CSC Note: W and Z Inclusive Cross-section Measurement

ATLAS NOTE

December 12, 2007

Electroweak boson cross-section measurements with ATLAS

Abstract

This report summarizes the ATLAS prospects for the analysis of W and Z production at the LHC. After a review of trigger and reconstruction performance in these final states, complete analyses of the W and Z total cross-sections are presented. Focusing on the early data taking phase, strategies are presented that allow a fast and robust extraction of the signals. A measurement precision of about X% can be achieved with Y pb⁻¹. Anticipating higher integrated luminosity, algorithms allowing the extraction of the Z differential cross-section are presented and evaluated. A number of applications of these measurements are finally presented. **Guillaume Kirsch**

Slides prepared By

Alessandro Tricoli

Science & Technology Facilities Council Rutherford Appleton Laboratory

ATLAS UK Meeting in Durham 10th January 2008

CSC Note Overview

Preliminary draft available (advanced status but not finalised yet):

https://twiki.cern.ch/twiki/bin/view/Atlas/InclusiveWZCSCNote

Contents

L	W a	nd Z cross-section measurements at the LHC
2	Sign	als and backgrounds. Benchmark cross-sections
3	Trig 3.1 3.2 3.3	gering on W and Z events Relevant trigger channels Electron final states 3.2.1 Trigger efficiency determination Muon final states 3.3.1 Trigger efficiencies determination 3.3.2 Commensions of W and Z muon trigger measurements
	-	siste comparison of a more algor metodetation
1	Recc 4.1 4.2 4.3	nstruction performance Electrons 4.2.1 Overview of Muon Spectrometer Performance 4.2.2 Determination of the Muon Reconstruction Efficiency 4.2.3 Determination of the Muon pr-Resolution Missing transverse energy 4.3.1 4.3.1 Reconstruction of the missing transverse energy 4.3.2 MET performance 4.3.3 Required plots?
5	Earl	y cross-section measurements
	5.1	$W \rightarrow ev$
	5.2	$W \rightarrow \mu \nu$
	5.3	$Z \rightarrow ee$
		5.3.1 Event selection
		5.3.2 Extraction of the Z signal
	5.4	$Z \rightarrow \mu \mu$
	5.5	Data and Background Samples
	5.6	Signal Selection
	5.7	Background Estimation
		5.7.1 $Z \rightarrow ti$ -background Estimation
		5.7.2 Arbackground Estimation
		5.7.5 QCD-background Estimation $5.7.4 \text{ W} \rightarrow \mu\nu$ -background Estimation
		575 Cosmic Muons
	5.8	Cut Efficiencies
		5.8.1 Kinematic Cuts
		5.8.2 Isolation Cuts
		5.8.3 Further Systematic Uncertainties
		5.8.4 Overall Uncertainty of Signal Selection Efficiency
	5.9	Results

6	Test	s on Streamed Data	42
	6.1	Description of the context	42
	6.2	Luminosity computation	43
	6.3	$Z \rightarrow e^+e^-$ and $W \rightarrow ev_e$ events selection	43
		6.3.1 $Z \rightarrow e^+e^-$ case	
		6.3.2 $W \rightarrow e v_e$ case	
	6.4	Acceptances from Monte-Carlo	
		6.4.1 $Z \rightarrow e^+e^-$ case	
		6.4.2 $W \rightarrow ev_e$ case	
	6.5	Trigger efficiency	
		6.5.1 $Z \rightarrow e^+e^-$ case	
		6.5.2 $W \rightarrow e V_e$ case	
	6.6	Electron reconstruction efficiency from data	
		6.6.1 Tag-and-probe method on $Z \rightarrow e^+e^-$ events	
		6.6.2 Comparison of efficiencies between $Z \to e^+e^-$ and $W \to ev_e$ at generator level	
	6.7	Backgrounds estimation	
		6.7.1 $Z \rightarrow e^+e^-$ case	
		6.7.2 $W \rightarrow ev_e$ case	
	6.8	Results	
-			
7	Higl	h-luminosity measurements	
	/.1	$W \rightarrow eV$	
	7.0	7.1.1 Event Selection and Background Rejection	
	7.2	$w \to \mu v$	
	7.5	$Z \rightarrow ee$	
	7.4	$z \rightarrow \mu\mu$	
	7.6	Cut Efficiencies	
	7.7	Paculte	
	1.7	Acsuits	
8	Diff	erential cross-section measurements	
	8.1	Low-mass Drell-Yan production	
		8.1.1 Event Selection	
		8.1.2 Results	
	8.2	Z differential cross-section : the D0 method	60
		8.2.1 Event selection	60
		8.2.2 Extraction of $d\sigma_Z/dp_T dy$	63
		8.2.3 Z differential cross-section results	63
	8.3	Z differential cross-section : an alternative method	63
		8.3.1 Method principle	66
		8.3.2 "Classical limit" of the method	66
		8.3.3 Results	67
9	Con	nmon systematics	71
10) Apr	lications	71
1	10.1	Luminosity measurement	71
	10.2	2 Constraints on the proton PDFs	71
		-	
11	Cor	aclusions	71

Exhaustive note: aim: Z and W inclusive cross section \Box W \rightarrow ev, μ v \Box Z \rightarrow ee, µµ □ includes: lectron and muon Trigger eff. reconstruction performance stream data tests early data measurements higher luminosity measurements differential cross-section meas.

5

21

23

Presentation Overview

Cannot give justice to all contributions in 20 min:

- ✓ selection of most advanced analyses from note draft
- ✓ focus on *data-driven* methods for signal selection and cross-section meas. in early data and higher lumi scenarios
- * Trigger and Reconstruction performance (only brief reference) (already discussed in Trigger and Combined Performance sessions)
- × Tests Stream data

Electron sector

- Trigger efficiency measurement
- Reconstruction performance measurement
- Z->ee selection with early data
- □ W->ev selection and cross-section measurement

Muon Sector

- □ Trigger efficiency measurement
- □ reconstrucion performance measurement
- \Box Z->µµ selection with early data and higher luminosity

Differential cross-section measurements

 \Box Z->ee, Z-> $\mu\mu$ d σ /dydp_T (D0 and alternative methods)

W and Z cross-sec measurement at LHC

Theory: W and Z x-sect known to <1% exluding PDF _____ Stringent test

Z production clean and fully reconstructed leptonic final states W production high counting rate:

Precise measurement of differential x-sect

 \Box d σ /dpt: QCD constraints, e.g. resummation

dσ/dy: PDF probe

Improvements on QCD beneficial to all physics at LHC

Detector performance

- □ detector energy and momentum scales
- detector resolutions
- Iepton identification efficiencies

Fundamental EW param

Z forward-backward asymmetry, letpon universality, etc

Trigger

Initial lumi 10³¹ cm⁻² s⁻¹

□ less stringent requirements, lower PT thresholds, no isolation, simple selec.

Z, *W* trig.:

 \Box at least 1 ele (μ) pT>10 GeV

 \Box at least 2 ele (μ) pT>5 GeV (4 GeV)

Higher lumi 10³³ cm⁻² s⁻¹

thighter requirements

🖵 Z, W trig.:

 \Box at least 1 ele (μ) pT>25 GeV (20 GeV)

 \Box at least 2 ele (μ) pT>15 GeV (10 GeV)

Measure Trigger efficiency from data, i.e. MC-independent: Uncertainty important contribution to syst error on Z,W x-sect.

Tag&Probe, e.g. Z->II:

tag-lepton: tightly selected
 probe-lepton:used to make performance measurements

Electron Sector

Trigger efficiency

Electron

E25i Trig. Eff. Wrt Offline electron sel.

Z->ee Tag&Probe Sel.:

tag-lepton: trig+tightly ele id (isEM)
 probe-lepton: loose, medium and tight ele id (isEM)

- L2, EF eff. small bias ~0.1-0.4% wrt truth
- QCD dijet and W->en effect ~ 0.01%

More details in talk by Mike Flowerdew (09/01/2008)

Reconstruction Performance

Electrons

Z->ee Tag&Probe Sel.:

Two pass analysis :

- 1) Absolute offline container efficiency
- 2) IsEM efficiency relative to the container

The results are combined to produce the offline reconstruction efficiency

Absolute electron reconstruction eff

Loose isEM (50 pb⁻¹)

Tight isEM (50 pb⁻¹)

$ \eta \setminus P_t$	15 - 25	25 - 40	40 - 70
0 - 0.8	$88.88 \pm 1.21 \pm 1.17$	$92.41 \pm 0.42 \pm 0.91$	$93.29 \pm 0.74 \pm 1.88$
0.80 - 1.37	$87.55 \pm 2.69 \pm 3.30$	$90.75 \pm 0.55 \pm 0.29$	$92.69 \pm 0.45 \pm 0.19$
1.52 - 1.80	$83.18 \pm 2.17 \pm 3.13$	$83.00 \pm 1.17 \pm 0.93$	$85.87 \pm 1.12 \pm 0.79$
1.80 - 2.40	$72.66 \pm 2.81 \pm 5.00$	$80.47 \pm 0.92 \pm 2.41$	$80.54 \pm 0.87 \pm 0.36$

$ \eta \setminus P_t$	15 - 25	25 - 40	40 - 70
0 - 0.8	$63.15 \pm 2.85 \pm 4.85$	$64.68 \pm 0.97 \pm 0.56$	$66.54 \pm 0.90 \pm 0.42$
0.80 - 1.37	$59.29 \pm 3.52 \pm 4.71$	$63.34 \pm 1.23 \pm 0.00$	$68.03 \pm 1.10 \pm 1.23$
1.52 - 1.80	$38.58 \pm 5.08 \pm 1.95$	$54.77 \pm 1.83 \pm 1.17$	$62.89 \pm 2.05 \pm 4.93$
1.80 - 2.40	$51.70 \pm 3.02 \pm 2.36$	$58.81 \pm 1.39 \pm 1.58$	$61.82 \pm 1.44 \pm 0.19$

Tag&probe± stat± syst (MC-Truth)

Eff. increases up to 40 GeV, then constant
 Eff. drops in cracks η=1.57-1.8
 More details in Helen Hayward's talk

Early cross-section measurements

With early data (≤50pb-1) detector response may be imprecise

- Simple and robust selection cuts
- based on Calorimeter Only

Z→ee

• Preselection:

- 2 electron candidates from *ElectronContainer & PhotonContainer* ET>15 GeV
- acceptance and crack removal cuts: $0 < |\eta| < 1.3 \& 1.6 < |\eta| < 2.4$

• Electromagnetic Estimators (simpler sel than isEM):

- Simpler shower shape estimators
- Isolation:
 - use Etcone (ΔR=0.45): Etcone/Et <0.2

Mass Distribution Fit:

- sig + bkg functions with resolution funct
 - Sig: relativistic Breit-Wigner with two gauss resolution funct.
 - Bkg: exponential

Early cross-section measurements

Z→ee

Syst: 3% underestimation of signal events (poor signal shape), 3% overestimation of bkg events (MC stat)

Move to Tighter Selection as soon as possible to improve accuracy

ATLAS CSC W/Z inclusive cross section , 10th Jan 2008

Table 1: Datasets used for this analysis				
Dataset	Dataset number	Number of events	$\sigma(\text{filt}) [\text{pb}]$	
$W \rightarrow ev$	5104	187650	10900	
W ightarrow au v	5106	148300	3400	
$Z \rightarrow ee$	5144	109900	1432	
QCD dijets	5802	$3.3 \cdot 10^{6}$	$1.91 \cdot 10^{8}$	

🗆 Lumi

Early cross section measurement

□ Trig: *e20 (10³¹ menu)*

electron id : *medium isEM*

High Luminosity measurement

Trig: *e25i* (10³³ menu)

electron id: *tight isEM*

Methods

- Cut-based (' a al TDR')
 - electron id (isEM flag)
 - \Box acceptance and crack removal cuts: electron $|\eta| < 1.37$, 1.52< $|\eta| < 2.4$
 - □ electron ET > 25 GeV
 - □ ETmiss> 25 GeV (MET_RefFinal)
 - \Box jet veto: no jet with ET>30 GeV (ele-jet overlap removal Δ R<0.4)

Data-driven:

ETmiss and Jet Cuts remove most of bkg but irreducible bkg under W peak difficult to estimate.

electron id, acceptance and crack removal cuts

□ do Not apply ETmiss and Jet VetoCuts to keep shape of bkg outside W peak

□ reject Zee (second largest bkg after ele id)

□ fit and subtract QCD bkg

Results to finalize: Results only for E25i trig and medium isEM

Cut-based selection ('a la TDR')

Transverse mass

Low Lumi:

Table 2: Number of events selected for an integrated luminosity of 50 pb^{-1} using the isEM medium requirement and background rejection. For backgrounds, the ratio $\frac{N_B}{N_S}$ in percent is indicated. The quoted uncertainties are due to the limited Monte-Carlo statistics.

Selection	$W \to e v (N)$	$\operatorname{QCD}\left(f\left(\%\right)\right)$	$W \to \tau \nu (f (\%))$	$Z \rightarrow ee (f (\%))$
Trigger/offline e-id	$(2.258 \pm 0.007) \cdot 10^5$	475 ± 28	3.35 ± 0.05	11.82 ± 0.04
$E_{T}^{miss} > 25 \text{ GeV}$	$(1.861 \pm 0.007) \cdot 10^5$	24 ± 4	2.45 ± 0.04	0.268 ± 0.004
$E_{\rm T}^{\rm jet} < 30 { m ~GeV}$	$(1.638 \pm 0.007) \cdot 10^5$	19 ± 4	2.23 ± 0.04	0.124 ± 0.004

High Lumi:

Table 5: Number of events selected for an integrated luminosity of $1 f b^{-1}$ using the isEM tight requirement and background rejection. For backgrounds, the ratio $\frac{N_B}{N_S}$ in percents is indicated. The quoted uncertainties are only statistical.

Selection	$W \rightarrow eV(N)$	QCD(f(%))	$W \rightarrow \tau \nu (f (\%))$	$Z \rightarrow ee (f (\%))$
Trigger/offline e-id	$3.7 \cdot 10^6 \pm 2 \cdot 10^3$	159 ± 18	3.3 ± 0.01	14.2 ± 0.02
$E_T > 25 \text{ GeV}$	$3.1 \cdot 10^6 \pm 2 \cdot 10^3$	10 ± 3	2.4 ± 0.01	0.3 ± 0.003
$E_T^{jet} < 30 \text{ GeV}$	$2.7\cdot10^6\pm2\cdot10^3$	8±3	2.2 ± 0.01	0.1 ± 0.002

NB: Recoil cut removed wrt standard TDR cut as redundant for S/B

$W\to e\nu$

Data-driven Selection

Zee rejection (after ele id and acceptance cut):

65< M_{inv} <130 cut using following combinations To maximise acceptance: \Box | η |<2.5: 1) opposite charge electron pair

2) electron – photon candidate

|η|>2.5: 3) electron – jet candidate (cut on ratio Had/EM ratio in jets)

Zee B/S cut from 25% to 2.7% Negligible amount of rejected QCD, Negligible amount of rejected W->ev & W->τν No distortions on distributions

$W \rightarrow ev$ Data-driven Selection

QCD Subtraction:

Fit QCD background from orthogonal QCD sample to access distr. tails under W peak
FIT ETmiss from *photon* sub-sample in range ETmiss >10 GeV (99% purely QCD)
Normalise to *electron*-subsample in side-band (10<ETmiss<22.5 GeV)

Subtract fit under W peak: ETmiss>22.5 GeV

S/B uncertainty for QCD ~3.5% compatible with cut based selection (dominated by MC stat). Param improvement by expo+polynomial ETmiss>10GeV

ATLAS CSC W/Z inclusive cross section , 10^{th} Jan 2008

 $W \rightarrow ev$

Cross-section measurements

$\sigma R = \nabla$	$N_W^i - N_B^i$
$OD = \sum_{i} \overline{A^{i}}$	$i \times \varepsilon_e^i \times \varepsilon_t^i \times \int L dt$

 $I = (ET, \eta) bin$ A = geom & kine acceptance $\varepsilon_t = trig eff.$ $\varepsilon_e = ele id eff.$ However due to limited QCD MC stat. Only global formula applied

	Table 4: W	$\rightarrow e V_e$ cross section meas	urement results for 50 pb ⁻	1
		N_W	$2.0 \cdot 10^5 \pm 4 \cdot 102$	
		N _{QCD}	$3.1 \cdot 10^4 \pm 6.2 \cdot 10^4$	Conservative 200% from QCD fit
l ow Lumi	Result	$N_{W\tau v}$	$3.6 \cdot 10^3 \pm 610^1$	
	i toouit.	N_{Zee}	$2.0 \cdot 102 \pm 10^{11}$	
		A(%)	29.5±2.5	
		$\varepsilon_{trigger}$ (%)	93,5±0,2	From data-driven tag&probe
		$\varepsilon_{electron}$ (%) $\int Ldt (pb^{-1})$	73.6 ± 0.2 100 ± 10	Assumed 10%
		K-factor	$1,22 \pm 0,04$	NNLO corr.
	$\sigma B \pm (stat)$	$)\pm(syst)\pm(lumi)(nb)$	$19.9 \pm 0.04 \pm 10.4 \pm 2.0$	

Muon Sector

Trigger efficiency

Muon

• Trigger:

- Early data: single muon 6 GeV threshold
- Higher Lumi: single muon 20 GeV

Z->μμ Tag&Probe Sel.:

Low Lumi (50 pb⁻¹):

- □ tracks from stand-alone muon system
- □ isolation cuts based on ID only

Higher Lumi (1 fb⁻¹):

- combined tracks (muon system+ID)
- □ isolation based on ID and Calo

Cuts on tag&	probe tracks	
Cut on	Requirement	
Charge	opposite	
Invariant Mass Requirement	$ 91.2 GeV - M_{\mu\mu}^{vec} < 10 GeV$	
Transverse Momentum p_T	> 20 GeV	
$N_{0.05 < r < 0.5}^{lD}$	≤4	
$\sum_{0.05 < r < 0.5} p_T^{IDTracks}$	$\leq 8 GeV$	D-based (low&nign lumi)
$\sum_{0.05 < r < 0.5} E_T$	$\leq 6 GeV$	
$E_{r<0.5}^{Jet}$	$\leq 15 GeV$	

Data Sets used (Sig. & Bkg)

Sample	Software	Cuts	Cross-section	Number of
	Version		$[pb^{-1}]$	simulated
				Events
$Z \rightarrow \mu \mu$	12.0.6	$M_{\mu\mu} > 60 GeV$	1497	252050
_		1μ : $ \eta < 2.8, p_T > 5 GeV$		
$bb \rightarrow \mu \mu$	12.0.6	$2\mu: p_T > 6GeV, \eta < 2.5 $	~ 4000	141700
		$1\mu: p_T > 15 GeV$		
$W \rightarrow \mu \nu$	12.0.6	1μ : $ \eta < 2.8, p_T > 5 GeV$	11946	198450
$t\bar{t} \rightarrow W^+bW^-b$	12.0.6	no all hadronic decay	461	48750
$Z \rightarrow \tau \tau$	12.0.6	$\tau \tau \rightarrow ll, M_{\mu\mu} > 60 GeV$	77	
		1μ : $ \eta < 2.8, p_T > 5 GeV$		2750

Cosmics bkg contribution negligible

Isolation Variables:

Inner Detector based variables

(n. tracks in hollow cone, sum pt in hollow cone)

Calorimeter based variables

(sum calo cell ET in hollow cone, jet E in cone)

Early data: rely only on one type of isolation (I.D. chosen)

Probe Sel.: 50 pb⁻¹):

Trigger efficiency

Muon

Trig. Eff. Results Referred to Offline Muon Spectrometer reco eff. (Wrt ID offline reco eff also studied)

Low Lumi Results

Low luminosity - MS probe $(\int \mathcal{L} dt = 50 \ pb^{-1})$				
Detector region	Barrel	Endcap	Overall	
	$(\eta < 1.05)$	$(1.05 < \eta < 2.4)$	$(0 < \eta < 2.4)$	
Trigger Efficiency	76.94	87.83	82.13	
Statistical Uncertainty	0.41	0.34	0.27	
$\epsilon_{TRUTH} - \epsilon_{TP}$	0.17	0.64	0.33	
Expected Background Contribution	0.00	0.00	0.00	
Overall Systematic Uncertainty	0.17	0.64	0.33	

□ Agreement Tag&Probe with MC better than 1% (2% in cracks η =0, $|\eta|$ =1.05) □ Overall syst uncertainty <0.5% in both low and high lumi

Reconstruction Performance Muons (Z->µµ)

Tag&Probe Reco Efficiency:Tag&Probe compared with MC-truth (Truth-match $\Delta R=0.05$)

Detector Region	Barrel	Endcap	Overall
	$(\eta < 1.05)$	$(\eta > 1.05)$	
Efficiency	0.940	0.960	0.952
Statistical Uncertainty (50 pb ⁻¹)	0.002	0.002	0.001
Statistical Uncertainty $(1 f b^{-1})$	0.000	0.000	0.000
$\varepsilon_{\text{Truth}} - \varepsilon_{T\&P}$	0.001	0.002	0.002
Expected Background Contribution		0.002	
Overall Systematic Uncertainty	0.002	0.003	0.002

Good ageement: negligible correlations between tag and probe tracks

\mathbf{P}_{T} resolution:

- s = momentum pt scale
- $p_T \rightarrow s \cdot f(p_T, \sigma), \qquad \sigma = \text{pt resolution}$
 - f= 1/pt random smearing funct., width σ e.g. gauss

Method:

vary parameters s, σ in simul. to reproduce measured Z mass peak

Uncertainty	$\int \mathcal{L} dt = 50 pb^{-1}$
Momentum Scale Δs	(5±7)·10−4
Momentum Resolution $\Delta \sigma$	(11.6±3.0)%

Z->μμ: □ reco eff. similar for standalone muon system & ID combined □ pt resolution significantly better for combined reco

Early cross-section measurements

$Z \rightarrow \mu \mu$

• Trigger:

- Early data: single muon 6 GeV threshold
- Higher Lumi: single muon 20 GeV

Muon Reconstruction:

- Early data: Standalone Muon Spectrometer
- Higher Lumi: Combined with Inner Detector (better momentum resolution)

Cut on	Requirement
Charge	opposite
Invariant Mass Requirement	$ 91.2 GeV - M_{\mu\mu}^{rec} < 20 GeV$
Transverse Momentum p_T	> 20 GeV
NID Tracks N0.05 <r<0.5< td=""><td>≤ 4</td></r<0.5<>	≤ 4
$\sum_{\substack{0.05 < r < 0.5}} p_T^{\text{ID Tracks}}$	\leq 8 GeV

Early data: rely only on one type of isolation: I.D. chosen

		_			_
Process	$Z \rightarrow \mu \mu$	$bb \rightarrow \mu \mu$	$W \rightarrow \mu \nu$	$Z \rightarrow \tau \tau$	$tt \rightarrow W^+ b W^- b$
Cut Name	Number Of Events				
True Events	141132	673480	2011349	12964	77619
Triggered Events	126578	339782	1236212	2970	23190
2 opposite charged tracks	112380	438057	38301	1372	11685
Invariant mass cut	102305	8688	1216	47	785
p_T cuts	93052	4225	122	38	452
Isolation cuts	86287	62	30	38	224

• Off-line selection:

- 2 opposite charged muons with $|\eta|$ <2.5
- muon pT >20 GeV (reduce error on x-sect measurement)
- $|91.2 \text{ GeV} M_{uu}| < 20 \text{ GeV}$
- isolation cuts:

inner detector based variables

Data Sets used (Sig. & Bkg)

Sample	Software	Cuts	Cross-section	Number of
	Version		$[pb^{-1}]$	simulated
				Events
$Z \rightarrow \mu \mu$	12.0.6	$M_{\mu\mu} > 60 GeV$	1497	252050
_		1μ : $ \eta < 2.8, p_T > 5 GeV$		
$bb \rightarrow \mu \mu$	12.0.6	$2\mu : p_T > 6GeV, \eta < 2.5 $	~ 4000	141700
		$1\mu: p_T > 15 GeV$		
$W \rightarrow \mu \nu$	12.0.6	1μ : $ \eta < 2.8, p_T > 5 GeV$	11946	198450
$t\bar{t} \rightarrow W^+bW^-b$	12.0.6	no all hadronic decay	461	48750
$Z \rightarrow au au$	12.0.6	$\tau \tau \rightarrow ll, M_{\mu\mu} > 60 GeV$	77	
		1μ : $ \eta < 2.8, p_T > 5 GeV$		2750

Early cross-section measurements Z→µµ Systematics Studies

Background Estimation

 \Box Z \rightarrow $\tau\tau$ from MC

- **tt**: x-sect known to ~15% precision (mainly PDF uncert.)
 - muon reco & trig eff asumed equivalent to Z events
 - isolation (larger had activity): assumed lept. decayed tt equivalent to Z boson with 2 jets ET> 50 GeV
 - □ iso eff from Z data: 10% syst error wrt tt MC truth
- **QCD:** use QCD enriched sub-sample, i.e. 2 like-sign non-iso muons (N_{LS})
 - \Box count N_{LS} from data (indep. from isol prob.)
 - $\hfill\square$ ratio $r_{os,\,\mbox{\tiny LS}}$ of isol. Opposite-sign μ / isol like-sign μ from MC
 - □ N_{LS} *r_{OS,LS} = QCD bkg contribution, 100% syst uncert. Assumed
- $\Box W \rightarrow \mu \nu$

□ equivalent to $Z \rightarrow \mu\mu + \mu$, remove di-boson events by subtracting 3-tight isol muon events □ conservative syst error 50% estimated

□ cosmic muons neglected

□ Kinematic cuts

- **understand** muon pT resolution: small impact on ε_{all} (<0.002)
- **D** momentum scale: larger impact on ε_{all} (<0.003)
- □ isolation cuts (related to n. jets in event)
 - **u** tag&probe method: $\Delta \varepsilon_{ISO}$ = 0.003 syst due to bkg contribution
- **Other** (prim. Vertex, misalign., pile-up, min-bias): studied, no dominant in early run

Early cross-section measurements $Z \rightarrow \mu \mu$ Systematics Results

$$\varepsilon_{All} = ((\varepsilon_{Trigger})^2 + 2 \cdot \varepsilon_{Trigger} \cdot (1 - \varepsilon_{Trigger}))$$

 $\cdot (\varepsilon_{MS})^2 \cdot \varepsilon_{kinematics} \cdot (\varepsilon_{Isolation})^2$

Syst. Break-down (100 pb⁻¹)

Efficiency	Trigger	Muon Reconstruction	Kinematic Cuts	Isolation
Background Contribution	0.002	0.002	-	0.003
$\varepsilon_{\text{Truth}} - \varepsilon_{T\&P}$	0.003	0.009	0.003	0.001

Uncertainty

 $\frac{\Delta \varepsilon_{All}}{\varepsilon_{All}} \approx 0.004 (\text{stat}) \pm 0.022 (\text{sys})$

Not including theoretical uncertainties (PDF etc.)

Higher Lumi measurements

$Z {\rightarrow} \mu \mu$

Assume detector response is better understood at higher lumi run (1 fb⁻¹) • More complex analysis algorithms and tighter selection

Cut on	Requirement
Charge	opposite
Invariant Mass Requirement	$ 91.2 GeV - M_{\mu\mu}^{rec} < 15 GeV$
Transverse Momentum p_T	> 20 GeV
Null Tracks	≤ 4
$\sum_{\substack{0.05 < r < 0.5}} p_T^{\text{ID Tracks}}$	$\leq 8 GeV$
$\sum_{0.05 < r < 0.5} E_T$	$\leq 10 GeV$
$E_{r<0.5}^{\text{Jet Energy}}$	$\leq 25 \text{ GeV}$

Process	$Z \rightarrow \mu \mu$	$b\bar{b} \rightarrow \mu \mu$	$W \rightarrow \mu \nu$	$Z \rightarrow \tau \tau$	$tt \rightarrow W^+ bW^- \overline{b}$
Cut Name	Number Of Events				-
Triggered events	126578	339782	1236212	2970	23190
2 opposite charged tracks	110063	360200	18507	1183	9913
Invariant mass cut	100237	5879	699	14	549
p _T cuts	91554	2937	122	9	338
Isolation cuts	82293	0	0	9	148

Off-line selection (differences wrt low Lumi)

- combined reconstruction
- since pT resolution improved
 - Z width decreased

 \Box reduced mass window: 15 GeV (still 5 σ_z)

- Isolation cuts:
 - inner detector based variables
 - calorimeter based variables

Sample	Two opposite charged	Invariant mass cut	p_T cuts	Isolation cuts
	reconstructed muons			
Signal S	653696	595337	543766	488762
Background B	2315159	42418	20228	935
<u>3</u> 3+8	0.220	0.933	0.964	0.998

0.5 M selected Z->mm events with 1 fb⁻¹

2 opposite charged muons ²-μμ ²-μμ ^{W→μν} ^{bb→μμ} ^{tt→μμ} ²-χττ ^{bb→μμ} ^{tt→μμ} ²-μμ ^w→μν ^{bb→μμ} ^{tt→μμ} ^{tt→μμ}

Only requirement:

Overall sel eff.:

 $\frac{\Delta \varepsilon_{AII}}{\varepsilon_{AII}} \approx 0.001 (\text{stat}) \pm 0.007 (\text{sys})$

Bkg contamination reduced (tighter cuts) Smaller uncertainty on Trig. Eff.

Expected syst uncertainty (1 fb⁻¹)

Efficiency	Trigger	Muon Reconstruction	Kinematic Cuts	Isolation
Background Contribution	0.001	0.001	-	0.002
$\varepsilon_{\text{Truth}} - \varepsilon_{T\&P}$	0.002	0.002	0.001	0.001

Differential Cross-section measurements

Differential Cross-section measurements

D0 Method

Z→ee

Category i	Definition	n_i
1	All events	364 750
2	Fiducial and kinematics (gen.)	163 198
3	Trigger and offline (fiducial, kinematics and ID)	82210
4	Intersectrion of categories 2 and 3	80859

Selection

On/Off-Line:

Trig. 2e15i, 2 oppos. charged ele

□ tight isEM

□ Fiducial+Kine:

□ |η|<2.5, PT>20 GeV □ 75 GeV< M_{ee}<105 GeV

Z→µµ Category i Definition

0.0		
1	All events	445650
2	Fiducial and kinematics (gen.)	234610
3	Trigger and offline (fiducial, kinematics and ID)	181652
4	Intersectrion of categories 2 and 3	180260

Selection

On/Off-Line:

□ Fiducial+Kine:

 \Box Trig. mu20i, 2 oppos. charged μ ,

reconstructed in Muon Spectrometer & ID

□ ID-based Isolation

			-
Cut	Z events	W events	bb events
Before cuts	22,529	37	785
Ntracks<6	22,320	15	200
$E_{T,come} < 20 \text{ GeV}$	22,103	7	47

□ |η|<2.5, 1st μ PT>20 GeV, 2nd μ PT>15 GeV □ 76 GeV< M_{ee}<106 GeV

Negligible bkg contamination

ATLAS CSC W/Z inclusive cross section, 10th Jan 2008

Differential Cross-section measurements

D0 Method Results

ATLAS CSC W/Z inclusive cross section , 10^{th} Jan 2008

Differential Cross-section measurements Alternative Method

Original attempts to extract cross-section and reconstruction efficiencies simultaneously

 $N_{ij}^{\alpha} = \varepsilon_i \varepsilon_j P_{ij}^{\alpha} \mathscr{L} \Delta \sigma^{\alpha} \varepsilon_{i,\varepsilon_j}^{\mathsf{P}^{a}} = \mathsf{prob.} \, \mathsf{Z} \, \mathsf{produced in bin } \alpha \, \mathsf{decays in lepton bins i, j (from MC)}$ = lept. Reco eff. (not expected to depend on α , but not necessary assumption) $\Delta \sigma^{\alpha} = Z$ prod. X-sec in bin α

P^a incorporates all detector effects. i.e. resolution effects

Over-constraint system with unknowns $\Delta \sigma^{\alpha}$ and $\epsilon_{i}, \epsilon_{i}$

Problem at low stat solved by non const binning and average eff.: $\mathscr{L}\Delta\sigma^{\alpha} = \frac{N_{ij}^{\alpha}}{\langle \varepsilon_i \rangle \langle \varepsilon_i \rangle P_{ij}^{\alpha}}$ Method agrees to previous method when only 1 lept. bin in Et and η : $\mathscr{L}\Delta\sigma^{\alpha} = \frac{N^{\omega}}{\varepsilon^{\alpha}\varepsilon^{\alpha}A^{\alpha}}$

Complete method tested on Z-> $\mu\mu$:

```
I N. Bins Z P_{T} = 10 0<P_{T}^{Z}<60 GeV
N. Bins Z y =5 |y^{z}| < 2.5
\Box N. Bins \mu-ET = 1 (no \mu reco pt-dependence above 10 GeV)
\square N. Bins \mu–\eta = 7 (dictated by det geometry)
```

Differential Cross-section measurements Alternative Method Results

Conclusion

- Extensive CSC note;
- tools and algorithms are in place to analyze early LHC data (<= 50 pb-1);
- higher lumi data (~1 fb-1) not overlooked;
- perfom mesurements of W and Z cross sections;
- Data-driven methods have been developed to estimate efficiencies, systematic uncertainties and background contamination;

EXTRA

Electron identification

Table 2: Flags used for offline electron identification

tightness	IsEM bit mask	selection applied
loose	(IsEM & 0x7)==0	loose track-cluster matching
		hadronic leakage cut
		shower shapes in second EM sampling
medium	(IsEM & 0x3FF)==0	standard track-cluster matching
		hadronic leakage cut
		shower shapes in first and second EM sampling
tight	IsEM == 0	as medium plus
		cut n b-layer hit
		cuts on TR ratio

Cut-based selection ('a la TDR')

$W \rightarrow ev$ Z->ee removal

Electron Trigger efficiency Used for W->en x-section measurement

Tag&Probe

p_T > 25 GeV

• egamma = 1

- IsEM = (0x7: loose, 0x3FF: medium, 0xF0F: tight)
- Two good offline electrons as described above
- Equal and opposite charge
- Reconstructed mass 70GeV \rightarrow 100GeV

Event type	Dataset	Generator	Sim/Rec version	Number	Cross section (including
	Number			of events	filter efficiency) (pb)
$Z{\rightarrow}ee\ inclusive$	5144	Pythia	12.0.31/12.0.61	476300	1432

Measurement	Candidate	Leve1	Sample	Truth	Offline	L1	L2	EF
Data	Tag	A11	A11	\times	√ (tight)	\checkmark	\checkmark	\checkmark
	Probe	L1	N1	×	~	×	\times	×
	Probe	L1	N2	\times	\checkmark	\checkmark	×	×
	Probe	L2	N1	×	~	~	×	×
	Probe	L2	N2	\times	\checkmark	\checkmark	\checkmark	\times
	Probe	EF	N1	×	~	~	~	×
	Probe	EF	N2	\times	✓	\checkmark	\checkmark	\checkmark
Truth	Tag	A11	A11	~	×	×	\times	×
	Probe	L1	N1	~	~	×	×	×
	Probe	L1	N2	✓	✓	\checkmark	×	×
	Probe	L2	N1	~	~	~	×	×
	Probe	L2	N2	~	\checkmark	\checkmark	\checkmark	\times
	Probe	EF	N1	~	~	~	~	\times
	Probe	EF	N2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 2: Tag and probe requirements

Electron Trigger efficiency Used for W->en x-section measurement

Trigger Level	wrt loose	wrt medium	wrt tight	
LVL1	97.63 (0.02)	97.80 (0.02)	97.88 (0.03)	
	97.64 (0.02)	97.79 (0.02)	97.86 (0.02)	
LVL2	95.46 (0.03)	97.48 (0.03)	97.29 (0.03)	Global eff.
	95.67 (0.03)	97.40 (0.02)	97.21 (0.03)	
EF	93.82 (0.03)	95.28 (0.04)	97.74 (0.03)	
	94.23 (0.03)	95.66 (0.03)	97.89 (0.02)	
Whole trigger	87.44 (0.05)	90.84 (0.05)	93.08 (0.04)	
	88.02 (0.05)	91.11 (0.04)	93.12 (0.04)	

Table 3: Tag and probe global efficiencies. Statistical uncertainty given in parenthesis. Upper number is the data measurement and lower number is the truth measurement.

Loose isEM

Medium isEM

Tight isEM

	Ľ			Leve1	n	$25 \text{GeV} < p_T < 40 \text{GeV}$	$p_T > 40 \text{GeV}$	Level	n	$25 \text{GeV} < n_T < 40 \text{GeV}$	$n_T > 40 \text{GeV}$
Level	$ \eta $	$25 \text{GeV} < p_T < 40 \text{GeV}$	$p_T > 40 \text{GeV}$	7.4	0.00		PT / (0.05)		1.11		<i>p₁</i> > 10001
T 1	0.0.8	96 71 (0.05)	07.11 (0.05)	LI	0-0.8	96.83 (0.06)	97.15 (0.05)	L1	0-0.8	96.80 (0.07)	97.14 (0.06)
LI	0.0.1.27	07.00 (0.05)	97.11 (0.05)		0.8-1.37	98.19 (0.06)	98.58 (0.05)		0.8-1.37	98.36 (0.06)	98.64 (0.05)
	0.8-1.57	97.89 (0.06)	98.48 (0.05)		1.52-1.8	97.03 (0.13)	99.15 (0.07)		1.52-1.8	97.52 (0.12)	99.17 (0.07)
	1.52-1.8	95.54 (0.13)	98.94 (0.07)		1824	99.01 (0.06)	00 27 (0.05)		1824	99.05 (0.06)	00 22 (0.05)
	1.8-2.4	98.97 (0.05)	99.20 (0.05)	1.2	0.0.0	00.51(0.00)	00.76 (0.03)	1.2	0.0.0	00.59 (0.00)	00.78 (0.03)
L2	0-0.8	97.81 (0.05)	98.37 (0.04)	L2	0-0.8	99.54 (0.02)	99.76 (0.03)	L2	0-0.8	99.58 (0.02)	99.78 (0.02)
	08.137	97 23 (0.07)	08 20 (0.05)		0.8-1.37	99.21 (0.04)	99.53 (0.03)		0.8-1.37	99.30 (0.04)	99.58 (0.03)
	1.52.1.0	00.75 (0.10)	02.15 (0.00)		1.52-1.8	95.21 (0.16)	95.96 (0.16)		1.52-1.8	95.30 (0.17)	96.05 (0.17)
	1.52-1.8	90.75 (0.19)	93.13 (0.18)		18-24	87 71 (0 20)	87 35 (0 20)		1.8-2.4	87.75 (0.20)	87.52 (0.21)
	1.8-2.4	85.23 (0.19)	85.50 (0.19)	EE	0.0.9	05.60 (0.07)	05.18 (0.07)	FF	0-0.8	97 95 (0.06)	97.80 (0.05)
EF	0-0.8	94.27 (0.08)	94.27 (0.08)	Er	0-0.8	95.00 (0.07)	95.18 (0.07)	21	0 9 1 27	06 77 (0.08)	06.60 (0.09)
(0.8-1.37	91.38 (0.12)	91.75 (0.11)		0.8-1.37	93.10 (0.11)	93.17 (0.10)		0.6-1.57	90.77 (0.08)	90.09 (0.08)
	1 52-1 8	96 35 (0 13)	96 99 (0 13)		1.52-1.8	98.44 (0.10)	98.55 (0.10)		1.52-1.8	98.89 (0.09)	99.05 (0.08)
	1824	95 41 (0 12)	05.86 (0.12)		1.8-2.4	97.74 (0.09)	97.92 (0.09)		1.8-2.4	98.41 (0.08)	98.78 (0.07)
0	0.0.0	90.17 (0.12)	95.80 (0.12)	Overall	0-0.8	92 14 (0.09)	92 25 (0.08)	Overal1	0-0.8	94.42 (0.09)	94.79 (0.08)
Overall	0-0.8	89.17 (0.10)	89.85 (0.09)	Overan	0.0.1.27	92.14 (0.05)	01.42 (0.11)		0.8-1.37	94 52 (0.11)	94.98 (0.10)
	0.8-1.37	86.98 (0.13)	88.81 (0.12)		0.8-1.37	90.09 (0.13)	91.42 (0.11)		1 52 1 9	01 02 (0.22)	04.25 (0.10)
	1.52-1.8	83.54 (0.23)	89.40 (0.22)		1.52-1.8	90.94 (0.21)	93.76 (0.19)		1.52-1.8	91.92 (0.22)	94.55 (0.19)
	1.8-2.4	80.48 (0.21)	81.31 (0.21)		1.8-2.4	84.88 (0.21)	84.91 (0.21)		1.8-2.4	85.54 (0.21)	85.79 (0.22)

Electron Identification and reconstruction efficiency Used for W->en x-section measurement

• $P_t > 25 GeV$

Tag&Probe

- $\eta < 2.4,$ cracks excluded (1.37 $< \eta < 1.52)$
- egamma author

convolution of Absolute Electron efficiency isEM wrt electron container

Global Eff.

Luminosity	Eff. (Signal)	Stat.	Data - MC	S - (S+BK)
50 pb ⁻¹	89.77	0.19	0.30	0.34
1 fb ⁻¹	89.39	0.04	0.61	0.26

Table 1: Loose Electron

Luminosity	Eff. (Signal)	Stat.	Data - MC	S - (S+BK)
50 pb ⁻¹	75.68	0.29	0.21	0.71
1 fb ⁻¹	75.18	0.07	0.30	0.46

Table 2: Medium Electron

Luminosity	Eff. (Signal)	Stat.	Data - MC	S - (S+BK)
50 pb ⁻¹	62.27	0.37	0.14	0.28
1 fb ⁻¹	62.28	0.09	0.49	0.56

Table 3: Tight Electron

Differential Eff.

$ \eta \setminus P_t$	15 - 25	25 - 40	40 - 70
0 - 0.8	$88.88 \pm 1.21 \pm 1.17$	$92.41 \pm 0.42 \pm 0.91$	$93.29 \pm 0.74 \pm 1.88$
0.80 - 1.37	$87.55 \pm 2.69 \pm 3.30$	$90.75 \pm 0.55 \pm 0.29$	$92.69 \pm 0.45 \pm 0.19$
1.52 - 1.80	$83.18 \pm 2.17 \pm 3.13$	$83.00 \pm 1.17 \pm 0.93$	$85.87 \pm 1.12 \pm 0.79$
1.80 - 2.40	$72.66 \pm 2.81 \pm 5.00$	$80.47 \pm 0.92 \pm 2.41$	$80.54 \pm 0.87 \pm 0.36$

Table 4: Loose identification efficiency

$ \eta \setminus P_t$	15 - 25	25 - 40	40 - 70
0 - 0.8	$76.48 \pm 4.70 \pm 4.14$	$79.47 \pm 0.80 \pm 1.19$	$83.39 \pm 0.68 \pm 0.33$
0.80 - 1.37	$72.59 \pm 3.83 \pm 1.80$	$77.95 \pm 1.08 \pm 0.74$	$82.84 \pm 0.85 \pm 1.23$
1.52 - 1.80	$47.02 \pm 7.30 \pm 1.18$	$61.21 \pm 1.80 \pm 0.63$	$69.36 \pm 1.95 \pm 4.28$
1.80 - 2.40	$56.83 \pm 3.89 \pm 0.93$	$61.79 \pm 1.42 \pm 1.37$	$65.31 \pm 1.38 \pm 0.42$

Table 5: Medium identification efficiency

$ \eta \setminus P_t$	15 - 25	25 - 40	40 - 70
0 - 0.8	$63.15 \pm 2.85 \pm 4.85$	$64.68 \pm 0.97 \pm 0.56$	$66.54 \pm 0.90 \pm 0.42$
0.80 - 1.37	$59.29 \pm 3.52 \pm 4.71$	$63.34 \pm 1.23 \pm 0.00$	$68.03 \pm 1.10 \pm 1.23$
1.52 - 1.80	$38.58 \pm 5.08 \pm 1.95$	$54.77 \pm 1.83 \pm 1.17$	$62.89 \pm 2.05 \pm 4.93$
1.80 - 2.40	$51.70 \pm 3.02 \pm 2.36$	$58.81 \pm 1.39 \pm 1.58$	$61.82 \pm 1.44 \pm 0.19$

Table 6: Tight identification efficiency

Reconstruction Performance

Muons

MC-Truth Study:

 $W \rightarrow ev$

Cross-section measurements

$\sigma B = \sum_{i}$	∇	$N_W^i - N_B^i$					
	$\frac{L}{i}$	A^i	×	ε_e^i	×	ε_t^i	×

Low L

High

 $I = (ET, \eta) bin$ A = geom & kine acceptance $\varepsilon_t = trig eff.$ $\varepsilon_e = ele id eff.$

However due to limited QCd MC stat. Only global formula applied

	Table 4: $W \rightarrow eV_e$ cross section meas	urement results for 50 pb ⁻¹	
	Nw	$2.0 \cdot 10^5 \pm 4 \cdot 102$	
umi kesult:	N _{QCD}	$3.1 \cdot 10^4 \pm 6.2 \cdot 10^4 \longrightarrow$ Conservative 200% from QCD f	it
	$N_{W\tau v}$	$3.6 \cdot 10^3 \pm 610^1$	
	NZee	$2.0 \cdot 102 \pm 10^{1}$	
	A (%)	29.5 ± 2.5	
	$\varepsilon_{trigger}$ (%)	93.5 ±0.2 From data-driven tag&probe	
	$\varepsilon_{electron}$ (%)	73.6±0.2	
	$\int Ldt (pb^{-1})$	100 ± 10 Assumed 10%	
	K-factor	1.22±0.04 NNLO corr.	
	$\sigma B \pm (stat) \pm (syst) \pm (lumi) (nb)$	$19.9 \pm 0.04 \pm 10.4 \pm 2.0$	
	Table 6: $W \rightarrow e v_e$ cross section mean	surement results for $1 fb^{-1}$	
	N _W N _{QCD}	$2.1 \cdot 10^5 \pm 10^5$ \longrightarrow Assumed 50% as in CDF run II	
	NWTV	$6.0 \cdot 10^4 \pm 2 \cdot 10^2$	
	NZee	$3.9 \cdot 10^3 \pm 6 \cdot 10^4$	
Lumi Result:	A (%)	29.1 ± 2.5	
	$\mathcal{E}_{trigger}(\%)$	93.08 ± 0.04	
	$\mathcal{E}_{eleqron}(\mathcal{H})$	71.35 ± 0.04 From data-driven tagaprobe	
	J Lat (pb -)		
	K-factor	1.22 ± 0.03 NNLO corr.	
	$\sigma B \pm (stat) \pm (syst) \pm (lumi) (nb)$	$19.8 \pm 0.01 \pm 2.4 \pm 1.0$	

Trigger efficiency

Muon

Trig. Eff. Results Referred to Offline Muon Spectrometer reco eff. (Wrt ID offline reco eff also studied)

Low luminosity - MS probe ($\int \mathcal{L} dt = 50 \ pb^{-1}$)						
Detector region	Barrel	Endcap	Overall			
	$(\eta < 1.05)$	$(1.05 < \eta < 2.4)$	$(0 < \eta < 2.4)$			
Trigger Efficiency	76.94	87.83	82.13			
Statistical Uncertainty	0.41	0.34	0.27			
$\varepsilon_{TRUTH} - \varepsilon_{TP}$	0.17	0.64	0.33			
Expected Background Contribution	0.00	0.00	0.00			
Overall Systematic Uncertainty	0.17	0.64	0.33			

High Lumi Results

High luminosity - MS probe $(\int \mathcal{L}dt = 1000 \ pb^{-1})$						
Detector region	Barrel	Endcap	Overall			
	$(\eta < 1.05)$	$(1.05 < \eta < 2.4)$	$(0 < \eta < 2.4)$			
Trigger Efficiency	78.27	90.40	84.37			
Statistical Uncertainty	0.10	0.07	0.06			
$\varepsilon_{TRUTH} - \varepsilon_{TP}$	0.00	0.47	0.42			
Expected Background Contribution	0.00	0.00	0.00			
Overall Systematic Uncertainty	0.00	0.47	0.42			

Agreement Tag&Probe with MC better than 1% (2% in cracks $\eta=0$, $|\eta|=1.05$) □ Overall syst uncertainty <0.5% in both low and high lumi