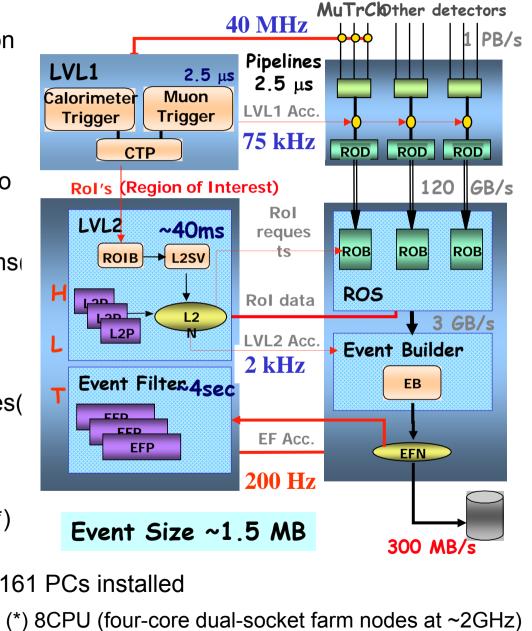
Trigger Commissioning and Early Running Strategy

John Baines


- Introduction
- Commissioning
- Preparation for first beams
- Trigger Menus
- Summary

Introduction

- The Trigger is essential to :
 - reduce the event rate from 40MHz BC rate to ~200Hz recording rate
 - select events for physics studies, alignment, calibration & efficiency measurements
 - assign events to streams for data recording :
 - physics streams to facilitate data access for analysis
 - express stream for rapid feedback on alignment, calibration & efficiency
 - online (real-time) monitoring
- This must be achieved fast & with limited resources
- The trigger provides the first set of "cuts" for physics analysis must be carefully chosen & tuned like all successive cuts.
- Vital to:
 - provide robust selections for early data: incl. different luminosities and detector & beam conditions.
 - optimise the cuts w.r.t. trigger rate and efficiency.
 - develop techniques to measure trigger efficiency from data
 - understand biases introduced via trigger cuts (as far as possible using data).
- The active participation of the physics groups is vital for this work! there are many areas seeking additional effort.

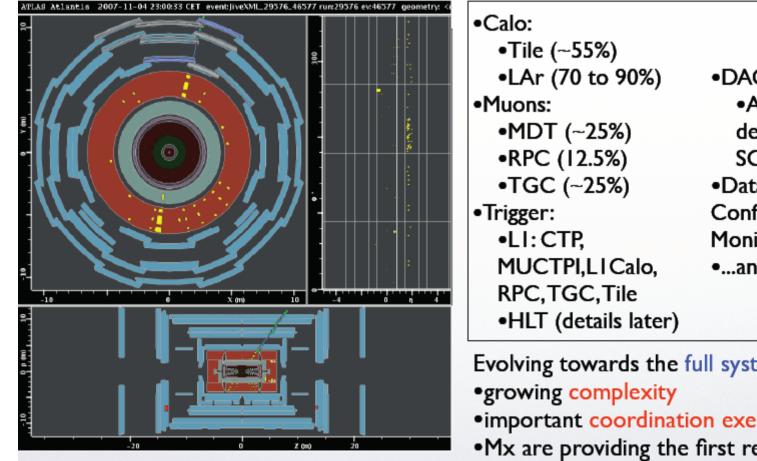
Trigger Overview

- Level 1:
 - Hardware based : Calo + Muon
 - Latency 2.5 μs
 - Output rate ~75 kHz
- Level 2: ~500 farm nodes(*)
 - "Regions of Interest" (Rol) to guide reconstruction
 - Custom algorithms
 - Average execution time ~40 ms
 - Output rate up to ~2 kHz
- Event Builder: ~100 farm nodes
- Event Filter (EF):~1600 farm nodes(
 - Seeded by level 2
 - Access to full built event
 - Offline algorithms
 - Average execution time ~4 s(*)
 - Output rate up to ~200 Hz
- Current Farm: ~7% final system : 161 PCs installed
- Major purchases this year

DAQ

Calo

Trigger

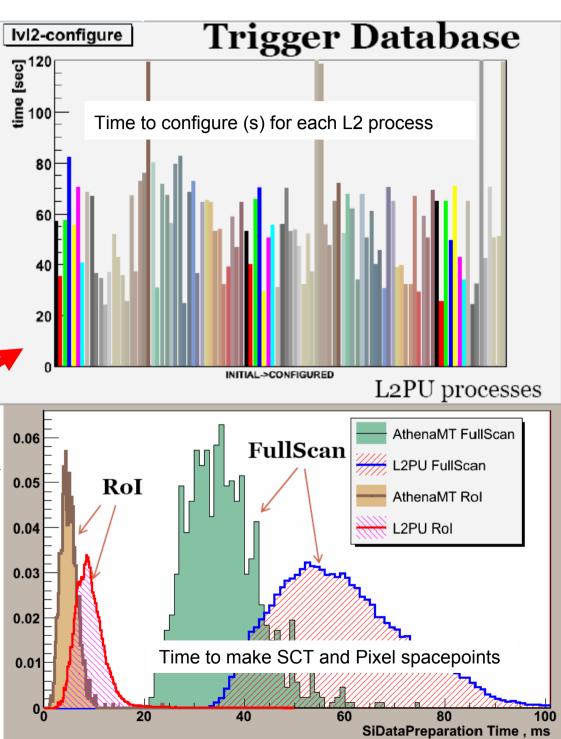

Trigger Commissioning

Several strands to Commissioning the Trigger ready for first physics:

- Offline Running:
 - Run LVL1 trigger emulation + real High Level Trigger algorithms as part of Reconstruction in Athena
 - Develop & optimise selection chains & menus.
 - Measure trigger rates using bulk samples of min bias & di-jet events.
 - Measure trigger efficiencies for signal samples
 - Perform Trigger aware physics analysis
- Tests on the pre-series and dedicated Trigger/DAQ machines
 - Special versions of athena emulate the environment for algorithms running online in LVL2 (athenaMT) and the Event Filter (athenaPT)
- Cosmic runs:
 - Exercises many components of the final system incl. readout chain & DAQ
 - Test integration of trigger with different detectors, separately and combined
 - exercises software with real data (real noise, real errors etc.)
 - using trigger algorithms either specific to, or adapted for, cosmic running
- Technical runs:
 - Simulated data downloaded to the Read Out Buffers
 - Tests the full algorithms and menus running on the online farms.
 - Also tests replaying real cosmic data downloaded to the Read Out Buffers

Cosmic Running

- Several cosmic runs in 2007. M3 and & M4 collected 2 & 3 Million events respectively ٠
- M5 lasted 22 Oct to 5 Nov. Ran with Calorimeter and Muon Detector ٠
 - Level-1 Calorimeter & Muon triggers
 - HLT Muon and Calorimeter Triggers
 - HLT running on ~ 100 nodes, 8 cores each (6% of final EF and $\sim 1/3$ of final L2)
 - 12 Million Events Recorded


 DAQ/Monitoring: All integrated detectors+Pixel. SCT Dataflow, Controls & Configuration, Monitoring, Sysadmin •...and the people!

Evolving towards the full system:

- •important coordination exercise
- •Mx are providing the first real ATLAS data!

Technical Runs

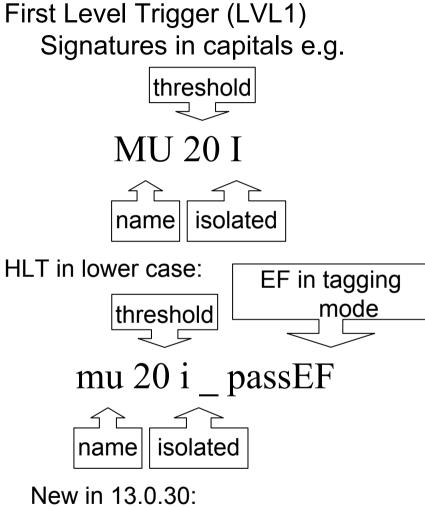
- Several technical runs in 2007, last in November
- ~7% of the "final" HLT farm
- 5 racks of 31 machines for L2 and EF processes
- Run with full 10³¹ Menu
- Access to quantities that can only be measured online:
 - Configuration times for algorithm on HLT farm
 - Execution times including Data Access
- Tests collection and display of monitoring histograms in real time
- First exercise of TriggerTool to edit trigger menus from run-to-run.

Preparation for Running in 2008

Timescale (Success Orientated Schedule):

- Machine closed April 2008
- Beam commissioning starts May 2008
 - 450 GeV operation now part of normal setting up procedure for beam commissioning to high-energy
 - Gradual increase in current up to 156 bunches/beam
- Pilot physics:
 - Un-squeezed initially \rightarrow partial squeeze
 - Luminosity $\leq 10^{32}$ cm⁻²s⁻¹

HLT Priorities for this year:


- Add last missing components & functionality for offline release 14.0.x incl.:
 - MBTS min. bias. trigger, HLT forward jet triggers...
- Test and improve robustness of code tests with corrupted data, misalignment, miss-calibration, long runs, cycling through states etc.
- Select key monitoring histograms and set up reference histograms
- Finalisation of Trigger Menus and strategies for coping with beam & detector conditions etc.
- Complete techniques for extraction of efficiency from data
- Technical runs, cosmic runs, runs with first beam

Menus

A huge amount of progress during 2007

- Results at June TP week were based on menus in 12.0.X which included:
 - just 43 signatures:
 - the main signatures for 10³³
 - plus low thresholds to enable algorithm development and optimisation
 - no combined signatures, no pre-scaled triggers, no pass-through (Essentially the same menu was in 13.0.20)
- New in 13.0.30 (presented at November TP week):
 - 285 signatures defined in total, 200 in 10³¹ menu.
 - Menus targeted at start-up : first version of 10³¹ menu & draft 10³² menu
 - Combined signatures (e.g. tau + Missing ET) almost 50 defined
 - pre-scaled signatures use of LVL1 and some HLT pre-scales
 - Pass through signatures: passL2, passEF, passHLT
 - Since then, small changes to modify or remove a few items with too high rate
- Exercised in massive offline productions and sustained running in Technical runs
- Menu in 13.0.40 will be used to produce ByteStream Datasets for the Full Dress Rehearsal
- Menus will continue to evolve.

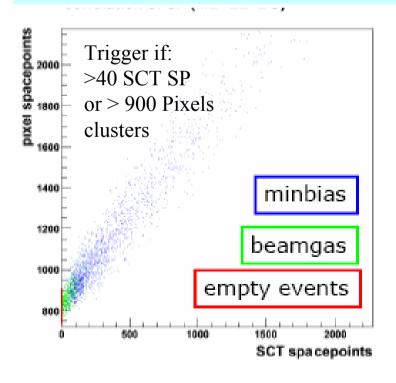
Naming Convention

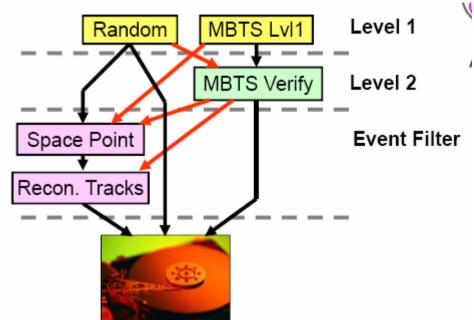
- Threshold is cut value applied
- previously was ~95% effic. point.

LVL1	HLT	type
	e	electron
EM	g	photon
MU	mu	muon
HA	tau	tau
FJ	fj	forward jet
JE	je	jet energy
JT	jt	jet
TM	xe	missing energy

More details : see :<u>https://twiki.cern.ch/twiki/bin/view/Atlas/TriggerPhysicsMenu</u>

Trigger Rate Measurements


- Runs Trigger on min bias and dijet datasets to produce AOD
 - Use 10³¹ menu without pre-scales.
- Using TriggerRateTools to calculate rates taking into account overlaps
- Pre-scales applied by TriggerRateTools (increased statistics).
- Run on 6.7M Min. Bias events (cross-section for this sample : 70mb)


Rate Constraints	Design	Early Running
L1	75 kHz	45 kHz
L2	2 kHz	1 kHz
EF	200 Hz	200 Hz

Min Bias Triggers

Min. Bias Trigger available for the first time in 13.0.30.3

- Based on SP Counting
- Trigger if:
- >40 SCT SP or > 900 Pixel Clusters

To be done: add MBTS trigger Define 3 MBTS triggers:

- MBTS_1 1 or more MBTS above threshold
- MBTS_2 2 or more MBTS above threshold
- MBTS_1_1 At least 1 MBTS above threshold either side.

MBTS – Scintillators on the inside of endcap calorimeter giving LVL1 info.

Electron Menu Coverage for L=10³¹cm⁻²s⁻¹

16 LVL1 Thresholds for EM (electron, photon) & HA (tau)

EM3, EM7, EM13, EM13I, EM18, EM18I, EM23I, EM100

Trigger	Physics coverage	Rate
Single electron triggers	Selections with isolated/non-isolated LVL1 thresholds	5 Hz
and pre-scaled triggers	Triggers with L2 and/or EF pass-through	
with HLT pass-thru' for commissioning needs	e.g. e15, e15i, e15_passHLT, e15i_passHLT, e20_passL2, e20_passEF	
Low mass pairs	J/ ψ , Y \rightarrow ee, DY are sources of isolated e with large stat.,	6 Hz
	useful for calib. at low- p_T , efficiency extraction at low- p_T	
	e.g. 2e5, 2e10, e5+e7, e5+e10	
Low-medium-p _T	Z→ee, Susy, new phenomena	5 Hz
double/triple e-trigger	e.g. 2e10, 2e15, 3e15	
High-p _T single e-trigger	$W \rightarrow ev$, $Z \rightarrow ee$, top, Susy, Higgs, Exotics etc.	5 Hz
(LVL1 $p_T \sim 18 \text{ GeV}$)	Loose selections and lots of redundancy	
	e.g. e20, e20i, e25i, e15_xE20, e10_xE30, e105	
Very high-p _T e-trigger	Exotics, new phenomena e.g. em105_passHLT	1.5 Hz
Low p _T single e-trigger	Electrons from b,c decays (e typically not well isolated)	17 Hz
(LVL1 p _T ~7 GeV)	Useful for E/p studies. Need tighter cuts to limit rate	
	e.g. e12	

Photon Menus for 10³¹

Trigger Item	Examples	Physics Coverage	Rate
Low pt item HLT pre-scale 10 or 100	g10, g15, g15i	Hadronic calibration, inclusive and di- photon cross section	4 Hz
High pt item, no pre-scale	g20, g20i, g25, g25i	Direct photon, hadronic calibration	
Very high pt item non isolated	g105, g120	Exotics, SUSY, unknown, hadronic calibration	7 Hz
Multi photon, no Isol. no HLT prescale	2g10, 2g15, 2g20, 3g10	Di-photon cross section, Exotics, SUSY, calibration	5 Hz
Triggers for commissioning with LVL1 prescale and HLT in tagging mode	em15_passHLT, em_15i_passHLT g10_passL2 g10_passEF	Selections with/without L1 isolation, triggers with L2/EF pass-through	

Total rate (including overlaps) ~10 Hz

Muon Triggers

Six LVL1 thresholds : MU4, MU6, MU10, MU15, MU20, MU40

Isolation can be applied at the HLT

Triggers	Examples	Motivation	Rate
Prescaled Low p_T single μ	mu4, mu6	B-physics, J/ψ, Y→μμ, DY	4 Hz
Unprescaled Low p _T dimuon	2mu4, mu4+mu6, 2mu6		2.5 Hz
Prescaled triggers with HLT pass-thru'	mu20_passHLT	commissioning	0.5 Hz
mu20i with calculating but not applying isolation			
high p _T triggers with/without isolation	mu10, mu15, mu20, mu20i, mu40 2mu10, 2mu20	high-p _T physics: Z(μμ), Susy, Higgs, Exotics etc.	20 Hz

Bphysics

LVL1 + Muon at HLT

- 2mu4 : 2.5 Hz
- mu4 & mu6 pre-scaled : 4 Hz

LVL1 + ID & MU at HLT:

- mu4_DsPhiPi_FS, MU4_Jpsimumu_FS, MU4_Upsimumu_FS,
- MU4_Bmumu_FS, MU4_BmumuX_FS

Loose selections ~10Hz

Tau Triggers

16 LVL1 Thresholds for EM (electron, photon) & HA (tau)

HA5, HA6, HA9I, HA11I, HA16I, HA25, HA25I, HA40

Signature	Example	Motivation	Rate	
Single tau prescaled	tau45, tau45i	exotics and heavy Higgs	15 Hz	
single tau unprescaled	tau60, tau100			
Tau+MET	tau20i+xe30	W -> $\tau\nu$ at low luminosity and H-> $\tau\nu$, SUSY, etc at high lumi.	5 Hz	
TauTau	2tau25i, 2tau35i	H->tautau	3 Hz	
tau+e,mu,tau,jet	tau20i_e10, tau20i_mu10, tau20i_j70, tau20i_4j50, tau20i_bj18	Z tt, preparation for 10 ³³ SUSY, Charged Higgs	5 Hz	16

Single Jet Triggers

- Strategy:
- Initially use LVL1 selection with no active HLT selection and b-jet trigger in tagging mode
- 8 LVL1 Jet thresholds:
 - Highest un-prescaled, value determined by rate considerations (Aim for ~20Hz)
 - Other threshold set to equalize bandwidth across the E_{T} spectrum
 - Lowest threshold used to provide Rol for Bphysics trigger.

	Overall			
Trigger	Prescale	Rate (Hz)		
j400	1.0	8.6	(± 0.9)	
j200	1.0	8.6	(± 0.9)	
j120	1.0	8.6	(± 0.9)	
j70	15.0	4.2	(± 0.2)	
j42	100.0	3.71	(± 0.06)	
j35	500.0	1.37	(± 0.02)	
j23	2000.0	1.37	(± 0.008)	
j18	6000.0	1.02	(± 0.004)	
j10	42000.0	3.9	(± 0.003)	
j5	300000.0	0.9470	(± 0.0004)	

Jet Triggers (contd)

	Triggers	Motivation
single jet	j5,j10,j18,j23,j35,j42,j70,j120,j200,j400	QCD, Exotics
multi-jet	3J10, 4J10, 3J18, 3J23, 4J18, 4J23, 4J35	searches pp->XX, X->jj, top, SUSY
forward jets	FJ10, FJ18,FJ26, FJ65, 2FJ10, 2FG26, 2FJ65, FJ65_FJ26	VBF
jet energy sum	JE280, JE340	SUSY

		Trigger Rates for Forward Jets			Jets		
					Overall		
				Trigger	Prescale	Ra	ate (Hz)
Trig	ger Rates fo	r multi-jet	S	2fj70	1.0	0	
		1		2fj35	1.0	1.6	(± 0.4)
	Overall			2fj18	100.0	0.94	(± 0.03)
Trigger	Prescale	Ra	te (Hz)	Multi-Fjets		2.49	(± 0.08)
4j23	1.0	5.3	(± 0.7)	fj120	1.0	0.9	(± 0.3)
4j18	100.0	0.10	(± 0.01)	fj70	20.0	1.15	(± 0.0) (± 0.08)
4j10	300.0	0.036	(± 0.004)	fj35	700.0	0.68	(± 0.00) (± 0.01)
3j18	100.0	0.71	$(\pm$ 0.03)	fj18	7000.0	1.04	(± 0.01) (± 0.004)
3j10	1500.0	0.048	(± 0.002)	-	7000.0		` '
		1		Single-Fjets		3.76	(± 0.01)

Bjet Triggers

- Jets tagged as B-jets at HLT based on track information
- Will allow lower LVL1 jet thresholds to be used
- For initial running the Bjet triggers will be in tagging mode. Active selection will be switched on once the detector & trigger are understood.

	Overall			Cur	nulative
Trigger	Prescale	Prescale Rate (Hz) Rat		nte (Hz)	
3b23+3L1J23	1.0	0.2	(± 0.1)	0.2	(± 0.1)
2b23+3L1J23	1.0	2.7	(± 0.5)	2.7	(± 0.5)
2b23+3L1J23 passHLT	1000.0	0.0028	(± 0.0005)	2.7	(± 0.5)
3b18+4L1J18	1.0	0.2	(± 0.1)	2.8	(± 0.5)
3b18+4L1J18 passHLT	1000.0	0.0002	(± 0.0001)	2.8	(± 0.5)
Multi-bjets		2.8	(± 0.5)		
b70	15.0	4.2	(± 0.2)	6.9	(± 0.3)
b42	100.0	3.71	(± 0.06)	10.6	(± 0.2)
b35	500.0	1.37	(± 0.02)	11.9	(± 0.1)
b23	2000.0	1.37	(± 0.008)	13.3	(± 0.08)
b18	6000.0	1.02	(± 0.004)	14.3	(± 0.06)
Single-bjets		11.60	(± 0.05)		

Missing ET, Total SumET

8 LVL1 Missing ET thresholds

	Overall				nulative
Trigger	Prescale	Ra	te (Hz)	Ra	te (Hz)
xe80	1.0	0		0	
xe70	1.0	0.2	(± 0.1)	0.2	(± 0.1)
xe50	4.0	1.1	(± 0.2)	1.2	(± 0.2)
xe40	20.0	0.84	(± 0.07)	2.0	(± 0.2)
xe30	200.0	0.54	(± 0.02)	2.53	(± 0.08)
xe25	1500.0	0.297	(± 0.005)	2.83	(± 0.04)
xe20	7000.0	0.327	(± 0.002)	3.15	(± 0.02)
xe15	30000.0	0.579	(± 0.001)	3.73	(± 0.009)
te650	1.0	0.3	(± 0.2)	0.3	(± 0.2)
te360	40.0	0.23	(± 0.02)	0.53	(± 0.08)
te250	1100.0	0.256	(± 0.005)	0.79	(± 0.02)
te150	100000.0	0.1370	(± 0.0004)	0.925	(± 0.003)
je340	1.0	0.1	(± 0.1)	0.1	(± 0.1)
je280	2.0	0.4	(± 0.1)	0.5	(± 0.2)
je220	10.0	0.61	(± 0.08)	1.0	(± 0.1)
je120	150.0	0.64	(± 0.02)	1.67	(± 0.05)

20

Combined Triggers

• Menu contains large no. combined signatures

Туре	Examples	Motivation
tau+e, tau+mu, e+mu	tau15i_e10, tau25i_mu6, tau20i_mu10, e10_mu6	tt, SUSY
tau+Missing ET	tau45_xe40, tau45i_xe20	W, tt, SUSY, exotics
tau+jet	tau25i_j70	W, tt, SUSY, exotics
mu+jet	mu4_j10	exotics
jet + missing ET	j70_xe30	SUSY, exotics

Total Rates				Slice		Rate	(Hz)	
				Jet	LVL	1 242.0	(± 0.1)	
				Egamma		9770	(± 20)	
				Tau		570	(± 1)	
	Rate (Hz)			Muon		1730	(± 10)	
LVL1	47,000			Missing E_T		38.40	(± 0.04)	
LVL2	865			Total E		6.27	(± 0.004)	
EF	200			Total Jet E		1.67	(± 0.05)	
	200			Combined		5880	(± 20)	
				Minimum Bi	as	35700	(± 40)	
Slice	Rate (Hz)		Sli	ce	E	EF Rat	Rate (Hz)	
Jet LVL	2 36.7	(± 0.02)	Jet			34.9	(± 0.01)	
bjets	23.9	(± 0.1)	bjets			14.3	(± 0.06)	
Electron	155.0	(± 0.4)	Electron			33.7	(± 0.08)	
Photon	35.6	(± 0.07)	Photon			8.99	(± 0.02)	
Tau	351	(± 0.7)	Tau			33.5	(± 0.07)	
Muon	212	(± 3)	Muon		34.7	(± 0.7)		
Missing E_T	32.4	(± 0.04)	Missing E_{T}		3.73	(± 0.009)		
Total E	6.27	(± 0.004)	Total E			0.925	(± 0.003)	
Total Jet E	1.67	(± 0.05)	Total Jet E			1.67	(± 0.05)	
Topological + B-physics	25.5	(± 2)	Topological + B-physics		13	(± 1)		
Combined	134	(± 2)	Combined			46	(± 1)	
Minimum Bias	0.0994	(± 0.0002	Minimum Bias			0.0994	(± 0.0002)	
Calibration	310	(± 6)	Calibration			_15	(± 5)	

Summary

- A lot of progress with Trigger Commissioning during 2007:
 - Final hardware installed in P1 including ~7% of HLT farm
 - Cosmic runs including Trigger & DAQ
 - Technical runs on simulated full ATLAS data downloaded to RoBs
 - Development of Trigger Menus for 10³¹ & 10³²
- Work continues this year with preparation for first beams in 2008 :
 - Further technical and cosmic runs. Full Dress Rehersal
 - Tests with corrupted data, misalignment, miss-calibration, long runs, cycling through states etc.
 - Finalise Trigger Menus and strategies for varying beam & detector conditions.
 - Optimise the cuts w.r.t. trigger rate and efficiency for signal samples.
 - Complete techniques for extraction of efficiency from data
 - Understand possible biases introduced via trigger cuts (from data if possible)
- Still plenty to do your help is vital.
 - many areas seeking additional effort scope for student projects looking at the very first data!
- Looking forward to goal of first physics running later this year!