

Onium polarisation and the $\mu10~{\rm trigger}$

V. Kartvelishvili, D.Price

ATLAS UK physics meeting, 10 January 2008

Introduction

 J/ψ and Υ polarisation measurement — a crucial test of production models

$$\frac{dN}{d\cos\theta^*} \sim 1 + \alpha\cos^2\theta^*$$

- ♦ $\alpha = +1$ transversely polarised (helicity ±1)
- $\alpha = -1$ longitudinally polarised (helicity 0)

Decay angle θ^* :

angle between the direction of μ^+ in onium decay frame and the direction of onium in lab frame

So far, major disagreements between theoretical models

Colour Octet Model — yellow band *k*_T factorisation model — red lines

and different experiments

- ✤ D0 black points
- CDF green points

Main reason: large $|\cos \theta^*|$ not easily accessible

as trigger requires both muons to have high $\ensuremath{p_T}$

- With a $\mu 6\mu 4$ trigger, P_T distribution of the J/ψ starts at about 6 + 4 = 10 GeV
- Both muons from J/ψ decays have rather large P_T
- Allows for both muons to be identified
- BUT: restricts acceptance in polarization angle $\cos \theta^*$:

At a fixed P_T of the J/ψ , a big fraction of the cross section is lost (up to 60 %) $|\cos \theta^*| = 1$ exactly means $p_1/p_2 \simeq (M_\psi/m_\mu)^2 \simeq 900$ (not very likely!)

- In order to recover these "lost" J/ψ 's, one needs one muon to be fast and the other to be slow.
- In order to complement the dimuon-triggered J/ψ sample, one could use the $\mu 10$ single muon trigger.
- The other muon is not identified "just" a track with certain requirements.
- $J/\psi \rightarrow \mu 10 + \text{track cross section comparable to the } \mu 6 \mu 4$ one, with similar P_T dependence.
- Picks up configurations with large $\cos \theta^*$:

- Background: decays in flight, $cc \rightarrow \mu X$, $bb \rightarrow \mu X$.
- ♦ The last one seems to be the biggest: $bb \rightarrow \mu 6 + X$ is 6.14 μb
 - cross section for $bb \rightarrow \mu 10 + X$ + at least one track in cone 0.8 is 1.06 μb
 - ... and $M_{\text{inv}}(\mu + \text{track}) > 2.5$ GeV and $(n_{\text{track}} = 1, 2 \text{ or } 3)$ is 40 nb
 - Down to few nb if both tracks are required to come from primary vertex
- Signal $(J/\psi \rightarrow \mu 10 + \text{tracks})$ raw cross section with the same cuts is about 11 nb.
- Compared to $(J/\psi \rightarrow \mu 6\mu 4$) raw cross section of about 14 nb.

prompt J/ψ

 $bb \to \mu 10X$

Invariant mass of $\mu 10+$ opposite sign track within R < 0.8 cone, both from primary vtx:

- So, with the trigger " $\mu 10 + \text{tracks}$ ":
 - ♦ J/ψ peak is well visible
 - Combinatorial background is very low
 - Background from beauty decays small (vanished with simulated MC statistics)
 - Complements nicely the dimuon-triggered sample
 - Broadens the acceptance in $\cos heta^*$
 - Mass resolution almost as good as for $\mu 6 \mu 4$

Blue: unpolarised (constant)

Red: transversely polarised $(1 + \cos^2 \theta^*)$

Unpolarised

- ◆ Same main backgounds: decays in flight, $cc \rightarrow \mu X$, $bb \rightarrow \mu X$, the latter again expected to be the biggest.
- Higher mass, different decay kinematics: back-to-back now possible (but rare).
- If both $\mu 10$ and the track are required to come from the primary vertex, the background is dramatically reduced.
- Signal ($\Upsilon \rightarrow \mu 10 + tracks$) raw cross section is about 2.5 nb.
- Compared to $(\Upsilon \rightarrow \mu 6 \mu 4)$ raw cross section of about 3 nb.
- Random combinations tend to have small mass, can survive without the cut on number of associated tracks:

Invariant mass of $\mu 10+$ opposite sign track within R < 1.7, both from primary vtx:

Here too, with the trigger " $\mu 10+$ tracks":

- ✤ Ŷ peak is well visible
- Combinatorial background is very low
- Background from beauty decays also very low
- Complements the dimuon-triggered sample
- Broadens the acceptance in $\cos \theta^*$
- Again, mass resolution almost as good as for the $\mu 6\mu 4$ sample

Events

600

500E

400**E**

300E

200**E**

100**E**

120 Events 100

80

60

40

20F

0

05

Unpolarised

Unpolarised

-0.2

-0 0.2 0.4 0.6 0.8

0.8

cosθ

cosθ

- Samples of prompt onia from dimuon and single muon triggers complement each other nicely
- Almost full acceptance in $\cos \theta^*$, at least at high p_T of onia
- ◆ In polarisation measurements, same statistics within | cos θ*| < 0.9 gives about 4 times smaller stat. errors (and *much* smaller sys. errors), than if made within | cos θ*| < 0.5</p>
- $\mu 10$ trigger provides largely independent samples of onia to cross-check efficiencies, cross sections, resolution, alignment etc.
- Onia from single muon triggers is becoming a vital part of mainstream onium analysis, available from day 1
- ✤ So far mostly truth + limited simulations, more studies in progress
- ✤ MC statistics cannot possibly compete with real data, when it becomes available

J/ψ production, $\mu 1$ vs $\mu 2$, Monte Carlo before trigger

Υ production, $\mu 1$ vs $\mu 2$, Monte Carlo before trigger

