

Diboson Analysis Summary

UK ATLAS Meeting IPPP Durham 10/01/08

Tom Barber, Pat Ward, John Chapman University of Cambridge Paul Bell Universty of Manchester Chris Hays, Gemma Wooden University of Oxford

Motivating Diboson Studies

W

W

ZIY

q

q

- Diboson studies provide an important test of high energy electroweak interactions.
 - Vector boson self-couplings are a fundamental prediction of SM, fixed by gauge invariance.
 - Search for Anomalous Triple Gauge Couplings is a direct probe for new physics.
 - Useful to understand as a background to Higgs processes.
- UK Diboson work part of overall ATLAS diboson effort.
 - Currently finalising the Diboson CSC Note.
 - UK involved in ZZ \rightarrow IIvv, ZZ \rightarrow ttµµ, WW cross section, Wyy Tribosons.
 - − WZ,Wγ,Zγ,ZZ → 4I channels are not discussed here. (See diboson meeting slides)

Talk Outline

- Summary of ATLAS Diboson Efforts in the UK.
- ZZ→IIvv Event Selection Study
 - Tom <mark>Barbe</mark>r
- ZZ→IIvv Anomalous Coupling Limits

 Pat Ward
- ZZ→ττμμ Feasibility Study
 John Chapman
- WW Cross Section Measurement
 Chris Hays, Gemma Wooden
- Wγγ Triboson Production at the LHC – Paul Bell

ZZ→IIvv Analysis

Thomas Barber, University of Cambridge

- Summary of $ZZ \rightarrow IIvv CSC$ contribution.
- Signal Topology: ZZ→IIvv (I=e,μ)
 - Two high p_⊤ leptons
 - Large Missing E_T from neutrinos
 - − Cross Section ~6 times higher than $ZZ \rightarrow 4I$
 - MC@NLO Generator
- Main backgrounds from channels with:
 - Large Cross Section (ttbar and $Z \rightarrow II$)
 - Similar topology (WZ and WW)
 - Variety of generators, MC@NLO, Pythia, Alpgen
- Overlap Removal and NTuple dumping done by Eventview.
- Following plots normalised to unit area with 12.0.6 full simulation.

Lepton Cuts

- ZZ→IIvv signal channel shown in red.
- Consider electrons and muons = leptons
- First require exactly two leptons in event to reduce WZ background.
- Lepton pT > 20 GeV
 - Reduces soft electron background, eg ttbar (magenta) & $Z \rightarrow \tau \tau$ (turquoise)
- |m_i 91.2 GeV| < 10 GeV</p>
 - Reduces non-Z background, ttbar (magneta), Z→ττ (turquoise) & WW→lvlv (purple)

Missing Energy

- Absolute MET cut > 50 GeV removes Z→II (blue), Z→4I (orange).
- Also require MET magnitude and direction to match that of the reconstructed Z.
 - _ |MET-Zp_T|/Zp_T < 0.35
 - 155° < |φ(z)-φ(met)| < 215°</p>
- Both cuts are set at ~2σ from the centre of the signal peak.
- Helps to remove background from the WZ channel.

Final Cuts

- Jet Veto
 - Reject events containing jets with $p_T > 30$ GeV and $|\eta| < 3.0$
 - Reduces Z+jets and ttbar backgrounds.
- Z→II p_⊤ Cut
 - Require pT(Z) > 100 GeV
 - Reduces background from ttbar and Z→II

Anomalous couplings enhance cross section at high Z pT, so this cut will not harm anomalous coupling studies.

Signal Significance

Dataset	11.0.4	12.0.6
$N_{\rm signal}(1 {\rm ~fb^{-1}})$	8.6 ± 0.2	10.2 ± 0.2
$N_{\text{background}}(1 \text{ fb}^{-1})$	3.8 ± 0.9	5.2 ± 2.6
Efficiency	3.2%	2.6%
S/B	2.2 ± 0.2	2.0 ± 0.8
$S/\sqrt{B}(0.1 \text{ fb}^{-1})$	1.4	1.4
$S/\sqrt{B}(1 \text{ fb}^{-1})$	4.4	4.5
$S/\sqrt{B}(10 {\rm ~fb^{-1}})$	14.0	14.1

- Number of Events in 1fb⁻¹ of data
- ZZ→IIvv
 - 10.2 Signal Events
 - 5.2 Background
- Compare with ZZ→4I (Thessaloniki)
 - 11.0 Signal Events
 - 2.2 Background
 - ZZ→llvv has similar number of events, but higher background.

ZZ→	llnunu	
	mana	

	4μ events	4 <i>e</i> events	$2\mu 2e$ events	Total
Signal	3.74 ± 0.06	1.95 ± 0.06	5.34 ± 0.08	11.03 ± 0.12
Zbb	0.60 ± 0.05	0.009 ± 0.006	0.23 ± 0.03	
$t\overline{t}$	0.69 ± 0.24	0	0.67 ± 0.22	
Total bgr	1.29 ± 0.25	0.009 ± 0.006	0.90 ± 0.22	2.20 ± 0.11

ZZ→4I (From Dinos Bachas, Ilektra Christidi, AUTh)

How do we use this to put limits on Anomalous Couplings?

Neutral Triple Gauge Couplings

Pat Ward, University of Cambridge

 \mathbf{Z}

Production of on-shell ZZ probes ZZZ and ZZγ anomalous couplings:

$f_4^{Z}, f_5^{Z}, f_4^{\gamma}, f_5^{\gamma}$

- Usual to introduce a form factor to avoid violation of unitarity: $f_i(s') = f_{0i} / (1 + s'/\Lambda^2)^n$
- Studies below use n=3, $\Lambda = 2 \text{ TeV}$

q

 Also assume couplings are real and only one non-zero: use f₄^z as example.

Anomalous Coupling MC

- Use Leading Order MC of Baur Rainwater.
- No parton shower, underlying event or detector simulation.
- CTEQ6L PDFs.

Signal Distribution

- Use BR MC to fit to quadratic in f₄^z to obtain cross-section at arbitrary f₄^z in bins of Z p_τ
 - p_T(l) > 20 GeV, |η(l)| < 2.5, p_T(vv) > 50 GeV
- Expected number of events = cross-section x efficiency x luminosity
- Efficiency vs. Z p_T from SM analysis.
- Drops with p_T due to jet veto.
 - Modify jet veto in future to improve efficiency at high $\ensuremath{p_{\text{T}}}$

Fits to p_T Distribution

- Construct fake data samples from expected numbers of signal and background.
- Assume background / SM signal flat:

0.51 ± 0.21

- Add Gaussian and Poisson fluctuations.
- Fit p_T distribution using a oneparameter binned maximum likelihood fit to f_4^{Z}
- Minimize L = $ln(\Pi_i L_i)$
- 95% C.L. from L L_{min} = 1.92

 Mean fitted parameter in excellent agreement with input parameter

Results from Likelihood Fit

Lumi / fb ⁻¹	95% C.L.
1	0.024
10	0.012
30	0.009

With as little as 1 fb⁻¹ can improve LEP limits by order of magnitude $I FP \cdot |f^2| < 0.3$

LEP: $|f_4^z| < 0.3$ no form factor

- Mean 95% C.L. on |f₄^z| from 1000 fits
- Other Results:
 - f₅^z gives similar limits
 - f^γ limits ~20% higher
- ZZ \rightarrow 4l Limits
 - Same sensitivity at ~ 1fb⁻¹
 - More sensitive at high luminosity (lower background)
- Future work
 - Unbinned fits from early data.

Feasibility study for the selection of $ZZ \rightarrow \tau \tau \mu \mu$ events (1)

John Chapman, University of Cambridge

- Aims:
 - look into selecting a sample of ZZ→ττµµ events
 - use to increase ZZ event statistics → better probe anomalous NTGC's?
 - Atlas Note: ATL-COM-PHYS-2007-105
- No standard production ZZ→ττμμ sample exists, so a 10000 event sample was privately generated using MC@NLO + 12.0.6.5 job transforms.
- Consider 6 possible final states of $\tau\tau$ decay: $\tau\tau \rightarrow$ Hadrons + missing E_{τ}
 - $\tau\tau \rightarrow$ Hadrons + μ + missing E_{τ}
 - $\tau \tau \rightarrow \mu \mu$ + missing E_{T}
 - $\tau\tau \rightarrow$ Hadrons + e + missing E_{τ}
 - $\tau\tau \rightarrow ee + missing E_{T}$
 - $\tau \tau \rightarrow e \mu$ + missing E_{τ}

Feasibility study for the selection of $ZZ \rightarrow \tau \tau \mu \mu$ events (2)

- Select $Z \rightarrow \mu\mu$ candidates with $|m_z m_{\mu\mu}| < 10 \text{ GeV}$
- Find at least two oppositely charged, good quality τ lepton decay candidates (e, μ , τ -jet) within $|\eta| < 2.5$.
- Select the best pairing by minimising $|p_T(Z)-p_T(\tau\tau)|$
 - $(p_{\tau}(Z) \text{ refers to the transverse momentum of the first muon pair and } p_{\tau}(\tau\tau) \text{ refers to the combined transverse momentum of the } \tau$ lepton decay candidates and any missing energy contributions.)
- Cut on maximum value of the invariant mass of the two τ lepton decay candidates.
- Angular cuts $|\phi(MET)-\phi(Z)| > (\pi/2)$ and $|\phi(Z)-\phi(\tau\tau)| > 0.75\pi$ (see below).
- Missing energy cuts (if necessary).

Feasibility study for the selection of $ZZ \rightarrow \tau \tau \mu \mu$ events (3)

$\mathbf{Z} \rightarrow \mu \mu + \mathbf{Z} \rightarrow \tau \tau \rightarrow \dots$	Signal	Background
hvhv	0.9±0.2	-
h νμνν	1.6±0.3	0.2±0.2
μννμν <mark>ν</mark>	0.9±0.2	-
hvevv	3.2±0.4	280.4±242.3
evvevv	0.7±0.2	11.5±5.0
μ <mark>νν<mark>ε</mark>νν</mark>	2.6±0.4	0.2±0.2
Total	9.9±0.7	292.3±242.4

(Event numbers normalised to 10 fb⁻¹)

- Background in channels with final state electrons is much higher than in other channels. (NB These numbers are based on a handful of remaining events.)
- Monte Carlo predicts 9.9 events out of a possible 162 in truth would be selected for 10fb⁻¹ of ATLAS data.

Conclusions

- More statistics needed, particularly at higher Z p_{T} values.
- Other backgrounds, such as Zbb, should be considered in any future study.
- ZZ→ττµµ channel would be worth returning to look at in more detail for 100fb⁻¹ of ATLAS data.

WW Cross Section Measurement

Basic selection:

- •Two opposite-sign leptons with $p_{\tau} > 20 \text{ GeV}$
- •No jet with E_{τ} > 20 GeV
- $\bullet E_{T} > 50 \text{ GeV}$
- •|*m*_" *m*_z| > 15 GeV

Expected events in 1 fb⁻¹:

Channel	Signal (Background
ee	26	<mark>6 + <19</mark> 9 Z → ee
μμ	55	$217 (198 Z \rightarrow \mu\mu)$
eμ	74	20

Z→ // a dominant residual background in ee and μμ channels
Not yet included in background: W + jets and W + γ
Oxford investigations suggest W + γ could be significant
Work in progress to obtain reliable W + γ and W + jets background estimate

Chris Hays Gemma Wooden

Wy Background to WW

2-track separation

- Background comes from $W\gamma \rightarrow ev\gamma$
 - 2nd electron from photon conversion to e⁺e⁻
 - If one electron has high p_T , could fake signal
- Search for tracks forming a conversion with electron track.
 - Tracks nearly form a common vertex.
- O(100 events) with basic selection and standard ATLAS conversion finder (v.11)
 - Cut in half with custom conversion removal
- Reduced to < 20 events with B-layer hit requirement (n > 0)
 - B-layer requirement now also incorporated into other analyses
- Need to investigate with v.12 and improved conversion removal
- Existing MC insufficient for background studies
 - No FSR, minimum photon E_{τ} = 25 GeV
- Collaborating with Duke and Taiwan to implement Baur and Sherpa $W+\gamma$ generators
- Plan to validate background prediction with *W*+conversion control region

Wyy Production at the LHC Paul Bell

Introduction

MANCHESTER

Wyy tri-vector boson production can be studied through the pp \rightarrow Ivyy process

- Probes the quartic gauge coupling WWγγ
- Contains a SM "radiation amplitude zero" (as in W γ prodn.) (-Useful in other studies, e.g. H $\rightarrow \gamma\gamma$, W mass measurement)

Existing MC generator contains all LO diagrams for the $I^{\pm}v\gamma\gamma$ (I=e, μ) final state and includes effective Lagrangian terms for anomalous WW $\gamma\gamma$ couplings:

$$\mathcal{L}_{6}^{0} = -\frac{\pi \alpha \beta_{0}^{W}}{2} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-}
\mathcal{L}_{6}^{c} = -\frac{\pi \alpha \beta_{c}^{W}}{4} F_{\mu\nu} F^{\mu\nu} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

Seek to constrain the β_0^w and β_c^w parameters (= 0 in the Standard Model)

W

Basic selection for generator level studies:

Two photons: $P_{T\gamma} > 15 \text{ GeV}, |\eta_{\gamma}| < 2.5$ Charged lepton: $P_{TI} > 25 \text{ GeV}, |\eta_{I}| < 2.5$ Missing pT: $P_{Tv} > 25 \text{ GeV}$ Separations: $\Delta R > 0.4$

σ(SM) = 9.8 fb Expect ~300 events in 30fb⁻¹

Wyy Production at the LHC

Paul Bell

Generator-Level Likelihood Analysis

The effects of any anomalous couplings at the WWγγ vertex are seen in the tails of various distributions.

The distribution of the invariant mass of the two photons, $M\gamma\gamma$, is found to be the most sensitive

Assuming 30fb^{-1} of data, the expected 95% CL limits obtained by fitting to the shape of the $M\gamma\gamma$ distribution are:

$-2.0 < \beta_0 < 1.7 \text{ x10}^{-5} \text{ GeV}^{-2}$

-3.2 < β_c < 3.5 x10⁻⁵ GeV⁻² These limits are about 200 times tighter than those available from LEP (in the plots, the anomalous β values are about 0.02 x the LEP limits)

Wyy Production at the LHC

Paul Bell

Unitarity Considerations

Limits refer to the bare couplings.

It can be shown that to preserve unitarity, a "cutoff" must be applied on the $M_{\gamma\gamma}$ scale at around 1TeV: Events above this cannot be used to extract limit on the couplings

=> weakens the limits by factor ~2

ATLAS Simulation:

- Working to have the MC approved as part of the ATLAS software
- Interface to Pythia available for showering and hadronisation
- First SM samples have been made with full and fast detector simulation
- Currently understanding the correct Pythia settings (ISR, FSR, etc)
- Principle backgrounds expected to arise from jets misidentified as photons:

e.g. W+jets, Wγ+jets, Z+jets, Zγ+jets

Summary

- Wide variety of Diboson activities underway in the UK.
- ZZ→IIvv channel
 - In 10fb⁻¹ of data, expect 102 signal events, 52 background.
 - With 1fb⁻¹ of data can obtain limits of |f₄^z| < 0.023, ~10 times better than LEP.
 - ZZ→ττμ<mark>μ cha</mark>nnel
 - Expect 9.9 signal events in 10fb⁻¹ of data.
 - Possible large backgrounds, statistics limited
 - Return to this channel after 100fb⁻¹?
- WW Cross Section Measurement
 - Large background from Z, studies suggest $W\gamma$ also significant
 - Future plans to investigate with v12 and implement new Monte Carlo
- Wγγ Production at the LHC
 - Obtain limits on WW $\gamma\gamma$ couplings from fits to M_{$\gamma\gamma$} distribution
 - Improve LEP limits by 200 with 30fb⁻¹ of data.

Backup Slides

ZZ→Ilnunu Lepton Efficiency

Electrons from egamma

- (isEM & 0x7FF) == 0 no TRT
- Isolation: $Et(\Delta R=0.45) < 8 \text{ GeV}$
- p_T > 5 Ge<mark>V, |η| <</mark> 2.5
- Efficiency lower in 12.0.6

Muon from MuID

- Require a *best* match, with $\chi^2(match)/ndof < 10$ $\chi^2(fit)/ndof < 5$

- Isolation: $Et(\Delta R=0.45) < 5 \text{ GeV}$
- pT > 5 GeV, |η| < 2.5

Both have similar kinematics

 Consider them together for rest of analysis.

ZZ→Ilnunu Version 11.0.4 Datasets

Run	Channel	Events	Generator	Generator Cuts	σ/pb
5981	$ZZ \rightarrow ll\nu\nu$	48700	PYTHIA	$21 p_T > 4.5 \text{ GeV}, \eta < 2.7$	0.265
5931	$ZZ \rightarrow llll$	20952	MC@NLO		0.0668
5921	$W^+W^- \rightarrow e \nu e \nu$	43100	MC@NLO		1.30
5924	$W^+W^- \rightarrow \mu \nu \mu \nu$	10950	MC@NLO		1.25
5927	$W^+W^- \rightarrow \tau \nu \tau \nu$	45850	MC@NLO		1.41
5941	$W^+Z \rightarrow l\nu ll$	40900	MC@NLO		0.427
5971	$W^-Z \rightarrow l\nu ll$	18700	MC@NLO		0.267
5152	$Z \rightarrow ee$	69550	MC@NLO	$M_{ee} > 60 \text{ GeV}, 1l p_T > 10 \text{ GeV}, \eta < 2.7$	1608.
5151	$Z \rightarrow \mu \mu$	82600	MC@NLO	$M_{\mu\mu} > 60 \text{ GeV}, 1l p_T > 5 \text{ GeV}, \eta < 2.8$	1662.
5146	$Z \rightarrow \tau \tau$	12118	PYTHIA	$M_{\tau\tau} > 60 \text{ GeV}, 2lp_T > 5 \text{ GeV}, \eta < 2.8$	74.5
5185	$Z \rightarrow ee$	58700	PYTHIA	$p_T(Z) > 100 \text{ GeV}, 2lp_T > 10 \text{ GeV}, \eta < 2.7$	21.
5186	$Z \rightarrow \mu \mu$	95500	PYTHIA	$p_T(Z) > 100 \text{ GeV}, 2lp_T > 10 \text{ GeV}, \eta < 2.8$	21.34
5187	$Z \rightarrow \tau \tau$	28000	PYTHIA	$p_T(Z) > 100 \text{ GeV}, 2lp_T > 5 \text{ GeV}, \eta < 2.8$	22.15
5183	$Z \rightarrow vv$	47300	PYTHIA	$p_T(Z) > 50 \text{ GeV}$	715.
5500	Wt	71250	AcerMC	No tau decays and no FSR	26.7
5200	tī	428747	MC@NLO	No all hadronic channels.	461.

ZZ→ Ilnunu Version 12.0.6 Datasets

Run	Channel	Events	Generator	Generator Cuts	σ/pb
5981	$ZZ \rightarrow ll\nu\nu$	118000	MC@NLO		0.397
5931	$ZZ \rightarrow llll$	49250	MC@NLO		0.0668
5921	$W^+W^- \rightarrow e \nu e \nu$	19900	MC@NLO		1.30
5922	$W^+W^- \rightarrow e \nu \mu \nu$	19850	MC@NLO		1.27
5923	$W^+W^- \rightarrow e \nu \tau \nu$	19750	MC@NLO		1.35
5924	$W^+W^- \rightarrow \mu \nu \mu \nu$	10000	MC@NLO		1.25
5925	$W^+W^- \rightarrow \mu \nu e \nu$	20000	MC@NLO		1.27
5926	$W^+W^- \rightarrow \mu \nu \tau \nu$	20000	MC@NLO		1.33
5927	$W^+W^- \rightarrow \tau \nu \tau \nu$	19950	MC@NLO		1.41
5928	$W^+W^- \rightarrow \tau \nu e \nu$	13749	MC@NLO		1.35
5929	$W^+W^- \rightarrow \tau \nu \mu \nu$	20000	MC@NLO		1.33
5941	$W^+Z \rightarrow l\nu ll$	52078	MC@NLO		0.427
5971	$W^-Z \rightarrow l\nu ll$	52619	MC@NLO		0.267
5152	$Z \rightarrow ee$	99950	MC@NLO	$M_{ee} > 60 \text{ GeV}, 1lp_T > 10 \text{ GeV}, \eta < 2.7$	1608.
5151	$Z \rightarrow \mu \mu$	99150	MC@NLO	$M_{\mu\mu} > 60 \text{ GeV}, 1 l p_T > 5 \text{ GeV}, \eta < 2.8$	1662.
5146	$Z \rightarrow \tau \tau$	98950	PYTHIA	$M_{\tau\tau} > 60 \text{ GeV}, 2lp_T > 5 \text{ GeV}, \eta < 2.8$	74.5
5185	$Z \rightarrow ee$	171150	PYTHIA	$p_T(Z) > 100 \text{ GeV}, 2lp_T > 10 \text{ GeV}, \eta < 2.7$	21.
5186	$Z \rightarrow \mu \mu$	198400	PYTHIA	$p_T(Z) > 100 \text{ GeV}, 2lp_T > 10 \text{ GeV}, \eta < 2.8$	21.34
5200	tĪ	422450	MC@NLO	No all hadronic channels.	461.

Cut Flow Table

- Plot shows events after cuts, normalised to 100fb⁻¹
 - $\begin{array}{c|c} \underline{11.0.4} & \underline{12.0.6} \\ \epsilon = 3.2\% & \epsilon = 2.6\% \\ \text{S/B} = 2.25 & \text{S/B} = 1.96 \end{array}$
 - Errors on ttbar & Z→II large due to low statistics.

Process	$ZZ \rightarrow ll \nu \bar{\nu}$	$ZZ \rightarrow 4l$	Z + jets	tī	WZ	Wt	WW	$Z \rightarrow \tau \tau$
$p_T^l > 20 \text{ GeV}, \eta_l < 2.5$	13006	5430	1.31 106	4.53 10 ⁵	27122	225	49110	2.17 10 ⁵
Third lepton veto	10187	311	1.90 10 ⁵	42887	5287	75	37556	1.69 10 ⁵
$ m_{ll} - 91.2 \text{ GeV} < 10 \text{ GeV}$	10016	265	1.74 10 ⁵	11020	4530	38	8377	4014
$p_T^{\text{miss}} > 50 \text{ GeV}$								
$ p_T^{\text{miss}} - p_T^Z /p_T^Z < 0.35$								
$\phi_{\rm miss} - \phi_Z < 35^\circ$	3795	34	378	1787	942	0	1826	0
Jet Veto								
$(p_t^{jet} > 30 \text{ GeV and } \eta_{jet} < 3)$	3443	30	44	596	763	0	1668	0
$p_T(l^+l^-) > 100 \text{ GeV}$	1016	8	44	298	167	0	2	0
Statistical Error:	23	1	22	211	13	0	23	0

Events expected in 100fb⁻¹ of data

Anomalous Coupling Fitting Plots

Fit comparison

 Background Distribution

ZZ→mumutautau Samples Used

Run	Channel	No.Events	Release	Generator	Generator Cuts
Private Sample	ΖΖ → μμττ	10000	12.0.6.5	MC@NLO	
R5146	Z→ ττ	80900	11.0.4.2	PYTHIA	m _π >60GeV, 2 leptons with p _T >5GeV and η <2.8
R5151	Z → µµ	2600	11.0.4.2	MC@NLO	$m_{\mu\mu}$ >60GeV, 1 lepton with p _T >5GeV and η <2.8
R5152	Z→ ee	69550	11.0.4.2	MC@NLO	m _{ee} >60GeV, 1 lepton with p _T >10GeV and η <2.7
R5185	Z→ ee	58700	11.0.4.2	PYTHIA	Z p _T >100GeV, 2 leptons with p _T >10GeV and $ \eta < 2.7$
R5186	Ζ → μμ	95500	11.0.4.2	PYTHIA	Z p _T >100GeV, 2 leptons with p _T >5GeV and η <2.8
R5200	t t-bar	10000	11.0.4.2	MC@NLO	No all hadronic events
R5924	WW→ Ivlv	10950	11.0.4.2	MC@NLO	1-15P
R5931	ZZ→ IIII	9000	11.0.4.2	MC@NLO	- ////
R5981	ZZ→ IIvv	10000	11.0.4.2	PYTHIA	2 leptons with $p_T>4.5$ GeV and $ \eta <2.7$