state (χ_1) automatically stable

 $au(\chi_2 o \chi_1) \ll t_U$ [χ_1 dominant DM candidate (χ)]

Large scattering cross-section

⇒ parameter space gets excluded unless scattering is kinematically forbidden by large mass splitting δ [N.B. $\delta = \delta(g_R, M_{\Psi}, M_{W_2})$]

WD luminosity induced by Bi-doublet IDM

[A. Biswas, AK, H. Kim, S. Scopel, L. V. Sevilla, PRD 106, 083012 (2022)]

Exclusion on LRSM parameter space

[A. Biswas, AK, H. Kim, S. Scopel, L. V. Sevilla, PRD 106, 083012 (2022)]

• WD bounds exclude all cosmologically viable parameter space (for $g_R = g_L$)

Exclusion on LRSM parameter space (for $g_R > g_L$)

To recover cosmologically viable parameter space one needs to increase δ (at fixed m_{χ} and $M_{W_2})$

 \Rightarrow increase g_R (i.e., $g_R>g_L)$, ~ since $\delta \propto g_R$ (at fixed m_χ and $M_{W_2})$

[A. Biswas, AK, H. Kim, S. Scopel, L. V. Sevilla, PRD 106, 083012 (2022)]

Summary

- Astrophysical observations can provide useful ways to reveal the nature of DM interactions
- Existing data put strong constraints on thermal WIMPs for annihilation into specific channels
- However, a general analysis using all existing data still allows standard thermal WIMPs over the entire mass range 10 MeV 100 TeV
- Indirect searches of DM through radio observations can play important role in DM phenomenology
- The upcoming radio telescope SKA can probe the DM parameter space for a wide range of DM mass
- With just about 100 hours of observation the SKA can probe the DM parameter space beyond the reach of existing experiments
- The SKA is sensitive to the MeV DM signals for the parameter space that is allowed by existing data

Summary

- Observation of compact stars can be useful for constraining DM
- We use the luminosities of low-temperature heavy WDs observed by HST in the core of M4 globular cluster to improve the existing constraints on Inelastic Dark Matter (IDM)
- WD data can exclude the inelastic mass splitting $\delta \lesssim$ a few tens of MeV (for Direct Detection $\delta \lesssim 200$ keV; for capture in the Sun $\delta \lesssim 600$ keV)
- We apply such constraint to a specific IDM scenario: LRSM + Bi-doublet fermion DM
 - \rightarrow WD bounds significantly reduce the cosmologically viable parameter space of such scenario, and require $g_R > g_L$
- In more compact objects like neutron stars, IDM scattering can be active up to $\delta\simeq$ a few hundreds of MeV
 - ⇒ future observations of neutron stars (e.g., by James Webb Space Telescope) with temperatures \lesssim a few thousand Kelvin would rule out the full parameter space of LRSM bi-doublet DM

Thank You

Backup slides

γ -ray searches

- WIMP annihilations in a galactic halo produce $\gamma\text{-rays}$
- $\bullet\,$ Fermi-LAT $\gamma\text{-ray}$ observation of dwarf spheroidal (dSph) galaxies

 \rightarrow constrains GeV-TeV scale WIMPs

γ -ray searches

- WIMP annihilations in a galactic halo produce $\gamma\text{-rays}$
- Fermi-LAT γ -ray observation of dwarf spheroidal (dSph) galaxies \rightarrow constrains GeV-TeV scale WIMPs
- H.E.S.S γ -ray observation of inner Galactic halo

 \rightarrow give stronger constraints for multi-TeV WIMPs

• Fermi-LAT:

 \rightarrow Integrated photon energy flux in the energy bin $[E_{\rm min}, E_{\rm max}]$ for the $\it i\text{-th}$ dSph,

$$\Phi_{E\,i} = \frac{\langle \sigma v \rangle J_i}{8\pi \, m_\chi^2} \int_{E_{\min}}^{E_{\max}} \sum_f B_f \frac{dN_f}{dE_\gamma} \, E_\gamma \, dE_\gamma,$$

 \rightarrow Modified joint likelihood:

$$ilde{\mathcal{L}}_{ ext{joint}}(\mu) \ = \ \prod_i \mathcal{L}_i(\mu | \mathcal{D}_i) imes rac{1}{\ln(10) J_i \sqrt{2\pi} \sigma_i} e^{-\left(\log_{10}(J_i) - \log_{10}(J_i^{ ext{pred}})
ight)^2 / 2\sigma_i^2},$$

 \rightarrow Extremized to obtain 95% C.L. upper limit on $\langle \sigma v \rangle$

γ -ray lmits

• H.E.S.S:

 \rightarrow Signal events from *i*-th ON(OFF) region:

$$\begin{split} N_{i,\mathrm{ON(OFF)}}^{S} &= \frac{\langle \sigma v \rangle J_{i,\mathrm{ON(OFF)}}}{8\pi m_{\chi}^{2}} T_{\mathrm{obs}} \\ &\times \int_{E_{\mathrm{th}}}^{m_{\chi}} \int_{0}^{\infty} dE_{\gamma}' dE_{\gamma} \sum_{f} B_{f} \frac{dN_{f}}{dE_{\gamma}}(E_{\gamma}) A_{\mathrm{eff}}(E_{\gamma}) R(E_{\gamma}, E_{\gamma}'), \end{split}$$

 \rightarrow Constructed likelihood function:

$$\mathcal{L} = \prod_{i} \frac{(N_{i,\mathrm{ON}}^{S} + N_{i}^{B})^{N_{\mathrm{ON},i}}}{N_{\mathrm{ON},i}!} e^{-(N_{i,\mathrm{ON}}^{S} + N_{i}^{B})} \times \frac{(N_{i,\mathrm{OFF}}^{S} + N_{i}^{B})^{N_{\mathrm{OFF},i}}}{N_{\mathrm{OFF},i}!} e^{-(N_{i,\mathrm{OFF}}^{S} + N_{i}^{B})},$$

 \rightarrow Extremized to obtain 95% C.L. upper limit on $\langle \sigma v \rangle$

e^{\pm} propagation through MW

• e^{\pm} propagate through MW following the diffusion-loss eq:

$$\frac{\partial N_i}{\partial t} = \vec{\nabla} . (D\vec{\nabla})N_i + \frac{\partial}{\partial p}(b(p,\vec{r}))N_i + Q_i(p,\vec{r}) + \sum_{j>i} \beta n_{gas}(\vec{r})\sigma_{ji}N_j - \beta n_{gas}(\vec{r})\sigma_i^{in}(E_k)N_i,$$

$$D = D_0 e^{|z|/z_t} \left(rac{
ho}{
ho_0}
ight)^{\delta}$$
: Diffusion term,

 $b(p, \vec{r})$: Energy loss term, $Q_{\chi}(p, r, z) = \frac{\rho_{\chi}^2(r) \langle \sigma v \rangle}{2m_{\chi}^2} \sum_f B_f \frac{dN_f}{dE_{e^{\pm}}}$: DM contribution,

• $ho_{\chi}(r)$: NFW with $ho_{\odot}=0.25\,{
m GeVcm^{-3}}$

- Diffusion-loss eq is solved using DRAGON to obtain e^+ flux at Earth
- The signal is combined with a polynomial background and fitted against the AMS-02 e^+ data to obtain the 95% C.L. upper limit on $\langle \sigma v \rangle$

• CMB:

 \rightarrow Planck 2015 data put constraints on thermal WIMPs:

$$\epsilon_{
m eff}(m_\chi) rac{\langle \sigma v
angle}{m_\chi} \lesssim 4.1 imes 10^{-28} \, {
m cm^3 \, s^{-1} \, GeV^{-1}}$$

 \rightarrow weighted efficiency factor:

$$\epsilon_{\rm eff}(m_{\chi}) = \frac{1}{2m_{\chi}} \int_0^{m_{\chi}} \sum_f \left(2\epsilon_{e^{\pm}} B_f \frac{dN_f}{dE_{e^{\pm}}} E_{e^{\pm}} dE_{e^{\pm}} + \epsilon_{\gamma} B_f \frac{dN_f}{dE_{\gamma}} E_{\gamma} dE_{\gamma} \right)$$

 $\rightarrow \epsilon_{e^{\pm}}$ is energy injection efficiency for e^{\pm} and ϵ_{γ} is that for photons

• H.E.S.S GC data strengthens the constraints for $m_\chi\gtrsim 200\,{
m GeV}$

[K. Dutta, A. Ghosh, AK, B. Mukhopadhyaya, arxiv:2212.09795]

- Super-Kamiokande:
 - A. Neutrino observation from galactic halo is used for GeV-TeV scale ${\sf WIMPs}$
 - \rightarrow 35° ON region around GC and 35° OFF region opposite to GC
 - \rightarrow upper limit on (N_{\rm ON} N_{\rm OFF}) is used to obtain constraints
 - **B.** Low energy ν observation data has been used to constrain 10 100 MeV WIMPs
 - \rightarrow signals obtained via inverse- β decay: $\bar{\nu}_e + p \rightarrow n + e^+$
 - \rightarrow Four different backgrounds:
 - 1. Atmospheric u_{μ} induced μ^{\pm} decay at rest and give e^{\pm}
 - 2. Atmospheric ν_e induced e^{\pm}
 - 3. Atmospheric ν_e via NC give low-energy ν_e which give e^{\pm}
 - 4. Atmospheric u_{μ} via NC give extra μ/π , which decay into e^{\pm}
 - \rightarrow All four backgrounds and the signal are fitted against the data to derive constraints

Neutrino telescope constraints

• IceCube and ANTARES:

 \rightarrow Number of signal events in the *i*-th bin:

$$N_i^5 = rac{\langle \sigma v \rangle J_i}{8\pi m_\chi^2} T_{
m obs} \int_0^{m_\chi} \sum_f B_f \left(rac{dN_f}{dE_\nu} A_{
m eff}(E_\nu) dE_
u + rac{dN_f}{dE_{ar
u}} A_{
m eff}(E_{ar
u}) dE_{ar
u}
ight),$$

 \rightarrow Likelihood function is constructed:

$$\mathcal{L}(\mu) = \prod_{i} \frac{\left(n_{\text{obs}}^{\text{tot}}(\mu f_{s}^{i} + (1-\mu) f_{B}^{i})\right)^{n_{\text{obs},i}}}{n_{\text{obs},i}!} e^{-n_{\text{obs}}^{\text{tot}}(\mu f_{s}^{i} + (1-\mu) f_{B}^{i})}$$

where $f_s^i = N_i^S / \sum_i N_i^S$, $f_B^i = N_i^B / \sum_i N_i^B$.

 $ightarrow \mathcal{L}(\mu)$ is extremized to obtain $\mu_{95\%}$, which gives $\langle \sigma v \rangle_{95\%}$

[Albert, *et al.*, PRD 102, 082002]

Decaying DM

- DM can decay into SM particle pairs \rightarrow fluxes of γ , $e^-(e^+)$, u(ar
 u)
- Source function for DM decay:

$$\chi \to \underbrace{\mathrm{SM}_1 \, \mathrm{S}\bar{\mathrm{M}}_2}_{f} \qquad \qquad Q_i^{decay}(E, r) = \Gamma\left\{\frac{\rho_{\chi}(r)}{m_{\chi}}\right\}\left\{\sum_f \frac{dN_f^i}{dE}B_f\right\}$$

$$Q_{i}^{annihilation}(E,r) = \langle \sigma v \rangle \left\{ \frac{\rho_{\chi}^{2}(r)}{2m_{\chi}^{2}} \right\} \left\{ \sum_{f} \frac{dN_{f}^{i}}{dE} B_{f} \right\}$$

 $\label{eq:Gamma} \ensuremath{\mathsf{\Gamma}}\xspace: \ensuremath{\mathsf{decaywidth}}\xspace \ensuremath{\mathsf{of}}\xspace \ensuremath{\mathsf{DM}}\xspace \ensuremath{\mathsf{particle}}\xspace \ensuremath{\mathcal{X}}\xspace \ensuremath{\mathsf{decaywidth}}\xspace \ensuremath{}\xspace \ensuremath{}\xspace$

 $\frac{
ho_{\chi}(r)}{m_{\chi}}$: number density of DM particles

decay channel f: $b\bar{b}, \tau^+\tau^-, W^+W^-, ...$

 B_f : branching fraction for channel f

 $\frac{dN_{f}^{i}}{dE}$: spectrum of secondary particle *i* produced per decay

Decaying DM: present status

• Non-observations of DM decay induced fluxes of γ , $e^-(e^+)$, $\nu(\bar{\nu})$ in exisiting observations give constriants on DM parameter space

Fermi-LAT IGRB, AMS-02 e^+ , Planck CMB and Super-Kamiokande atmospheric neutrino data have been used

[considering all possible 2-body SM decay channels (including $\chi \rightarrow \nu \bar{\nu}$)] [K. Dutta, A. Ghosh, AK, B. Mukhopadhyaya, JCAP 09 (2022) 005] • Choices for the dSph DM density profile:

$$\rho_{\chi}^{NFW}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\delta} \left(1 + \frac{r}{r_s}\right)^{3-\delta}}, \quad \delta = 1$$

$$\rho_{\chi}^{Einasto}(r) = \rho_s \exp\left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_s}\right)^{\alpha} - 1\right]\right\}, \quad \alpha \simeq 0.3$$

$$\rho_{\chi}^{Burkert}(r) = \frac{\rho_s}{\left(1 + \frac{r}{r_s}\right)\left(1 + \left(\frac{r}{r_s}\right)^2\right)}$$

$$N_{rms} \propto rac{{{{\cal K}_B}\,{{\cal T}_{sys}}}}{{\sqrt {\Delta t}}\,{{\cal A}_{eff}}}$$

 A_{eff} : Effective area of the radio telescope

 Δt : Observation time

T_{sys}: System Temperature

 T_{sys} includes CMB, galactic, atmospheric, ground radiation, antenna receiver contributions etc.

- Various theoretical arguments predict $B \approx \mu G$ in nearby dSphs
- D_0 can be as low as $\approx 10^{26} {\rm cm}^2 {\rm s}^{-1}$ or can be as high as $\approx 10^{30} - 10^{31} {\rm cm}^2 {\rm s}^{-1}$
- $D_0 \approx 10^{28} {\rm cm}^2 {\rm s}^{-1}$ for the Milky Way

Detectability in the B, D_0 plane

Independent knowledge of m_{χ} and $\langle \sigma v \rangle$ can enable one to identify the viable regions of astrophysical parameters of a dSph

Limits in the $B - D_0$ plane to observe DM annihilation induced radio signals at SKA (100 hours) from Draco dSph $(m_{\chi} \text{ and } \langle \sigma v \rangle \text{ are consistent with cosmic-ray antiproton observation})$

[AK, S. Mitra, B. Mukhopadhyaya, T.R. Choudhury, PRD 101, 023015 (2020)]

Mechanism of producing IC signal

Source function:

$$Q_e^{annihilation}(E,r) = \langle \sigma v \rangle \left\{ \frac{\rho_{\chi}^2(r)}{2m_{\chi}^2} \right\} \left\{ \frac{dN^e}{dE} \right\} \qquad [\chi \chi \to e^+ e^-]$$

or,

$$Q_e^{decay}(E,r) = \Gamma\left\{\frac{\rho_{\chi}(r)}{m_{\chi}}\right\}\left\{\frac{dN^e}{dE}\right\} \qquad \qquad [\chi \to e^+e^-]$$

• Propagation:

$$D(E)\nabla^{2}\left(\frac{dn}{dE}\right) + \frac{\partial}{\partial E}\left(b(E)\frac{dn}{dE}\right) + Q_{e}(E,r) = 0$$

IC flux:

$$S_{\nu}(\nu) = rac{1}{4\pi} \int d\Omega \int_{\mathrm{los}} dl \left(2 \int dE rac{dn}{dE} P_{\mathrm{IC}}
ight)$$

Primordial black hole (PBH) DM at the SKA

Search for PBH DM using SKA

- PBHs can contribute to the observed DM abundance of the universe $({\it M}_{\rm PBH}\gtrsim 10^{15}~{\rm g})$
- PBHs in the mass range $10^{15}-10^{17}$ g can produce MeV e^{\pm} via Hawking radiation
- SKA probe of the corresponding IC flux can help to constrain the PBH fraction of the total DM density ($f_{PBH} \equiv \Omega_{PBH}/\Omega_{DM}$)

Ultralight bosonic DM at the SKA

Search for Axion/ALP cold dark matter

SKA observation of local dSphs

[Caputo, *et al.* (PRD 98, 083024 (2018))]

Interstellar Medium

[Kelley, et al. (ApJL 845 L4 (2017))]

Search for relativistic axions

SKA (100 h) observation of Seg I dSph

[AK, T. Kumar, S. Roy, J. Zupan (2212.04647)]